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ABSTRACT 

α-Conotoxin Vc1.1 inhibits the nicotinic acetylcholine receptor (nAChR) α9α10 

subtype and has the potential to treat neuropathic chronic pain. To date, the crystal 

structure of Vc1.1 bound-α9α10 nAChR remains unavailable, thus understanding the 

structure-activity relationship of Vc1.1 with the α9α10 nAChR remains challenging. 

In this study, the Vc1.1 side chains were minimally modified to avoid introducing 

large local conformation perturbation to the interactions between Vc1.1 and α9α10 

nAChR. The results suggest that the hydroxyl group of Vc1.1, Y10, forms a hydrogen 

bond with the carbonyl group of α9 N107 and a hydrogen bond donor is required, 

whereas Vc1.1 S4 is adjacent to the α9 D166 and D169, and a positive charge residue 

at this position increases the binding affinity of Vc1.1. Furthermore, the carboxyl 

group of Vc1.1, D11, forms two hydrogen bonds with α9 N154 and R81 respectively, 

whereas introducing an extra carboxyl group at this position significantly decreases 

the potency of Vc1.1. Second generation mutants of Vc1.1 [S4Dab, N9A] and [S4Dab, 

N9W] increased potency at the α9α10 nAChR by 20-fold compared with that of 

Vc1.1. The [S4Dab, N9W] mutational effects at positions 4 and 9 of Vc1.1 are not 

cumulative but are coupled with each other. Overall, our findings provide valuable 

insights into the structure-activity relationship of Vc1.1 with the α9α10 nAChR and 

will contribute to further development of more potent and specific Vc1.1 analogues.  

 

KEYWORDS: α-Conotoxin, nicotinic acetylcholine receptor; structure-activity 

relationship; unnatural amino acids; molecular dynamics simulations; mutagenesis  
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1. Introduction 

Conotoxins are disulfide-rich peptides from the venom of marine snails of the 

Conus genus.1-3 The conopeptides range from 10 to 40 amino acids in length and have 

a compact structure stabilized by several disulfide bonds.4 Compared with other 

natural peptide toxins, conotoxins have considerable advantages such as relatively 

small molecular mass, structural stability, high selectivity, potency, and easy 

synthesis.5-9 

α-Conotoxins were one of the earliest discovered conotoxins, usually composed 

of 12 to 30 amino acid residues,10 and can specifically target nicotinic acetylcholine 

receptors (nAChRs).11 Several α-conotoxins have shown promising therapeutic 

potential12 with a most prominent example being α-conotoxin Vc1.1 (Figure 1A).13 

Vc1.1 is a 16 amino acid, disulfide-bonded peptide identified from the venom of C. 

victoria14 and potently inhibits the α9α10 nAChR.15-17  

nAChRs are pentameric ligand-gated ion channels consisting of an extracellular 

domain, a transmembrane domain and an intracellular domain and are expressed in 

the central and peripheral nervous systems and non-neuronal cells.18,19 The conotoxin 

binding site is located at the extracellular domain contributed by the principal (+) and 

complementary (−) components of two adjacent subunits (α1-α10, β1-β4, γ, δ or ε).20 

In the nervous system, they mediate the role of the neurotransmitter acetylcholine and 

are involved in rapid synaptic transmission.21-23 The non-neuronal functions of 

nAChRs include cellular proliferation and regulation of the immune system. There are 

many different nAChR subtypes with preferential distribution in the nervous system, 
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which mediate different physiological processes.24 There is also considerable interest 

in modulating nAChRs to treat nervous system disorders such as Alzheimer’s disease, 

Parkinson’s disease, schizophrenia, depression, attention deficit, hyperactivity 

disorder and tobacco addiction.25-27  

The evidence that the nAChRs play a role in a number of different neuronal 

functions and disorders has given impetus to the search for drugs that selectively 

modulate different nAChR subtypes.28 The α9 and α10 subunits form heteromeric 

nAChRs in the mammalian cochlea and mediate postsynaptic transmission between 

the olivocochlear fibres and the outer hair cells.29-31 The α9α10 nAChR (Figure 1B) 

has also been implicated in chronic pain and has been proposed to be a novel target 

for analgesics.32 Although the antagonism of α9α10 nAChR by α-conotoxin Vc1.1 has 

been speculated to be responsible for its analgesic effects, the in vivo target remains 

controversial as the G protein-coupled GABAB receptor has also been proposed as the 

site of action.33,34 
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Figure 1. Structures of the α-conotoxin Vc1.1 and the extracellular domain of the 

α9α10 nAChR. (A) The NMR-derived distance and angle restrained (PDB code: 

2H8S) structure of Vc1.1. The backbone and side chains of Vc1.1 are shown in 

cartoon and stick representations, respectively. α-Conotoxin Vc1.1 is a 16-amino acid 

peptide and has two disulfide bonds and an amidated C-terminus (represented by “#” 

in the sequence). (B) The extracellular ligand binding domain of the α9α10 nAChR. 

The α-conotoxin binding site is putatively located at the cleft between the α10(+) and 

α9(−) components or α9(+) and α9(−)components (grey cloud). 

 

To date, the crystal structure of Vc1.1 bound-α9α10 nAChR remains unavailable, 

and computational modeling in combination with mutagenesis studies have been used 

as an effective method for understanding the structure-activity relationship. Previously, 

Yu et al. (2013) proposed the α10(+)-α9(−) interface as the favourable binding site of 

Vc1.1 at the (α9)2(α10)3 nAChR.35 Additionally, residue 59 (T in rat and I in human) 

at the α9 subunit (−) component determined the selectivity of Vc1.1 for the rat 
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(α9)2(α10)3 nAChR compared to the human (h) (α9)2(α10)3 nAChR. Subsequently, 

Indurthi et al. (2014) proposed that the α9(+)-α9(−) binding site in (α9)3(α10)2 

arrangement was the most sensitive binding site for Vc1.1 rather than the α10(+)-α9(−) 

site.36 Yu et al. (2018) performed a comprehensive computational modeling based on 

the proposed high and low Vc1.1 sensitivity binding sites in the (α9)2(α10)3 and 

(α9)3(α10)2 stoichiometries and concluded that the (α9)3(α10)2 arrangement uniquely 

contained an α9(+)-α9(−) interface binding site in which N154 at the α9(+) 

component formed a hydrogen bond with D11 of Vc1.1 that is responsible for the 

higher sensitivity of the receptor to Vc1.1.37,38 

Despite the advancement in studying the binding mode of Vc1.1 at α9α10 nAChR 

based on computational modeling, understanding the structure-activity relationship of 

Vc1.1 with the α9α10 nAChR is hampered by the lack of high resolution crystal 

structures and high degree of confidence computational models of α9α10 nAChR 

bound to Vc1.1.  

Alanine scanning data has been extensively used for validation of the 

computationally determined binding modes of the α-conotoxins. However, 

substituting long side-chained residues with alanine not only removes the functional 

groups, but also significantly reduces the size of the original residues which is often 

accompanied by a significant local conformation change in the binding interface, 

masking the effects of the mutation. In this study, we used molecular dynamics 

simulations to probe the interactions of Vc1.1 analogues with the hα9α10 nAChR 

binding site in order to identify the residues involved. Furthermore, we determined the 
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activity of systematically generated unnatural amino acid (Figure S1) analogues of 

Vc1.1 at heterologously expressed hα9α10 nAChR in Xenopus oocytes using 

two-electrode voltage clamp electrophysiology.  

 

2. Results and discussion 

In this study, specific Vc1.1 side chains were minimally modified to validate the 

previously determined binding modes of Vc1.1 and to understand the 

structure-activity relationship of Vc1.1 with the α9α10 nAChR.  

We were interested in Vc1.1 residues 4, 6, 10 and 11 as they either form 

hydrogen bond or salt bridges with nearby residues of the α subunits (Figure 2A). 

Results from a previous alanine scanning study suggested that removal of the 

hydroxyl group of S4 and the carboxyl group of D11 significantly contribute to the 

binding affinity of Vc1.1, whereas removal of the side-chain of Y10 slightly improves 

the binding affinity of the Vc1.1 mutant.39 

Results from alanine scanning support our established model in which Vc1.1 S4 

forms hydrogen bond with α9 D166 (Figure 2B) and Vc1.1 D11 forms hydrogen 

bonds/salt-bridges with α9 residues R81 and N154 (Figure 2E). However, the results 

disagree with our modeling studies in which two hydrogen bonds were identified 

between the hydroxyl group of Vc1.1 Y10 and the backbone H atom of α9 D119 and 

O atom of α9 N107 (Figure 2D). Thus, the alanine scanning data cannot accurately 

and comprehensively explain the contribution of the side chains to the binding affinity 

of the α-conotoxins due to its dual effects on both the functional group and local 
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conformation change at the binding interface. Consequently, for more explicit and 

accurate understanding on the contribution of the residues in the binding of 

α-conotoxins to the nAChRs, mutating the peptide using amino acid residues with 

similar side chains is necessary. 
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Figure 2. Binding of (A) α-conotoxin Vc1.1 (orange) at the α9(+)-α9(−) interfaces of 

the human α9α10 nAChR, with the binding sites of positions 4 (B), 6 (C), 10 (D) and 

11 (E) magnified. Only the side chains of selected residues on the subunit of the 

α9(+)-α9(−) binding sites are shown. Hydrogen bonds are shown as yellow dashed 



10 

 

lines. 

In our previous model, Vc1.1 S4 was positioned nearby α9 D169 and D166, 

forming a hydrogen bond with D166, and introduction of a positively charged residue 

at position 4 was expected to strengthen the binding affinity of the Vc1.1 mutant.32 

Thus, the side chain hydroxyl group of S4 was replaced with amine to increase its 

electrostatic interaction with D169 and D166. Additionally, [S4K] and [S4Dab] 

mutants of Vc1.1 were synthesized (Table 1, Figure S1) to investigate the influence of 

side chain length on the activity. Residue P6 of Vc1.1 is located in the inner part of 

the binding site and is close to α9 D119 (Figure 2C), therefore, introducing a hydroxyl 

group to P6 could potentially increase or at least maintain its activity by forming a 

hydrogen bond with D119.  

Furthermore, we found that two hydrogen bonds were formed between the 

hydroxyl group of Vc1.1 Y10 and α9 residues N107 and D119 in the molecular 

dynamics (MD) simulation. In order to validate the contribution of the hydroxyl group 

to the binding affinity of Vc1.1, phenylalanine was introduced to position 10 of Vc1.1. 

Besides, the hydroxyl group of Y10 in Vc1.1 was replaced with F (fluoride) or Cl 

(chloride) (Table 1) to explore the possibility of hydrogen or halogen bond formation 

with nearby residues due to the removal of the hydroxyl group. Furthermore, in our 

previously built model,25 D11 in Vc1.1 forms hydrogen bond/salt-bridge interactions 

with the side chains of α9 N154 and R81. Here, we explore the influence of the length 

and charge of the side chain to the potency of the peptide by replacing D11 with 

glutamic acid or γ-carboxyglutamic acid (Table 1, Figure S1). 
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TABLE 1. The peptide sequence of Vc1.1 analogues and their corresponding 

serial number. 

Number Peptide Sequence 

CX-1 [S4K]Vc1.1 GCCKDPRCNYDHPEIC* 

CX-2 [S4Dab]Vc1.1 GCC(Dab)DPRCNYDHPEIC* 

CX-3 [S4Dap]Vc1.1 GCC(Dap)DPRCNYDHPEIC* 

CX-4 [P6Hyp]Vc1.1 GCCSD(Hyp)RCNYDHPEIC* 

CX-5 [Y10F]Vc1.1 GCCSDPRCNFDHPEIC* 

CX-6 [Y10F(4-F)]Vc1.1 GCCSDPRCN[Phe(4-F)]DHPEIC* 

CX-7 [Y10F(4-Cl)]Vc1.1 GCCSDPRCN[Phe(4-Cl)]DHPEIC* 

CX-8 [D11E]Vc1.1 GCCSDPRCNYEHPEIC* 

CX-9 [D11(γ-E)]Vc1.1 GCCSDPRCNY(γ-E)HPEIC* ∗ represents amidation of the C-terminus. 
Dab = diaminobutyric acid 
Dap = diaminopropionic acid 
γ-E = γ-carboxyglutamic acid 
Hyp = hydroxyproline 

 

The relative inhibitory activity of the designed Vc1.1 analogues was determined at 

the hα9α10 nAChRs heterologously expressed in Xenopus oocytes using the 

two-electrode voltage clamp technique. The potency of [S4Dab]Vc1.1 (CX-2) was 

significantly increased compared to wild-type Vc1.1, whereas the inhibitory activity 

of [S4Dap] (CX-3) only marginally increased (Figure 3). In contrast, the potency of 

[S4K]Vc1.1 (CX-1) was slightly reduced compared to Vc1.1. The K, Dab and Dap 

residues all possess a positively charged amine group at the side chain terminus, 

whereas their potency is remarkably different suggesting that appropriate length of the 

side chain is essential for the formation of favourable electrostatic interaction with the 

proposed D169 and D166 in our model (Figure 2).  



12 

 

The inhibitory activity of [P6Hyp]Vc1.1 (CX-4) at hα9α10 nAChRs was 

comparable with that of Vc1.1 (Figure 3). Thus, introducing a hydroxyl group to P6 of 

Vc1.1 introduced only minor effects to the activity of Vc1.1. In contrast to the 

comparable activity of [Y10A]Vc1.1 mutant,39 mutation of Y10 to F10 (CX-5, 6 and 

7) (Table 1) significantly reduced the inhibition of ACh-evoked currents (p < 0.0001) 

(Figure 3). Results from the [Y10F] mutation suggest that the hydroxyl group is 

required for the potency of Vc1.1. Additionally, both [D11E]Vc1.1 (CX-8) and 

[D11(γ-E)]Vc1.1 (CX-9) exhibited significantly lower potency (p < 0.0001) than 

wild-type Vc1.1 at hα9α10 nAChRs, suggesting that increasing the length of the side 

chain and/or the number of the negative charges substantially decreased the potency 

of the mutants. The change in activity of the mutants is considered to originate from 

the side chain replacement rather than from peptide secondary structure perturbation 

in consideration of their similar CD spectra absorption (Figure S2). 

 

Figure 3. Bar graph of inhibition of ACh-evoked peak current amplitude mediated by 

hα9α10 nAChRs by 1 µM Vc1.1 and analogues (CX-1− CX-9). Whole-cell currents at 

hα9α10 nAChR were activated by 6 μM ACh (mean ± SEM, n = 4-12). *p < 0.05 and 
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** p < 0.0001, Student’s t-test. 

 

Molecular dynamics simulation of the designed Vc1.1 analogues binding to the 

α9α10 nAChR was performed for in-depth understanding of their interactions (Figure 

4, Figure S3). Analysis of the interactions between [S4Dab]Vc1.1 and hα9α10 nAChR 

showed that the side chains of Dab4 formed several salt-bridges with D166, D169 and 

S168 of the receptor (Figure 4A, Figure S4A−C), which are responsible for the 

enhanced potency of [S4Dab]Vc1.1 at the hα9α10 nAChR. On the other hand, the 

enhanced activity of [S4Dap]Vc1.1 was contributed by hydrogen bonds formed 

between Dap4 with D166, D199 and T32 (Figure 4B, Figure S4D−F). 

In contrast, lysine replacement of S4 interrupted the salt-bridge interactions 

between the amine group of lysine and D166 and D169 due to the longer side chain 

(Figure 4C, Figure S4G), resulting in the substantially reduced [S4K]Vc1.1 potency at 

hα9α10. The hydroxyl group introduced by Hyp substitution of P6 formed a 

hydrogen bond with the side chain of α9 D119 at the binding site (Figure 4D, Figure 

S4H). The hydrogen bond may compensate to some extent the hydrophobicity loss 

due to introducing the hydroxyl group thus, the comparable potency of Vc1.1 and 

[P6Hyp]Vc1.1. MD simulations of [Y10F]Vc1.1, [Y10F(4-F)]Vc1.1 or 

[Y10F(4-Cl)]Vc1.1 bound to the hα9α10 nAChR (Figure 4 E, F and G, respectively), 

suggested that neither hydrogen nor halogen bonds were formed to compensate the 

removal of the hydroxyl group at the tyrosine side chain. This resulted in the dramatic 

decreased the potency of these aforementioned Y10 mutants of Vc1.1.  
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The model of [D11E]Vc1.1 interaction with the hα9α10 nAChR, suggested that 

despite the formation of hydrogen bond between Vc1.1 E11 and α9 N154 E11 (Figure 

4H, Figure S4I), the salt-bridge between E11 and α9 R81 was disrupted probably due 

to the highly flexible and longer side chain of E11 (Figure 4H, Figure S4J). 

Consequently, [D11E]Vc1.1 showed substantially decreased potency in comparison to 

Vc1.1. Similarly for D11γE mutant, only one of the carboxyl group formed hydrogen 

bond with N154 and Q157, whereas the other formed no interactions with the residues 

of the receptor (Figure 4I, Figure S4K,L), resulting in significantly decreased binding 

affinity to the hα9α10 nAChR. 
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Figure 4. Interactions established by position 4, 6, 10 and 11 of Vc1.1 analogues in 

α9(+)-α9(−) interfaces of the hα9α10 nAChR, respectively. (A, B, C, D, E, F, G, H, I): 

[S4Dab]Vc1.1, [S4Dap]Vc1.1, [S4K]Vc1.1, [P6Hyp]Vc1.1, [Y10F]Vc1.1, 

[Y10F(4-F)]Vc1.1, [Y10F(4-Cl)]Vc1.1, [D11E]Vc1.1 and [D11(γ-E)]Vc1.1 bound to 

the interfaces of α9(+)-α9(−), respectively. The α9 subunits are shown in green. Vc1.1 

residues are labeled in italic. The models of Vc1.1 analogues and α9α10 nAChR 

complexes were built based on that of Vc1.1/α9α10 nAChR complex using homology 

modeling and were refined using MD simulations in water explicitly. 

 

The design of double or triple mutants by combining single mutations with 

enhanced activity is an effective strategy to significantly improve the potency of 
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conotoxins. However, in some cases residues in different positions are coupled with 

each other, and their mutational effects are not cumulative. Although Halai et al. 

(2009) designed the [S4K, N9A]Vc1.1 double mutant with increased potency of ~29 

fold compared to Vc1.1, at the hα9/rat α10 nAChR hybrid, however, the potency of 

the double mutant is comparable to the single mutant [N9A]Vc1.1.39  

Mutation of S4 to lysine led to substantial structure change in the side chain and 

binding orientation to accommodate the local conformation change at 4 position of 

Vc1.1. Similarly, the [N9A] mutation might also result in significant change in the 

binding orientation to the receptor. Consequently, the mutational effects of the [S4K, 

N9A] double mutation were not cumulative of the single mutations, since the double 

mutant could only select either the orientation of [S4K]Vc1.1 or [N9A]Vc1.1 upon 

binding to the receptor. Hence, to reduce the conformational effects introduced by the 

residue at position 4 of Vc1.1, residues with minimal conformational change are 

preferred. Compared to lysine, Dab has a shorter side chain and [S4Dab] substitution 

is expected to have minimal conformational impact on the binding mode of the 

mutant. Given the higher potency of [S4Dab]Vc1.1 than [S4Dap]Vc1.1, the [S4Dab] 

mutation was included in the design of Vc1.1 double mutants. In consideration of the 

higher potency of [N9A]Vc1.1 (CX-10) and [N9W]Vc1.1 (CX-11) (Table 2), we 

designed [S4Dab, N9A]Vc1.1 (CX-12) and [S4Dab, N9W]Vc1.1 (CX-13) (Table 2) 

as the second generation analogues of Vc1.1. 
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TABLE 2. The peptide sequence of the second round design of Vc1.1 analogues 

and their corresponding serial number. 

Number Peptide Sequence 

CX-10 [N9A]Vc1.1 GCCSDPRCAYDHPEIC* 

CX-11 [N9W]Vc1.1 GCCSDPRCWYDHPEIC* 

CX-12 [S4Dab, N9A]Vc1.1 GCC(Dab)DPRCAYDHPEIC* 

CX-13 [S4Dab, N9W]Vc1.1 GCC(Dab)DPRCWYDHPEIC* 

   

The second generation [S4Dab, N9A]Vc1.1 and [S4Dab, N9W]Vc1.1 analogues were 

chemically synthesized, and their activity was determined at heterologously expressed 

hα9α10 nAChR. The concentration dependent activity of both analogues was 

determined giving a half-maximal inhibitory concentration (IC50) of 52.5 ± 3.2 nM for 

[S4Dab, N9A]Vc1.1 (Figure 5A), whereas the potency of [S4Dab, N9W]Vc1.1 was 

higher, with an IC50 of 38.7 ± 2.8 nM (n ≥ 5) (Figure 5B). The analogues exhibited a 

20-fold increase of potency at the hα9α10 nAChR compared to Vc1.1 (1 µM).25 The 

IC50 of [N9A]Vc1.1 and [N9W]Vc1.1 were 185.8 ± 20.7 nM and 49.1 ± 5.0 nM (n ≥ 

5), respectively, (Figure 5A,B). The mutational effects for the [S4Dab, N9A] 

mutations were cumulative to some extent, whereas for [S4Dab, N9W] they are not 

cumulative. The [N9W] mutation can cause larger local conformational change than 

[N9A] mutation at the binding interface, which might counteract the favorable effects 

introduced by the [S4Dab] mutation for the [S4Dab, N9W]Vc1.1 double mutant. 
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Figure 5. Concentration-response relationships of relative ACh-evoked current 

amplitude mediated by hα9α10 nAChR in the presence of Vc1.1 analogues (300 pM – 

10 μM) A) CX-10 and CX-12 giving IC50’s of 185.8 ± 20.7 nM and 52.5 ± 3.2 nM, 

respectively, and B) CX-11 and CX-13 giving IC50’s of 49.1 ± 5.0 nM and 38.7 ± 2.8 

nM (mean ± SEM, n = 5-9), respectively. Whole-cell currents at hα9α10 nAChR were 

activated by 6 μM ACh. 

 

3. Conclusions 

In summary, using previously built α9α10 nAChR model as guidance, we designed a 

library of Vc1.1 analogues by introducing residues with similar physicochemical 

properties to the wild-type residues in order to validate the accuracy of the model and 

investigated the structure-activity relationship of Vc1.1 with the hα9α10 nAChR at 

the atomic level. Our findings suggest that Vc1.1 S4 forms hydrogen bonds with α9 

D166 and D169, and introducing positively charged residues at this position can 

improve the potency. The P6 is nearby D119, and the introduced Hyp6 approaches 

D119 and forms a hydrogen bond. In addition, the hydroxyl group at Y10 side chain 

forms several hydrogen bonds with residues at the (+) component of the α9 subunit. 

The side chain length and the number of negative charges are essential for residue at 
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10 position of Vc1.1. Finally, two highly potent analogues, [S4Dab, N9A]Vc1.1 and 

[S4Dab, N9W]Vc1.1, were designed with ~ 20-fold increased potency at the hα9α10 

nAChR. Overall, our study provides valuable insights into the structure-activity 

relationship of Vc1.1 with the hα9α10 nAChR and will contribute to the further 

development of Vc1.1 analogues as molecular probes or drugs. 

 

4. Methods and materials 

4.1. Molecular dynamics simulations 

All molecular dynamics (MD) simulations were performed using the AMBER 16 

package with the ff14SB force field.40, 41 Parameters for the unnatural amino acids 

were prepared in the Antechamber module of AMBER16. Atom partial charges for 

PCA (pyroglutamic acid) were produced using the R.E.D Tools.42 The protonation 

states of histidine, aspartic acid and glutamic acid at the conotoxin/nAChR complexes 

were predicted using the PropKa 3.1 method.43 The receptor complexes were solvated 

in a truncated octahedral TIP3P water box containing ~10800 water molecules. 

Sodium ions were added to neutralize the systems. The systems were first minimized 

with 3,000 steps of steepest descent and then 3,000 steps of conjugate gradient with 

the solute restrained to their position by a harmonic force of 100kcal mol-1·Å-2. A 

second minimization was then performed but with all position restraints withdrawn. 

The systems were then gradually heated up from 50 to 300 K in the NVT ensemble 

over 100 ps with the solute restrained to their position using a 5 kcal mol-1·Å-2 

harmonic force potential. MD simulations were then carried out in the NPT ensemble, 

and the position restraints were gradually removed over 100 ps. The production runs 
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were conducted over 50 ns simulation time with pressure coupling set at 1atm and a 

constant temperature of 300 K. The MD simulations used a time step of 2 fs and, all 

bonds involving hydrogen atoms were maintained to their standard length using the 

SHAKE algorithm.44 The particle-mesh Ewald (PME) method was used to model 

long-range electrostatic interactions.45 MD trajectories were analyzed using VMD 

(http://www.ks.uiuc.edu/) and molecules were drawn using PyMol (Schrödinger, 

LLC). 

4.2. Peptide synthesis 

Briefly, Vc1.1 analogs were assembled on rink amide methylbenzhydrylamine resin 

(Novabiochem) using solid-phase peptide synthesis with  a 

neutralization/2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium 

hexafluorophosphate activation procedure for Fmoc (N-(9-fluorenyl)methoxycarbonyl) 

chemistry. Cleavage was achieved by treatment with 88:5:5:2 ratio of trifluoroacetic 

acid (TFA), phenol, water and triisopropylsilane as scavengers, at room temperature 

(20−25 °C) for 3 h. TFA was evaporated at low pressure in a rotary evaporator. 

Peptides were precipitated with ice-cold ether, filtered, dissolved in 50% buffer A/B 

(buffer A consists of 90% H2O/10% CH3CN/0.05% TFA and buffer B consists of 90% 

CH3CN/10% H2O/0.05% TFA), and lyophilized. Crude peptides were purified by 

RP-HPLC on a Phenomenex C18 column, and its molecular mass was confirmed 

using electrospray mass spectrometry. The four cystines in the peptides were 

selectively oxidized in two steps. In the first step the non-protected cystines were 

oxidized in 0.1M NH4HCO3 (pH 8–8.5) at a concentration of 0.5 mg/ml, and stirred at 
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room temperature for 48 hours. In the second step, the Acm-protected cystine is 

oxidized by dissolving the peptide in an iodine/acetonitrile solution having a 

concentration of 5 mg/ml, and the reaction is stirred in a closed environment at 28 °C 

for about 2 h. Until the mass spectrometry confirms the reaction was successful, 

ascorbic acid was then added to stop the oxidizing reaction and the solution was 

stirred again until no colour was visible. After two rounds of oxidation, peptides were 

purified by RP-HPLC and their mass and purity were validated using 

electrospray-mass spectrometry (MS) and analytical RP-HPLC, respectively (Figure 

S5). 

4.3. Electrophysiology. 

RNA preparation, oocyte preparation, and expression of human α9α10 nAChRs in 

Xenopus laevis oocytes were performed as described previously.25 Briefly, plasmids 

with cDNA encoding the hα9 and hα10 subunits subcloned into the oocyte expression 

vector pT7TS were used for mRNA preparation using the mMESSAGE mMACHINE 

kit (AMBION, Foster City, CA, USA). Oocytes were injected with 35 ng of mRNA 

for α9 and α10 subunits and then kept at 18 °C in ND96 buffer (96 mM NaCl, 2 mM 

KCl, 1 mM CaCl2, 1 mM MgCl2, and 5 mM HEPES, at pH 7.4) supplemented with 

0.5 mg/L gentamicin, and 100 U/mL penicillin-streptomycin 2−7 days before 

recording. All procedures were approved by the University of Wollongong and 

University of Sydney Animal Ethics Committees. 

Membrane currents were recorded at room temperature (21−23 °C) from Xenopus 

oocytes using a two-electrode (virtual ground circuit) voltage clamp with a 
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GeneClamp 500B amplifier and pClamp9 software interface (Molecular Devices, 

Sunnyvale, CA) at a holding potential –80 mV. Both the voltage-recording and 

current-injecting electrodes were pulled from borosilicate glass (GC150T-15, Harvard 

Apparatus, Holliston, MA, USA) and had resistances of 0.3−1.0 MΩ when filled with 

3 M KCl.  

Oocytes expressing were incubated with 100 μM BAPTA-AM at 18 ºC for ~3 h 

before recording and perfused with ND115 solution containing (in mM): 115 NaCl, 

2.5 KCl, 1.8 CaCl2, 10 HEPES, pH 7.4 at a rate of 2 mL/min. Initially, oocytes were 

briefly washed with ND115 followed by 3 applications of ACh at a half-maximal 

effective concentration for hα9α10 nAChR (EC50 = 6 µM)25 and 3 min washouts 

between ACh applications followed with 5 min incubation times for the peptide. Peak 

current amplitudes before (IACh) and after (IACh+peptide) incubation were measured using 

Clampfit 10.7 software (Molecular Devices, Sunnyvale, CA, USA) and the relative 

current amplitude, IACh+peptide/IACh was used to assess the activity of the peptides at 

hα9α10 nAChR. 

4.4. Data analysis 

Concentration-response relationships for the peptides were determined using the Hill 

equation (GraphPad Prism 7 Software, La Jolla, CA, USA). The calculated IC50 

(half-maximal inhibitory concentration) values were reported with error of the fit. The 

electrophysiological results were compared using unpaired Student’s t-test. Values of 

P ≤ 0.05 were considered statistically significant.  
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