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A consensus-based voltage control for reactive power sharing and PCC

voltage regulation in microgrids with parallel-connected inverters*

Ajay Krishna1, Johannes Schiffer2, Nima Monshizadeh3 and Jörg Raisch1,4

Abstract— We consider small-scale power systems consisting
of several inverter-interfaced units connected in parallel to a
common bus, the point of common coupling (PCC), and sharing
a joint load. This is a frequently encountered configuration in
microgrid applications. In such a setting, two important control
objectives are reactive power sharing and voltage regulation at
the PCC. In this paper, we first show that the nonlinear equilib-
rium equations corresponding to the aforementioned objectives
admit a unique positive solution. Then, we propose a consensus-
based distributed voltage controller which renders this desired
unique solution locally asymptotically stable. Finally, control
performance is illustrated via a simulation example.

I. INTRODUCTION

Worldwide the amount of renewable energy sources

(RESs) in power grids is increasing day by day. In the

process of RES integration, power electronic inverters play

a major role since they represent the main interfaces be-

tween the RESs and the grid [1]. In such a setup with a

large number of RESs, to improve system redundancy and

reliability, inverters are typically connected in parallel to a

common bus called the point of common coupling (PCC) [2].

In this paper, such a network is termed a parallel microgrid

(MG). Some examples of parallel MGs are battery power

plants (also known as battery energy storage systems) and

distributed UPS (uninterruptible power supply) systems [1],

[3], [4]. Similar to any standalone AC power network, there

are various challenging control objectives to be addressed in

a parallel MG [2], [5].

As mentioned in [1]–[12], maintaining all the bus voltage

magnitudes within certain limits is an important control

objective in parallel MGs. In such networks, the most critical

voltage magnitude is at the PCC since there is no generation

unit present at that node [2], [6]. On the other hand, it is

also of great relevance to share the reactive power demand

of the system loads proportionally between the distributed

generators (DGs) [2]–[11]. The latter objective is of partic-

ular relevance in MGs, since in such networks, the power

lines are usually rather short and, thus, small differences in
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voltage amplitudes can lead to high reactive power flows

between DGs [13]–[15].

The problem of power sharing in parallel MGs has been

investigated in [2]–[4], [6]–[11] using decentralized voltage

droop or droop-like approaches. A distributed control law has

been proposed in [5] for addressing the same problem. In [2],

[6], the objective of PCC voltage regulation has also been in-

cluded. However, the aforementioned approaches are mainly

simulation and/or experiment-based studies and assume that

there exists a stable equilibrium point. In contrast to that,

[12] has proposed a quadratic voltage droop controller to

ensure voltage stability in lossless MGs. However, accurate

proportional reactive power sharing cannot be guaranteed

without risking system stability.

In light of the above-mentioned limitations, our main

contributions in this paper are as follows:

1) We show that in the case of a lossless parallel MG with

a constant current load connected at the PCC, there

exists a unique stationary solution satisfying accurate

reactive power sharing and PCC voltage regulation.

2) Inspired by consensus algorithms, see for e.g. [16], we

propose a distributed voltage controller, such that the

stationary solutions of the closed-loop system satisfy

the aforementioned control objectives.

3) We derive a sufficient condition for local asymptotic

stability of this unique closed-loop equilibrium point.

In contrast to [2]–[11], we provide a rigorous mathematical

analysis corroborating the aforementioned properties. The

proposed approach can be implemented locally at each DG

and can achieve steady-state reactive power sharing by using

local reactive power injections and reactive power injections

of neighboring units communicated over a sparse network.

Furthermore, the objective of PCC voltage regulation can be

achieved without the PCC voltage being communicated to all

DGs, which significantly reduces the communication effort

compared to a centralized solution.

The remainder of the paper is organized as follows.

In Section II, we introduce the MG model and formalize

the control objectives. In Section III, we show that there

exists a unique stationary solution satisfying the two control

objectives focused on in this paper. In Section IV, we propose

a distributed voltage controller to achieve these control

objectives. Furthermore, we provide a sufficient condition

for local asymptotic stability. In Section V, robustness of

the presented approach in the presence of load variations

and model uncertainties is evaluated. Finally, in Section VI,

we draw some conclusions and point out future research

directions.
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Fig. 1: Schematic representation of a parallel MG.

Notation. We denote by In the n× n identity matrix, by

0n×m the n × m matrix with all entries equal to zero, by

1n the vector with all entries being equal to one and by 0n

the zero vector. Let Z ∈ R
n×n be a symmetric matrix. If

Z is positive (negative) definite, we denote this by Z > 0
(Z < 0). If Z is positive (negative) semidefinite, we denote

this by Z ≥ 0 (Z ≤ 0). The elements under the diagonal of

Z is denoted by ∗. Moreover, ker(Z) denotes the kernel of

Z and trace(Z) its trace. Let x = col(xi) denote a column

vector with entries xi. Then, [x] denotes the diagonal matrix

with diagonal entries xi. Finally, for a function f : Rn → R,
∇f denotes its gradient.

II. MICROGRID MODEL AND CONTROL OBJECTIVES

A. Microgrid Model

We consider a MG with n > 1 inverter-interfaced DGs,

which are all connected in parallel to the PCC, see Fig-

ure 1. We denote the set of units connected to the PCC

by N = {1, 2, . . . , n}. Furthermore, we assume that the

power lines are lossless, i.e., all lines can be represented

by pure susceptances. This can be justified as follows. In

medium voltage (MV) grids, the output impedance of a DG is

typically inductive due to the presence of an output inductor

and/or an output transformer. In that case the impedance

of the power line together with the DG output impedance

is dominated by the inductive part [3], [6], [14]. We only

consider such MGs in this paper and denote the susceptance

connecting the PCC and the i-th unit by Bi ∈ R<0, see

Figure 1.

We assign to each DG a phase angle δi : R≥0 → R and a

voltage magnitude Vi : R≥0 → R>0. The vector of voltage

magnitudes is denoted by V = col(Vi) : R≥0 → R
n
>0.

Furthermore, we assume that all phase angles are expressed

relative to the phase angle of the three-phase voltage at

the PCC and denote the voltage magnitude at the PCC by

VPCC : R≥0 → R>0. Then, the active and reactive power

flows from the i-th DG to the PCC are given by [17, Section

4.4]

Pi (δi(t), Vi(t), VPCC(t)) = |Bi|Vi(t)VPCC(t) sin(δi(t)),

Qi (δi(t), Vi(t), VPCC(t)) = |Bi|V
2
i (t)

− |Bi|Vi(t)VPCC(t) cos(δi(t)).
(II.1)

In the sequel, unless confusion arises, we will not explicitly

display the dependence of voltages and phase angles on time.

For our analysis, we make the following standard decou-

pling assumption [18].

Assumption 2.1: δi(t) < ǫ ∀t ≥ 0, i ∈ N , where ǫ ∈
R with |ǫ| ≪ 1.

Under Assumption 2.1, cos(δi) ≈ 1 and thus the reactive

power flow Qi in (II.1) becomes independent of δi, i.e.,

Qi(Vi, VPCC) = |Bi|Vi (Vi − VPCC) . (II.2)

By defining

B = diag(|Bi|) ∈ R
n×n, (II.3)

the vector of DG-side reactive power flows QI ∈ R
n can be

compactly written as

QI(V, VPCC) = col(Qi) = [V ]BV − VPCCBV. (II.4)

Since we are mainly interested in voltage aspects, we ne-

glect the frequency dynamics and represent the DGs by the

standard model [14], [19]

V = V d + uV , (II.5)

where V d ∈ R
n
>0 is the desired DG voltage amplitude

and uV : R≥0 → R
n is a control signal. Moreover, we

assume that the loads in the MG are represented by a single

equivalent constant current load IL ∈ R<0 connected at the

PCC1, see Figure 1. By Kirchoff’s current law, the current

balance at the PCC is given by

IL =

n
∑

i=1

|Bi|(VPCC − Vi) = VPCC1
⊤
nB1n − 1

⊤
nBV. (II.6)

Note that the PCC voltage VPCC implicitly depends on the bus

voltages Vi. By using the current balance (II.6), this relation

can be made explicit, i.e.,

VPCC(V ) =
IL + 1

⊤
nBV

1⊤
nB1n

. (II.7)

This fact is used in our subsequent analysis.

B. Problem Statement

To state the considered problem in this paper, we introduce

the following quantities. Let the desired voltage magnitude

at the PCC be denoted by V d
PCC ∈ R>0, let A = diag(ai) ∈

R
n×n
>0 denote a diagonal weighting matrix and let L ∈ R

n×n

denote the Laplacian matrix of an undirected and connected

graph. Then, L ≥ 0 with L1n = 0n [20]. We seek to solve

the following control problem.

Problem 2.2: Consider the system (II.4), (II.5), (II.7).

Design a control law for the control input uV , such that

the solutions of the system (II.4), (II.5), (II.7) converge

asymptotically to a stationary voltage solution V ∗ ∈ R
n
>0

with the following two properties:

1) Voltage regulation at the PCC, i.e.,

VPCC(V
∗) = V d

PCC and (II.8)

1In this paper, we employ generator convention [18]. Thus, IL < 0 means
that the load is inductive. In practice, most of the loads have an inductive
behavior [18, Chapter 7] and hence the assumption IL < 0 is realistic.
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2) Reactive power sharing among DGs, i.e.,

AQI(V
∗, VPCC(V

∗)) = α1n, for some α ∈ R.
(II.9)

We remark that, compared to the related work [14], [15],

[21], the consideration of a parallel MG topology results in

a clear voltage regulation objective, i.e., 1) in Problem 2.2.

In addition, as we show in the sequel, this type of voltage

regulation objective does not conflict with that of reactive

power sharing.

III. EXISTENCE OF A UNIQUE STATIONARY SOLUTION

We begin our analysis by investigating existence and

uniqueness properties of stationary solutions to the network

equations (II.4), (II.5), (II.7) under the requirements of

Problem 2.2. As can be readily verified, this is equivalent

to investigating solutions to the set of equations (II.8), (II.9).

Note that (II.8), (II.9) is a system of n + 1 equations in

n unknowns V ∗
i , i ∈ N , |N | = n and hence is an overde-

termined system of nonlinear equations. Explicitly solving

such an overdetermined system of nonlinear equations can be

difficult. Yet, the following result shows that for any A > 0
and IL < 0 there is exactly one V ∗ ∈ R

n
>0, which satisfies

(II.8) and (II.9) simultaneously.

Lemma 3.1: For any given V d
PCC > 0, A > 0, and IL < 0,

there exists a unique vector V ∗ ∈ R
n
>0 that satisfies both

(II.8) and (II.9).

Proof: Consider (II.8) and (II.9). Note that any V ∗ ∈
R

n
>0 satisfying (II.9) and (II.8) simultaneously has to satisfy

AQI(V
∗, V d

PCC) = α1n, (III.1)

which by (II.2) can be written as

ai|Bi|V
∗
i

(

V ∗
i − V d

PCC

)

= α, i ∈ N . (III.2)

Furthermore, left-multiplying (III.1) with 1
⊤
nA

−1[V ∗]−1

yields

1
⊤
n [V

∗]−1QI(V
∗, V d

PCC) = −IL = α1
⊤
n [V

∗]−1A−1
1n,
(III.3)

where we have used (II.4) and (II.6) to obtain the first

equality. From (III.3) and the fact that IL < 0, it is easy

to see that necessarily α > 0, which means that (III.2) has

one negative and one positive solution for V ∗
i . Denoting the

latter by V +

i , we have

V +

i =
ai|Bi|V

d
PCC +

√

(ai|Bi|V d
PCC)

2 + 4ai|Bi|α

2ai|Bi|
:= fi(α).

(III.4)

Now, bearing in mind (III.4), it remains to show that there

exists a unique α > 0 that satisfies (III.3), which in terms of

α can be written as

|IL| = α
∑

i∈N

1

aifi(α)
:= g(α). (III.5)

Note that, if such α exists and is unique, then V ∗ =
col(V +

i ) ∈ R
n
>0 is the unique solution to the algebraic

equations (II.8)-(II.9).

From (III.5), clearly we have

lim
α→0

g(α) = 0, lim
α→+∞

g(α) = +∞.

Hence, by continuity of g, there exists α > 0 that satisfies
(III.5). To prove uniqueness, we show that g is a strictly
increasing function. For this purpose, differentiating g(α)
with respect to α gives

g
′(α) =

∑

i∈N

1

aifi(α)
− α

∑

i∈N

f ′
i(α)

aif
2

i
(α)

=
∑

i∈N

fi(α)− αf ′
i(α)

aif
2

i
(α)

.

Hence, g is strictly increasing if

fi(α)− αf ′
i(α) > 0, (III.6)

for each i ∈ N . Since fi(α) given by (III.4) is concave in

R≥0, we have

fi(0) ≤ fi(α) + f ′(α)(0− α).

Noting that fi(0) = V d
PCC > 0, the latter inequality implies

(III.6), hence confirming the uniqueness of α > 0 which sat-

isfies (III.5). Therefore, as mentioned earlier, corresponding

to this unique α > 0, there exists a unique V +

i = fi(α) ∈
R>0, see (III.4). This yields that there exists a unique vector

V ∗ = col(V +

i ) ∈ R
n
>0 satisfying (II.8)-(II.9), completing the

proof.

IV. A DISTRIBUTED CONTROL LAW FOR REACTIVE

POWER SHARING AND PCC VOLTAGE REGULATION

In this section, we propose a distributed voltage control

law to address Problem 2.2. Consider the model (II.5). We

design the control input uV such that

u̇V = −κ[V ]ALAQI(V )− ṼPCC(V )E1n, (IV.1)

where κ ∈ R>0 is a controller parameter, L ∈ R
n×n

is the Laplacian matrix of a connected undirected graph,

E ∈ R
n×n is a diagonal pinning gain matrix which has

positive entries only for the units which have access to

the measurement ṼPCC = VPCC − V d
PCC. This implies that

the quantity ṼPCC is not required at all DG units, thereby

significantly relaxing the communication requirements. Ob-

viously, we assume that the matrix E has at least one nonzero

element, i.e., E ≥ 0. Furthermore, [V ] = diag(Vi) ∈ R
n×n
>0

and QI is defined in (II.4).

By combining (II.5) and (IV.1) and recalling that V d ∈
R

n
>0, we obtain the following closed-loop dynamics:

V̇ = −κ[V ]ALAQI(V )− ṼPCC(V )E1n, V (0) = V d.
(IV.2)

A. Preliminary Lemmata

The following lemma shows that (IV.2) has a unique

equilibrium point, which is exactly the unique voltage vector

given in the proof of Lemma 3.1 and therefore simultane-

ously satisfies voltage regulation and reactive power sharing

objectives.

Lemma 4.1: The vector V ∗ ∈ R
n
>0 in Lemma 3.1 is the

unique equilibrium point of (IV.2).

Proof: In the proof of Lemma 3.1, we have shown

that V ∗ satisfies (II.9) and (II.8). Hence, ṼPCC(V
∗) = 0 and
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LAQI(V
∗) = αL1n = 0n, where the latter equality is an

immediate consequence of the properties of the Laplacian.

Therefore, V ∗ is an equilibrium point of (IV.2).

Next, we show by contradiction that V ∗ is the only

equilibrium point of the system (IV.2). Suppose that for

the system (IV.2), there exists another equilibrium solution

V s ∈ R
n
>0, i.e.,

0n = κ[V s]ALAQI(V
s) + ṼPCC(V

s)E1n. (IV.3)

Since [V s] > 0, left-multiplying (IV.3) with 1
⊤
nA

−1[V s]−1

yields

ṼPCC(V
s)trace(A−1[V s]−1E) = 0.

Due to the fact that trace(A−1[V s]−1E) > 0, the above

equality is satisfied if and only if ṼPCC(V
s) = 0. But this

implies that V s also has to satisfy

LAQI(V
s) = 0n

which, since L is the Laplacian matrix of an undirected,

connected graph, is equivalent to

AQI(V
s) = α1n, α ∈ R.

Hence, V s must satisfy both (II.9) and (II.8). But Lemma 3.1

specifies that V ∗ is the only solution to (II.9) and (II.8),

which implies V s = V ∗. This completes the proof.

Let J(V ) ∈ R
n×n denote the partial derivative of QI

(given by (II.4), (II.6)) with respect to V , i.e.,

J(V ) = ∇QI

= 2B[V ]−
1

trace(B)
B[V ]1n1

⊤
nB − VPCC(V )B.

(IV.4)

We establish the following property of J(V ).
Lemma 4.2: The matrix J(V ∗) with J(V ) defined in

(IV.4) is invertible.

Proof: Recall that VPCC(V
∗) = V d

PCC, see (II.8). Hence,

J(V ∗) = 2B[V ∗]−
1

trace(B)
B[V ∗]1n1

⊤
nB − V d

PCCB,

= B
(

[V ∗]− V d
PCCIn

)

+
1

trace(B)
[V ∗]

(

trace(B)B −B1n1
⊤
nB

)

.

(IV.5)

Since [V ∗] is invertible, a necessary and sufficient condition

for J(V ∗) to have the same property is that the matrix

product S(V ∗) := J(V ∗)[V ∗] has full rank. To investigate

the properties of S(V ∗), we note that S(V ∗) = S(V ∗)⊤ and

write it as the following matrix sum

S(V ∗) = S1(V
∗) + S2(V

∗), (IV.6)

where

S1(V
∗) = B

(

[V ∗]− V d
PCCIn

)

[V ∗],

S2(V
∗) =

1

trace(B)
[V ∗]

(

trace(B)B −B1n1
⊤
nB

)

[V ∗].

(IV.7)

The diagonal matrix S1(V
∗) given in (IV.7) can be equiva-

lently expressed as

S1(V
∗) = B[V ∗]2−V d

PCCB[V ∗] = [QI(V
∗, V d

PCC)] = αA−1,

where we have used (II.4) and (III.1) to write the second

and third equalities above, respectively. At V ∗ ∈ R
n
>0, from

Lemma 3.1, we have that α > 0. In addition, A > 0.
Therefore, S1(V

∗) > 0.

Next, consider the symmetric matrix S2(V
∗) given in

(IV.7). Since B > 0 is a diagonal matrix, trace(B)B −
B1n1

⊤
nB has positive diagonal entries and has the property

that
(

trace(B)B −B1n1
⊤
nB

)

1n = 0n.

Hence, by Gershgorin’s theorem [22],

trace(B)B −B1n1
⊤
nB ≥ 0.

By noting that trace(B) ∈ R>0 and [V ∗] > 0, we have that

S2(V
∗) ≥ 0. Consequently, S(V ∗) = S1(V

∗)+S2(V
∗) > 0,

completing the proof.

B. A Condition for Asymptotic Stability

We are now in the position to formulate our main result,

which provides a solution to Problem 2.2.
Proposition 4.3: The unique equilibrium point V ∗ ∈ R

n
>0

of the system (IV.2) is locally asymptotically stable if the
controller gains κ and E are chosen such that

Φ(V ∗) :=

[

κJ(V ∗)[V ∗] 1

2
(J(V ∗)E1n + κ[V ∗]B1n)

∗ trace(BE)

]

> 0.

(IV.8)
Proof: Consider the Lyapunov function candidate

F(V ) =
1

2
Q⊤

I ALAQI +
1

2
(ṼPCC)

2trace(B), (IV.9)

where we recall that ṼPCC = VPCC −V d
PCC with VPCC and QI

given by (II.7) and (II.4) respectively.

At V = V ∗, we have that QI(V
∗) = αA−1

1n and

ṼPCC(V
∗) = VPCC(V

∗) − V d
PCC = 0, see (II.9) and (II.8).

Hence, F(V ∗) = 0. Furthermore, the gradient of F with

respect to V is given by

∇F = J⊤ALAQI + ṼPCCB1n, (IV.10)

where J is defined in (IV.4). Evaluating the gradient at V =
V ∗, we find that ∇F|V ∗ = 0n. Therefore, V ∗ is a critical

point of F [23], [24].

The Hessian of F is given by

∇2F = J⊤ALAJ + [ALAQI ]
⊤ ∂J

∂V
+

1

trace(B)
B1n1

⊤
nB.

(IV.11)

By recalling that at V = V ∗, AQI(V
∗) = α1n, α ∈ R we

obtain from (IV.11) that

∇2F|V ∗ = J(V ∗)⊤ALAJ(V ∗) +
1

trace(B)
B1n1

⊤
nB.

(IV.12)

We next show that ∇2F|V ∗ > 0. By Lemma 4.2, J(V ∗)
is invertible. Furthermore, A > 0. Hence, the matrix

J(V ∗)⊤ALAJ(V ∗) is similar to the Laplacian matrix L,
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which - under the standing assumptions - is positive semidef-

inite with a simple zero eigenvalue and a corresponding

right-eigenvector 1n. Consequently, J(V ∗)⊤ALAJ(V ∗) is

positive semidefinite with a simple zero eigenvalue and a

corresponding right-eigenvector (AJ(V ∗))−1
1n. Likewise,

since B > 0 the matrix B1n1
⊤
nB is positive semidefinite

with a zero eigenvalue of algebraic multiplicity n − 1 with

corresponding right-eigenvectors B−1wi, where

w1 =
[

1 −1 0 . . . 0
]⊤

,

...

wn−1 =
[

0 . . . 0 1 −1
]⊤

, i = 1, . . . , n− 1.
(IV.13)

Hence, it remains to show that the kernels of the two matrices

in the matrix sum (IV.12) don’t intersect. To show this, it

suffices to show that for any wi,

AJ(V ∗)B−1wi 6= β1n, ∀β ∈ R. (IV.14)

From (IV.5), we obtain

J(V ∗)B−1wi =
(

2[V ∗]− V d
PCCIn

)

wi.

It follows from (III.4) that V ∗
i > V d

PCC, i = 1, . . . , n. Hence,

the matrix
(

2[V ∗]− V d
PCCIn

)

is a diagonal matrix with

positive diagonal entries. Since the same applies to A, no wi

in (IV.13) can satisfy (IV.14). Consequently, ∇2F|V ∗ > 0
and V ∗ is a local minimum of the function F .

Calculating the time derivative of F along the dynamics

(IV.2) yields

Ḟ = ∇F⊤V̇ ,

= −κQ⊤
I ALAJ [V ]ALAQI −Q⊤

I ALAJE1nṼPCC,

− κṼPCC1
⊤
nB[V ]ALAQI − (ṼPCC)

2
1
⊤
nBE1n

= −η(V )⊤Φ(V )η(V ),
(IV.15)

where Φ is defined in (IV.8) and

η(V ) =

[

ALAQI

ṼPCC

]

∈ R
n+1. (IV.16)

Since Φ(V ∗) > 0 by assumption, by continuity, there exists a

(small) neighborhood around V ∗ such that Φ(V ) > 0. Thus,

Ḟ ≤ 0. Hence, V ∗ is a stable equilibrium point.

Furthermore, to establish asymptotic stability of V ∗, we

show that the condition

Φ(V )η(V ) = 0 ⇒ lim
t→∞

V (t) = V ∗ (IV.17)

holds along the solutions of the system (IV.2). Since Φ(V ) >
0, (IV.17) implies that η(V ) = 0n+1. With η(V ) defined in

(IV.16), η(V ) = 0n+1 is equivalent to AQI(V ) = α1n, α ∈
R and ṼPCC(V ) = 0, which from Lemma 3.1 yields V ∗.

As a consequence, the invariant set where Ḟ ≡ 0 is the

equilibrium of the system (IV.2). Therefore, V ∗ is locally

asymptotically stable, completing the proof.

TABLE I: Line parameters of the simulated MG

Resistance R = 1.2 mΩ/km and reactance X = 9.5 mΩ/km
Power line i = 1 i = 2 i = 3 i = 4

Length (km) 2 5 7 3

V. NUMERICAL EXAMPLE

In this section, the performance of the control law (IV.2)

is illustrated in simulation. At first, the MG employed is

introduced and then the simulation scenario.

The parallel MG used in the case study has four

inverters connected in parallel and is simulated using

MATLAB R©/Simulink R© and PLECS [25]. The parameters

used in the simulation are given in Table I. The base

voltage and the base power values used in the pu (per-

unit) calculation are Vbase = 20kV and Sbase = 4.75MVA,

respectively. The simulated MG contains four DGs, with

nominal power rating SN
1 = 1pu, SN

2 = 0.5pu, SN
3 =

0.33pu and SN
4 = 0.25pu. A small positive line resistance

(see Table I) is considered in the simulated MG to evaluate

robustness of (IV.2) towards typical modeling uncertainties.

Furthermore, the DG phase angles are controlled by the

standard frequency droop control [13]. Inspired by [14], the

entries of the weighting matrix A = diag(ai) were chosen

corresponding to the nominal power rating of each DG, i.e.,

ai = 1/SN
i , i = 1, 2, 3, 4. Finally, we have a constant current

load IL = −0.9pu connected at the PCC. Since we are

mainly interested in reactive power aspects, we assume that

the active power demand of the constant current load is zero

and hence IL = −0.9pu represents only the reactive power

consumed at the PCC.

The Laplacian matrix used to implement (IV.2) is chosen

as

L = (100) ·









1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1









.

Furthermore, the pinning gain matrix E was selected as

E = eÊ, where e ∈ R>0 is a controller parameter and

Ê = diag(1, 0, 0, 0). The parameters e and κ are chosen as

e = 9.4 and κ = 0.005.

The simulation results of the system (IV.2) using these

parameters are shown in Figure 2. We observe that before

5sec, the PCC voltage is not at V d
PCC = 1pu, see the enlarged

plot before 5sec. Furthermore, as can be seen from the

weighted reactive power injection (AQI ) plot from 0 to

5sec, reactive power sharing is poor. The control law (IV.2)

is activated at 5sec. After this, the PCC voltage converges

quickly to 1pu, see the enlarged plot at 15sec. Furthermore,

the weighted reactive power injections reach consensus, i.e.,

(II.9). This confirms that the DGs share the load IL in a

proportional fashion. An additional constant current load of

−0.9pu is added at the PCC at 25sec. After this load jump,

PCC voltage regulation (see the enlarged plot at 35sec) and

reactive power sharing are swiftly re-established.

Furthermore, the condition Φ(V ∗) > 0 derived in Propo-

sition 4.3 is verified for both operating points displayed in

Fig. 2, i.e.,
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Fig. 2: Simulation result of (IV.2) with four inverters con-

nected in parallel.

• V ∗
1 = col(1.01, 1.05, 1.11, 1.06),

• V ∗
2 = col(1.02, 1.11, 1.21, 1.13).

Hence, we conclude that these are both locally asymptoti-

cally stable. Also, as established in Lemma 3.1, it is straight-

forward to check that V ∗
i > V d

PCC. Therefore, the presented

case study shows that the derived conditions are verified in a

realistic example. In addition, the control performance with

respect to load variations is also satisfactory.

VI. CONCLUSION

We have proposed a distributed voltage controller for par-

allel MGs which addresses the objectives of voltage regula-

tion at the PCC and reactive power sharing. Furthermore, we

have shown that for the case of an inductive constant current

load connected at the PCC, the closed-loop system admits a

unique positive voltage solution. A sufficient condition on the

controller gains, which guarantees asymptotic stability of this

desired solution was also presented. Finally, the numerical

case study demonstrates that the proposed approach performs

well in the event of load variations and in the presence of

(small) line resistances.

In practice, the reactive power output of an inverter is

measured through a low-pass filter [26]. Hence in future, we

intend to incorporate these measurement dynamics also in the

stability analysis. Furthermore, we plan to include different

load models [18], [27] while designing voltage controllers for

parallel MGs. Another interesting problem is the design of

voltage controllers in networks with mixed R/X impedances.
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