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Abstract

Background: Sorghum genome mapping based on DNA markers began in the early 1990s and

numerous genetic linkage maps of sorghum have been published in the last decade, based initially

on RFLP markers with more recent maps including AFLPs and SSRs and very recently, Diversity

Array Technology (DArT) markers. It is essential to integrate the rapidly growing body of genetic

linkage data produced through DArT with the multiple genetic linkage maps for sorghum generated

through other marker technologies. Here, we report on the colinearity of six independent

sorghum component maps and on the integration of these component maps into a single reference

resource that contains commonly utilized SSRs, AFLPs, and high-throughput DArT markers.

Results: The six component maps were constructed using the MultiPoint software. The lengths of

the resulting maps varied between 910 and 1528 cM. The order of the 498 markers that segregated

in more than one population was highly consistent between the six individual mapping data sets.

The framework consensus map was constructed using a "Neighbours" approach and contained 251

integrated bridge markers on the 10 sorghum chromosomes spanning 1355.4 cM with an average

density of one marker every 5.4 cM, and were used for the projection of the remaining markers.

In total, the sorghum consensus map consisted of a total of 1997 markers mapped to 2029 unique

loci (1190 DArT loci and 839 other loci) spanning 1603.5 cM and with an average marker density

of 1 marker/0.79 cM. In addition, 35 multicopy markers were identified. On average, each

chromosome on the consensus map contained 203 markers of which 58.6% were DArT markers.

Non-random patterns of DNA marker distribution were observed, with some clear marker-dense

regions and some marker-rare regions.
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Conclusion: The final consensus map has allowed us to map a larger number of markers than

possible in any individual map, to obtain a more complete coverage of the sorghum genome and to

fill a number of gaps on individual maps. In addition to overall general consistency of marker order

across individual component maps, good agreement in overall distances between common marker

pairs across the component maps used in this study was determined, using a difference ratio

calculation. The obtained consensus map can be used as a reference resource for genetic studies

in different genetic backgrounds, in addition to providing a framework for transferring genetic

information between different marker technologies and for integrating DArT markers with other

genomic resources. DArT markers represent an affordable, high throughput marker system with

great utility in molecular breeding programs, especially in crops such as sorghum where SNP arrays

are not publicly available.

Background
Sorghum (Sorghum bicolor L.), a major staple food and
fodder crop, is among the world's most important cereals,
typically ranking fifth globally in terms of annual tonnage
[1]. The crop is tolerant of many biotic and abiotic stresses
and is often grown in more marginal cropping areas and
is frequently preferentially grown in water-limited envi-
ronments in both developed and developing countries
[2]. In developing countries it tends to be a staple food
and forage of the poor. In developed countries it is used
primarily as an animal feed, and in Australia is currently
grown on over 890,000 ha, producing over 2.3 M tonnes
of grain [3]. More recently, tropical sorghum cultivars
have garnered much attention as a cellulosic biofuels
crop. Sorghum breeding programs around the world are
working towards improved varieties with better quality,
disease-resistance, drought tolerance and agronomic traits
(e.g. [4,5]). Molecular breeding strategies are increasingly
being adopted to develop genetic linkage maps and to
identify genomic regions influencing traits of importance
in sorghum, e.g. stay-green [6] fertility restoration [7],
ergot resistance [8], midge resistance [9] and photo-
period sensitivity [10,11].

Genetic linkage maps are an essential prerequisite for
studying the inheritance of both qualitative and quantita-
tive traits, to develop markers for molecular breeding, for
map-based gene cloning and for comparative genomic
studies. Molecular breeding is more effective if the molec-
ular map is densely populated with markers, in order to
provide more choice in the quality and type of marker and
to increase the probability of polymorphic markers in
important chromosomal intervals. Sorghum genome
mapping based on DNA markers began in the early 1990s
and numerous genetic linkage maps of sorghum have
been published in the last decade [12-28]. The early maps
were based primarily on RFLP markers, with more recent
maps also including AFLPs and SSRs and very recently,
Diversity Array technology (DArT) markers. The advent of
the new DArT marker technology [29] offers a rapid and
sequence-independent shortcut to medium-density whole
genome scans of any plant species. As DArT assays are per-

formed on highly parallel and automated platforms, the
cost per datapoint (a few cents per marker assay) is
reduced by at least an order of magnitude compared to
current, gel-based technologies. Additionally, DArT
clones can be readily sequenced thereby allowing marker
integration into the emerging sequence of the sorghum
genome http://www.phytozome.net/sorghum. It is essen-
tial to integrate the rapidly growing body of genetic link-
age data produced through DArT with the existing genetic
linkage maps generated through other marker technolo-
gies. Additionally, the majority of sorghum genetic link-
age maps published to date are based on crosses wider
than most crosses routinely made in sorghum breeding
programs. However, for application in molecular breed-
ing strategies, genetic linkage maps based on wide crosses
are often of limited utility, as they are not representative
of the genome organisation and gene function of the cul-
tivated gene pool [30]. The construction of a consensus
map synthesising the information provided by multiple
segregating populations, of diverse genetic backgrounds,
provides a very important reference resource; it offers the
opportunity to map a larger number of loci than in most
single crosses, thus increasing the number of potentially
useful markers across divergent genetic backgrounds and
providing greater genome coverage, in addition to provid-
ing opportunities to validate marker order.

Here, we report on the comparison of the genetic linkage
maps obtained from six independent component maps
and on the integration of the component maps into a sin-
gle consensus linkage map of sorghum. One of the com-
ponent maps used, based on BTx623/IS3620C, developed
at Texas A&M University and USDA-ARS scientists [25], is
a reference mapping population in the sorghum genomics
community and has been the subject of extensive pheno-
typic and genotypic analysis. Its inclusion in this study
offers opportunities to link the consensus map to existing
genetic and physical maps based on this population. The
consensus map, consisting of over 2000 markers, also
offers an opportunity to create a "bridge" between DArT
and other marker systems, through the co-location of the
different marker types, including RFLPs and SSRs.

http://www.phytozome.net/sorghum
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Results
Component maps of individual populations

The parental genotypes of the six component mapping
populations varied in their level of polymorphism per
cross (Table 1), with the parents of the S4 population
being the most diverse and the parents of the S6 popula-
tion the least diverse.

The component maps constructed using the MultiPoint
software contained between 117 (S6) and 807 (CIRAD)
loci and between 88 (S5) and 183 (CIRAD) lines (Tables
1 &2, Additional File 1). The lengths of the resulting maps
varied between 910 and 1528 cM (Table 2). Clusters of
markers with skewed segregation were identified in all six
of the sorghum linkage maps developed (Fig 1). The per-
centage of skewed markers was very similar across all six
populations, varying from 17.1% in the CIRAD popula-
tion to 24.8% in the S2 population. A significant number
of the markers showing skewed segregation in each popu-
lation were also linked by at least 5 cM to markers that
didn't show distorted segregation patterns. For example,
in the TAMU-ARS population, of the 167 markers show-
ing segregation distortion, 51 of them were linked within
5 cM to unskewed markers. Two-thirds of these 51 mark-
ers were co-dominant marker types (SSRs or RFLPs), with
the remaining one third (17 in total) markers having a
dominant inheritance pattern (DArT); which reflects the
relative proportion of codominant (61%) and dominant
(39%) markers overall in the TAMU-ARS map. The distri-
bution pattern of chromosomal regions associated with
skewed marker segregation showed some similarity across
maps, e.g. the distal end of the short arm of SBI-01
showed skewed marker segregation in four of the six maps
(TAMU-ARS, S2, S4 and CIRAD); the lack of segregation
distortion in the two remaining maps (S5 and S6) might
be explained by poor marker resolution in this chromo-
somal region. It has been proposed [31] that when a chro-
mosomal region contains four or more closely linked

markers which are significantly and consistently deviating
from the 1:1 ratio it can be regarded as having skewed seg-
regation. By following this proposition and defining the
closely linked markers as being less than 5 cM apart, 407
markers on the consensus map (19.8%) were identified as
having skewed segregation in one or more of the compo-
nent populations, covering 34% of the consensus map
length. Of these 407 markers, 245 (60%) were DArT
markers, which reflects the relative proportion of DArT
(59%) versus non-DArT markers (41%) overall in the
consensus map.

Consensus map construction and features

A total of 498 markers (384 of which were DArTs) were in
common, i.e. they were mapped in at least two mapping
populations. A total of 1557 markers (816 of which were
DArTs) were unique to a particular mapping population,
while seven DArT loci were mapped in five or more map-
ping populations. The order of those markers that segre-
gated in more than one population was highly consistent
between the six individual mapping data sets. Fig. 2 illus-
trates this high degree of marker colinearity of all the
markers in common with the TAMU-ARS base map. A dif-
ference ratio was calculated per chromosome [27], to
compare the genetic distances between each map and the
TAMU-ARS base map (Table 3), where a distance ratio of
0 indicates identical genetic distances between two maps
and a distance ratio of 1 indicates complete dissimilarity
of genetic distances between two maps. The number of
intervals in common with the TAMU-ARS population var-
ied across populations, from just 32 in the S6 map to 113
in the CIRAD map. The overall difference ratios in genetic
distance between the TAMU-ARS map and the five other
maps varied from 0.0045 (S4) to 0.125 (S5). The differ-
ence ratios also varied for each chromosome, with SBI-04
having the lowest difference ratios (an average of 0.09)
and SBI-02 having the highest difference ratios (an aver-
age of 0.25). The high difference ratios observed across

Table 1: Summary of component mapping data used to construct the sorghum DArT consensus map

Number of markers in common with n 
other populations

Pop 
code

Pop 
pedigree

Dissimilarity 
Index

Generation Pop size Marker # Predominant 
marker type

# of 
DArTs

# of SSRs/
STSs

# of 
RFLPs

# morphological 
markers

N = 0 n = 1 n = 2 n = 3 n = 4 n = 5

TAMU-
ARS

BTx623/
IS3620C

0.483 RIL 137 792 DArT 303 226 259 4 493 161 101 33 3 1

S2 R890562/
ICSV745

0.479 RIL 119 488 RFLP 234 10 244 0 269 87 93 34 4 1

S4 R931945-2-
2/IS8525

0.639 RIL 146 410 DArT 357 51 0 2 143 130 94 38 4 1

S5 B923296/
SC170-6-8

0.426 RIL 88 189 DArT 176 13 0 0 43 63 50 28 4 1

S6 BTx642/
QL12

0.403 RIL 94 117 DArT 117 0 0 0 15 41 42 15 3 1

CIRAD SAR10/
SSM249

0.449 RIL 183 807 DArT 627 131 47 2 591 119 70 24 2 1

The table includes the pedigree of each population, the dissimilarity index (based on the Sokal & Michener coefficient) between the parental genotypes of each component 
mapping population, as calculated using the DARwin software [59], the generation and population size, and details of the number and type of markers.
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maps for some chromosomes, specifically SBI-02, SBI-03,
SBI-05, SBI-09 and SBI-10, were due to the low number of
sampling intervals; in some cases as low as 1 interval in
common per LG (e.g. S6/TAMU-ARS SBI-05 and SBI-10).
In some cases, there were no intervals in common for par-
ticular chromosomes across maps, e.g. S6/TAMU-ARS for
SBI-01, SBI-04 and SBI-09 and S5/TAMU-ARS for SBI-06.

As observed previously [32], markers mapping to more
than one locus can create problems during consensus map
construction, if not recognised. In the present study, just
under one quarter (24.2%) of the total number of unique
markers mapped across the six component maps were in
common in more than one population, and of these only
35 mapped to two different loci in different populations
(Additional File 2). As expected, due to the use of the same

DArT array across populations, the majority of the mark-
ers in common across maps were DArT markers (77.7%).
Consequently, a higher proportion of the multicopy
markers overall were DArT markers (31) versus non-DArT
markers (4); 3 SSRs (gap42, txp25 and txp265) and 1
RFLP (txs443). SBI-02 contained the highest number of
multicopy markers (13).

The sorghum consensus map consisted of a total of 1997
markers mapped to 2029 unique loci (1190 DArT loci and
839 other loci; full details available in Additional File 3).
Of the 1997 unique markers placed on the consensus
map, there were 493 (24.7%) common markers; only 5
common markers from the total of 498 across all six com-
ponent maps were excluded from the consensus map due
to inconsistency in marker location. Of these common

Scatter plot representing the distribution of marker skewness of the six component sorghum maps, each dot representing one molecular markerFigure 1
Scatter plot representing the distribution of marker skewness of the six component sorghum maps, each dot 
representing one molecular marker. Vertical solid bars distinguish the 10 chromosomes, along the total map distance (x 
axis). The y axis details the log2 value of the ratio of the number of individuals carrying the A allele on the number of individuals 
carrying the B allele. Markers outside the two horizontal dotted lines are significantly skewed as calculated by the Chi-square 
test.

Table 2: Statistics of the six component maps

TAMU-ARS S2 S4 S5 S6 CIRAD

Number of markers 792 488 410 189 117 807

Mean marker density/cM 0.51 0.34 0.29 0.17 0.13 0.66

Map length (cM) 1528 1433 1435 1138 910 1227

The table includes the pedigree of each population, the dissimilarity index (based on the Sokal & Michener coefficient) between the parental 
genotypes of each component mapping population, as calculated using the DARwin software [59], the generation and population size, and details of 
the number and type of markers.
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markers included, 251 were selected as bridge markers on
the 10 sorghum chromosomes, i.e. markers which
mapped to the base map (TAMU-ARS) and which were
also present and in a consistent location in one or more of
the other mapping populations. SBI-01 had the highest
number of bridge markers overall (35), of which 42.8%
(15) were DArT markers (Fig. 3). SBI-09 (17) and SBI-10
(17) had the lowest number of bridge markers, of which
70.5% and 52.9% were DArT markers, respectively. The
remaining chromosomes had between 34 (SBI-08) and 21
(SBI-06) bridge markers, of which between 79.5% (SBI-
08) to 60.0% (SBI-04) were DArT markers. The 251 bridge
markers, which consisted of 158 DArT markers, 64 SSR
markers and 29 RFLP markers, spanning 1355.4 cM with

an average density of one marker every 5.4 cM, were used
for the projection of the remaining markers onto the
bridge consensus map.

On average, each chromosome on the consensus map
contained 203 markers of which 58.6% were DArT mark-
ers. Chromosome SBI-01 had the highest number of
markers (294) overall but one of the lowest percentages of
DArT markers (49.7%) (Table 4), with an average marker
density of 1/0.65 cM, followed by chromosome SBI-02
(270 in total, 54.8% DArTs), with an average marker den-
sity of 1/0.85 cM. Chromosome SBI-07 had the lowest
number of markers (129, 57.4% DArTs).

Colinearity of locus order in component mapsFigure 2
Colinearity of locus order in component maps. Loci that are common between pairs of populations are connected by 
lines. Population codes as in Table 1.

Table 3: The difference ratio of genetic distance in the common marker intervals between the TAMU-ARS map and the five other 
component maps

S2 S4 S5 S6 CIRAD

# intervals in common with TAMU-ARS 92 99 46 32 113

Difference ratio 0.0609 0.0045 0.1248 0.0174 0.0469
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The consensus map spanned a total length of 1603.5 cM,
based on the distances calculated from the TAMU-ARS
segregation data. Chromosome sizes ranged from 229.6
cM (SBI-02) to 118.5 cM (SBI-05) (Fig. 4). The 'sPb' DArT
markers alone spanned 97.7% of the total length of the
consensus map, ranging from 100% of chromosomes SBI-
02, SBI-03, SBI-05 and SBI-06 to 94.1% coverage for SBI-
01 and SBI-09.

The approximate locations of the pericentromeric regions
of heterochromatin were identified (Fig. 4), based on the
integration of sorghum linkage, cytogenetic and physical
maps [33]. Non-random patterns of DNA marker distri-
bution were observed, with some clear marker-dense
regions and some marker-rare regions. The consensus
map had only 3 gaps larger than 10 cM and only 9 gaps
between 7 and 10 cM; the longest one (13.4 cM) on the
distal end of the long arm of SBI-05; one (10.9 cM) on the
distal end of the long arm of SBI-08, and one (13 cM) on
the distal end of the short arm of SBI-09. On most chro-
mosomes, at least one significant concentration of loci
appeared to correspond to the centromeric region (also
observed in [26]), e.g. 35 markers co-segregated around
the centromeric region of SBI-04 and 33 markers co-segre-

gated around the centromeric region of SBI-08. The pro-
portion of DArT markers in the centromeric regions
ranges from 36.3% on SBI-02 to 100% on SBI-04, with an
average of 64.4% across all chromosomes, which reflects
the overall proportion of DArT markers to non-DArT
markers on the map.

Discussion
The final consensus map comprised 2029 loci, spanning
1603.5 cM, following the integration of 6 individual maps
derived from 6 distinct RIL mapping populations. It has

allowed us to map a larger number of markers than possi-
ble in any individual map, to obtain a more complete cov-
erage of the sorghum genome and to fill a number of gaps
on individual maps. Only two other published sorghum
genetic linkage maps are of a comparable marker density;
the BTx623/IS3620C map consisting of 2926 loci span-
ning 1713 cM [25] and the BTx623/S. propinquum map
consisting of 2512 loci spanning 1059.2 cM [26]. While
both of these previously published maps have a higher
overall marker density than the present DArT consensus
map; 1 marker/0.42 cM [26], 1 marker/0.59 cM [25] vs. 1
marker/0.79 cM in the presented consensus map, these
maps are based on high numbers of RFLP markers [26] or
AFLP markers [25] and it can be argued that the sequential
nature of gel-based marker systems such as RFLPs and
AFLPs involves high costs and is more labour intensive per
assay thus DArT markers may represent the most suitable
markers for molecular breeding strategies. DArT markers,
with their high multiplexing level (all the DArT markers
reported here were analysed in a single assay per popula-
tion), offer sorghum breeding programs an alternative
and low-cost approach to whole-genome profiling and
the final consensus map presented here consists predom-
inantly of DArT markers (1190; 59%), in addition to 839
non-DArT markers (497 RFLPs, 334 SSRs or STSs and 8
morphological markers).

The overall consensus map marker order was in good
agreement across the individual maps. Locally, the con-
sensus map resolution was slightly compromised by occa-
sional inconsistencies in groups of markers, commonly
covering about 1–6 cM, but also swaps of individual
markers over even longer distances. The majority of the 77
observed marker order inconsistencies involved closely-
spaced markers. Inversion is a common feature of closely
spaced markers and this phenomenon has been observed
previously in sorghum when aligning different sorghum
maps [27,30]. These marker order rearrangements could
be real, they could be due to error in one of the small map-
ping populations or they could be explained by the statis-
tical uncertainty of orders at the cM-scale that is inherent
in datasets derived from a limited number of RILs. Of the
498 markers in common across all 6 maps, in only 5 cases
did markers map to a truly incongruous location on the
corresponding linkage groups in alternative populations,
which could be explained by mapping paralogous loci in
different populations. A similar 1% frequency of paralo-
gous loci was recently observed by [30] when aligning
genetic linkage maps derived from both inter- and intra-
specific sorghum populations. Such marker ordering
inconsistencies are frequently observed for consensus
maps and can be related to the overall number and distri-
bution of commonly mapped bridge markers used for
building the framework of the consensus map. For con-
structing the present DArT consensus map, 251 markers

Total number and proportion of DArT vs non-DArT mark-ers used as bridge markers on the consensus map, per chro-mosomeFigure 3
Total number and proportion of DArT vs non-DArT 
markers used as bridge markers on the consensus 
map, per chromosome.
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Table 4: Summary of markers per chromosome integrated into the sorghum DArT consensus map

LG # Bridge # DArTs (%) # non-DArTs (%) Total Multicopy Length (cM) Marker density

SBI-01 35 146 (49.7%) 148 (50.3%) 294 8 191.8 0.65

SBI-02 26 148 (54.8%) 122 (45.2%) 270 13 229.6 0.85

SBI-03 23 105 (44.5%) 131 (55.5%) 236 3 172.3 0.73

SBI-04 25 144 (70.2%) 61 (29.8%) 205 7 169.4 0.83

SBI-05 24 122 (69.7%) 53 (30.3%) 175 9 118.5 0.68

SBI-06 21 105 (61.5%) 68 (39.5%) 172 2 166.4 0.97

SBI-07 29 74 (57.4%) 55 (42.6%) 129 9 132.8 1.03

SBI-08 34 131 (69.3%) 58 (30.7%) 189 7 131.9 0.69

SBI-09 17 108 (62.4%) 66 (37.6%) 174 2 175.6 1.01

SBI-10 17 107 (57.8%) 78 (42.2%) 185 10 115.2 0.62

Totals 251 1190 839 2029 70 1603.5 Mean = 0.79

A consensus map of sorghum derived from six component mapsFigure 4
A consensus map of sorghum derived from six component maps. Marker type is indicated by colour; DArT (black), 
SSR/STS (red), RFLP (green) and gene (blue). Bridge markers are underlined; attached markers are in italics and multicopy 
markers have an * suffix. The bar on the left hand side shows the distance in centiMorgans from the top of each chromosome. 
Heterochromatic regions are indicated by a bar to the left of each chromosome.
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sPb-7905
sBAC120 sPb-5887 sPb-0326
txs943 cup02 AW679255 sPb-9158
SbRPG821
sPb-5055 M188501 sPb-6280 M342028 M341817
sPb-9538 sPb-3253 sPb-9272 sPb-5312
SG34 GE5 txS1628 ST171b ST1296
sPb-9306 sPb-3158 txs1383 dhn2 sPb-1324
sPb-8873 sPb-6852 sPb-4786 sPb-6043 txp10
sPb-8764
M188560
sPb-9688
sPb-6748
sPb-3298
ST1374
M340536
sPb-8777
sPb-8542 bcd454 sPb-4416 sPb-0975
sPb-9989
M340974
M188412 SbRPG743
M341480
FC7
sPb-4933
sPb-8319 sPb-6403 sPb-2670
ST329c
umc38 txp339
sPb-9227 sPb-8812
sPb-1991
cdo89
sPb-6089 M340810 M340730 gpsb079
M342839
ST1054 EST22
M342540 M188652 M189112
sPb-4006 sPb-8716 umc132 sPb-1732 sPb-0852
M343231 sPb-2968
sPb-7855
gpsb020 sPb-7686 sPb-7460
M188061
txS307b
M343363
txS1015
M187494
umc62
sbAGEO3
sPb-0445
ST715
ST1017
SbRPG950
txs1102 rz206
cdo202
sPb-4614
sPb-4522 sPb-6678
umc134 cdo542 cdo393
isu140
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SBI-09
SG33
sPb-3912
cdo590a
PSB305 sPb-2041 RL sPb-5079 sPb-4129
sPb-6833 sPb-0600
cdo590
AP2
sPb-4427
txs1078
AD12
cdo475
SG19
txs1163
sPb-8306*
SbRPG917
sPb-5281
ST2072
M340704
sPb-6013*
sPb-1945
WAXY6
msbcir331 msbcir324 M189136
M342557
Str30b
isu136
M187940 sPb-6720
gpsb027
SbRPG921
sPb-0088
Str14
sPb-9517 sPb-8858
sPb-8357
umc113
sPb-3432 sPb-0248 sPb-2193 sPb-5005*
M341294 sPb-9592 sPb-3828
sPb-1104*
txS310
sPb-5917
sPb-0817 sPb-3287
sPb-0562 sPb-5391
sPb-2149
sPb-6292 sPb-3655 sPb-2222 txs558
sPb-0494*
sPb-2836
sPb-8150 sPb-8497
sPb-3549
rz144
umc110
sPb-9381 sPb-7473
sPb-1962
M340774 M342244 M188983 M340871 sPb-4521
sPb-6331
GE37
txp20
GE30 ST403 sPb-5512 sPb-6288*
sPb-1244*
cdo17
sPb-9999 txp270 txp309 umc21
txp331
M341606
M341123
sPb-9826
bnl7.24 SvPEPCAA
msbcir283 sPb-6271
sPb-9140 sPb-0668 sPb-5841 txp217 txp130
txs1923 sPb-2735 sPb-6889 sPb-4121 txs1929
sPb-9064 M187142 sPb-1722 sPb-9215 sPb-8432
sPb-3958 sPb-4480
sPb-6875 sPb-4944 sPb-7643
sPb-7284 sPb-7173
sPb-1938 txs1106
M340333
sPb-7948
sPb-3696
sPb-5834
rz476
sPb-9682
txs443*
sPb-9555
sPb-2318
sPb-8019*
ST486-1
cdo590b
JH23
sPb-2935 sPb-8232
bnl5.04
SbRPG742
cdo78 SSCIR63
M342842
M340856 M342954
M340712 M340495 gap1
cdo400
sPb-9767
umc150
sPb-0859 txs236
txs1684
msbcir262 msbcir227 sPb-0162
sPb-0939* txS1694
umc218
sPb-4539
sPb-3003 sPb-1701
ST1750-2
FC40
M342566 M342053 M343252
txS309
sPb-1660
FC48 ST1845
RZ143
txs758
cup43
sPb-4588 sPb-5814
gpsb145
PSB619
txp141 Sb6-325
ST745
isu162
isu45
txs664
sPb-5678
cup07
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were used as bridge markers (12.5% overall) spaced at
average intervals of 5.4 cM. This bridge marker frequency
is comparable to other recent consensus map studies,
including [34] who used 10% of all markers as bridge
markers to construct a consensus map for barley from 3
doubled haploid populations.

Differences of local recombination frequencies (map
length) between populations can also effect marker order-
ing between maps, and the importance of similar recom-
bination frequencies across individual maps when
constructing a consensus map has previously been noted
[35]. A difference ratio was therefore calculated per chro-
mosome, derived from the equation for the distance
measurement of interval variables [36] by [27], to com-
pare the genetic distances on each map with the TAMU-
ARS base map. The overall difference ratios in genetic dis-
tance between the TAMU-ARS map and the five other
maps were low and varied from 0.0045 (S4) to 0.12 (S5)
and were comparable with a recent study [27] that calcu-
lated a difference ratio of 0.05 between two sorghum
maps. The low difference ratios observed indicate that
there is good agreement in overall distances between com-
mon marker pairs across the component maps used in
this study. It also provides justification for the "neigh-
bours" consensus map construction strategy adopted here
and the use of the TAMU-ARS genetic distances for the
locus positions of the bridge markers along each chromo-
some. It can also be argued that map distance estimates
are less important than marker order, as map distances do
vary between different genetic linkage maps by several
centimorgans [37], and that the marker order is the most
critical feature for further application of the map, for
example, for map-based cloning. Additionally, the syn-
thetic approach to consensus map development, based on
the integration of separately constructed component
maps, was recently reported to be the preferable consen-
sus map construction strategy, compared to building a
consensus map de novo from an integrated set of segrega-
tion data [32], at least until improved or alternative soft-
ware options become available.

Consensus map features

The non-random distribution of markers across the con-
sensus map, due to both clusters and gaps of markers
across chromosomes, is a feature that has also been
observed in previous sorghum maps. Figure 4 indicates
that there is a clustering of markers around the centromere
for every chromosome, with the exception of SBI-06. Such
marker-dense regions around the centromeres were also
observed by [26]. This is also supported by the recent
observation by [33] that the pericentromeric heterochro-
matic regions of sorghum chromosomes showed much
lower rates of recombination (~8.7 Mbp/cM) compared
to euchromatic regions (~0.25 Mbp/cM), with the average
rate of recombination across the heterochromatic portion

of the sorghum genome being ~34-fold lower than recom-
bination in the euchromatic region. Similarly, the sparse-
ness of markers on the short arm of SBI-06 could also be
explained by the observations of [33] that this chromo-
some arm showed a relatively low rate of recombination
compared to other regions of euchromatin (~2.3 Mbp/cM
vs. the overall average of ~0.25 Mbp/cM). Both DArT and
non-DArT markers clustered around the centromeres,
however a slightly higher overall proportion of DArT
markers (71% of all markers in the centromeric regions)
in these regions were observed. This is in contrast to the
recent high-density DArT consensus map developed for
barley, which [32] found that DArT markers were signifi-
cantly less clustered at most centromeric regions of barley
chromosomes compared to non-DArT markers. Marker
redundancy can also enhance the non-random marker
distribution pattern. In previous studies [32,38,39], a low
level of DArT marker redundancy has been observed,
however during the process of consolidating the most
informative DArT clones in new arrays, the large majority
of redundant markers are excluded from the final DArT
array, and hence DArT marker redundancy should be min-
imised.

In addition to the uneven distribution of recombination
events along chromosomes and the potential for the con-
founding effects of marker redundancy, non-random
marker distribution can also be due to the preferential sur-
vey of DNA polymorphism that is unevenly distributed
along chromosomes. In particular, areas of low marker
density may correspond to regions of similar ancestry or
identity by descent in the germplasm included in the ini-
tial diversity representation for the development of the
sorghum DArT markers [28]. In the present DArT consen-
sus maps, there were 3 gaps larger than 10 cM; one on the
distal end of the long arm of SBI-05, one on the distal end
of the long arm of SBI-08 and one on the distal end of the
short arm of SBI-09. These regions of low marker density
may therefore be associated with genomic regions that
were identical by descent or that had very limited genetic
variability in the initial diversity representation used for
the development of the DArT array. An alternative
hypothesis is that because, in total, nine of the twelve
parental genotypes of the six mapping populations used
in this study were included on the initial diversity repre-
sentation, the gaps could be a true reflection of co-ances-
tral regions between the parents, as opposed to a result of
the composition of the array, and maybe suggestive of
genomic regions containing key adaptive genes which
have been fixed through selection through the pedigree.
Regions of low marker density have been observed previ-
ously; even on the densest meiotic linkage map produced
yet, for potato [40], a gap spanning 14 recombination
units was observed. The authors [40] postulate that this
could be due either to recombination hot spots or could
also indicate fixation (homozygosity) of the potato
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genome in this region. Non-random marker distribution
can also be associated with other interesting features of
sorghum genome organisation. It has also been noted
[26] that sorghum chromosomes have cytologically dis-
tinguishable knobs, which may account for some marker
excesses or deficiencies.

Approximately 75% of the consensus map (524 markers
spanning 1495 cM) was associated with markers which had
skewed segregation in one or more of the six component
maps. However, only 407 (19.8% of the markers on the
consensus map) of the 524 skewed markers were linked by
less than 5 cM to other markers showing distortion. The
117 markers with skewed segregation that were linked by at
least 5 cM to markers that weren't distorted could reflect
residual levels of heterozygosity in the lines (when scored
with dominant markers), due to either natural or artificial
selection, sampling bias due to lower numbers of markers
in these regions or mis-scoring of the markers. Skewed seg-
regation was observed for both DArT and non-DArT mark-
ers; no one marker type showed a particular tendency for
skewness. Marked differences were observed, however, for
the distribution of markers with skewed segregation across
chromosomes, although there was some similarity between
the component maps, e.g. the short arm of SBI-01 showed
skewed marker segregation in four of the six maps (TAMU-
ARS, S2, S4 and CIRAD). Highly significant deviation from
the expected 1:1 segregation ratio on SBI-01 towards the
BTx623 allele was also observed by [25], which affected
almost the entire linkage group. The authors [25] also
noted other reports of similar skewed segregation in the
same genomic region and observe that strong and consist-
ent segregation distortion in one genomic region is less
likely to be due to sampling error and more likely suggests
selection favouring one parental allele. On the DArT con-
sensus map, SBI-01 has the highest proportion of chromo-
somal regions associated with skewed segregation (67%).
Two other chromosomes (SBI-04 and SBI-08) also have
over 50% of the chromosomal regions associated with
skewed segregation (51.6% and 54.1%, respectively), once
again also observed by [25]. SBI-07 has a significantly lower
portion of the chromosome associated with skewed segre-
gation (9.6%) than any other chromosome on the consen-
sus map. This non-random and consistent distribution
pattern of skewed segregation lends weight to previous pro-
posals [18,25,40,41] that distorted segregation is due to the
elimination of gametes or zygotes by a lethal factor located
in a neighbouring region of the marker. Higher frequencies
of skewed markers have also been observed in RIL popula-
tions, compared to doubled haploid, backcross or F2 popu-
lation structures [31], due to increased opportunities for
selection across generations; all six component maps in the
current study are based on RIL populations.

Of the 1997 markers included in the DArT consensus
map, 35 mapped to different chromosomes in the compo-

nent maps. The frequency of multicopy markers detected
in this study (1.8%) is much lower than observed by [26],
who found that 17% of RFLP probes mapped to multiple
locations. This could be explained by the differences in
marker types. It has been found that DArTs, as a hybridi-
sation-based bi-allelic marker, inherently select against
multi-locus markers [32], as the hybridisation intensities
measured for such multi-locus markers tend to appear
monomorphic. Variation in the frequency of multicopy
markers was observed across chromosomes, with SBI-07,
SBI-10, SBI-02 and SBI-05 having a multicopy marker fre-
quency greater than 5%. SBI-06 had the lowest multicopy
marker frequency (1.1%). A tendency for the multicopy
markers to be present in the centromeric regions across
chromosomes was also observed, with approximately
22% of all multicopy markers occurring in the pericentro-
meric heterochromatic regions, whilst overall only 13% of
all markers included in the consensus map are located in
the centromeric regions. Centromeric suppression of
recombination is associated with the accumulation of
repeated sequences [33] and could explain the tendency
towards marker duplication. The non-random distribu-
tion of multicopy loci across chromosome pairs has been
reported previously [20,26]. It has been observed [26] that
the duplication of sorghum chromatin closely resembles
the pattern for rice, showing ancient duplications in some
regions. However, very little evidence was found in the
current study for co-linearity between chromosomes,
lending weight to the argument against an ancient poly-
ploidisation event in the evolution of the sorghum
genome [42-44]. It has also been previously observed [26]
that 30% of the sorghum genome showed correspond-
ence to two or more unlinked intervals which the authors
postulated could either be due to very localised colinearity
or which may reflect more recent duplications superim-
posed on more ancient ones.

Utility of the consensus map for genomics and breeding 

applications

The DArT consensus map presented in this paper will help
link information on sorghum diversity and QTLs to the
sorghum physical map and to the sorghum genome
sequence. The availability of the primer sequence infor-
mation for the majority of SSRs http://
sorgblast3.tamu.edu/linkage_groups.htm and probe
sequence information for a subset of RFLP markers with
the prefixes bcd, bnl, cdo, csu, psb, RG, rz and umc http://
cggc.agtec.uga.edu/ included on the consensus map
already provides immediate opportunities to anchor the
presented consensus map to the physical map, hence facil-
iating sequence mapping of known genes from other spe-
cies, taking advantage of known syntenic relationships
between sorghum, rice, maize and other grasses [45,46],
in addition to a positional cloning approach to identify
candidate genes underlying QTLs flanked by sequenced
mapped SSRs or RFLPs. To demonstrate this, 42 RFLPs

http://sorgblast3.tamu.edu/linkage_groups.htm
http://sorgblast3.tamu.edu/linkage_groups.htm
http://cggc.agtec.uga.edu/
http://cggc.agtec.uga.edu/


BMC Plant Biology 2009, 9:13 http://www.biomedcentral.com/1471-2229/9/13

Page 10 of 14

(page number not for citation purposes)

included on the consensus map were sequence mapped
on the rice genome (TIGR; http://rice.plantbiol
ogy.msu.edu/) and bin-mapped on the maize genome
(MaizeGDB; http://www.maizegdb.org/); data presented
in Additional File 4. The syntenic genomic regions
between sorghum, rice and maize were largely as
expected, at the macro-level [45,46]. With the recent avail-
ability of both the rice and sorghum whole genome
sequences, and the on-going sequencing of the maize
genome, however, not only the macro-level synteny, but
genic microsynteny can now be furthered explored. As an
example, comparisons for fifteen predicted genes (down-
loaded from ftp://ftp.jgi-psf.org/pub/JGI_data/
Sorghum_bicolor/v1.0/Sbi/) in the 265,271 bp euchro-
matic region between the two RFLP markers rz630 and
umc90 on the sorghum genome (SBI-01) were made
between rice and sorghum. BLAST similarity between the
sorghum predicted genes and the rice sequence, requiring
hits with E ≤ 1e-10 based on BLASTn, are detailed in Addi-
tional File 5. Over 73% conserved synteny among the 15
predicted genes was observed; comparable to microsyn-
tenic levels (72%) observed previously [46] in euchro-
matic genomic regions in rice and sorghum. Far greater
microcolinearity has also been observed [46] in euchro-
matic regions, compared to heterochromatic regions. Fur-
ther detailed evaluation of the level of genic
microcolinearity, both in euchromatic and heterochro-
matic regions, between rice and sorghum based on the
whole genome sequence analysis will provide invaluable
knowledge for cereal scientists and will provide new
opportunities for sorghum researchers to link QTL and
gene information aligned to genetic linkage maps directly
to the whole genome sequence and predicted genes. The
on-going sequencing of the sorghum DArT clones, when
integrated with the whole genome sequence, offers many
opportunities to greatly accelerate gene discovery and
analysis in addition to the opportunity to convert the
recombination fractions on the consensus map to physi-
cal map distances (cM to kb), affording new prospects for
the progress of genomic applications. The sorghum whole
genome and DArT clone sequences can also be exploited
for targeted marker development for specific genomic
regions. Because of ease of sequence analysis, DArT mark-
ers have a significant advantage over AFLPs for positional
cloning efforts due to the difficulty in sequencing AFLPs
that, therefore, cannot be readily integrated into the
whole genome sequence.

An additional use of the presented DArT consensus map is
in whole genome profiling-assisted breeding. The marker
density on the consensus map is sufficient to provide a
better choice of markers for specific breeding populations
to ensure adequate polymorphic marker coverage in
regions of interest. Further, the marker density on the con-
sensus map is suitable for whole genome pedigree analy-
sis, and calculating identity-by-descent through

generations. The consensus map provides a large number
of markers along the length of the chromosome that can
be used to genotype individuals for detecting recom-
binants, fixing loci, restoring a recurrent genetic back-
ground, or assembling complex genotypes in complex
crosses. The co-location of a range of marker types (DArTs,
RFLPs and SSR markers) on the consensus map will ena-
ble sorghum breeders to quickly identify target loci
through whole-genome DArT scans and then select mark-
ers of interest from the same region for marker-assisted
selection.

Conclusion
The integration of six distinct genetic maps into a consen-
sus map has made it possible to obtain a general order
and distances for a greater number of markers, and to
obtain more complete coverage of the sorghum genome.
The consensus map presented here is a good estimation of
the marker position from the six component maps. The
exact fine marker order may differ slightly in other popu-
lations, and users should be prepared to establish the
order for closely linked markers in their mapping and
breeding populations. The obtained consensus map can
be used as a reference map to develop genetic studies in
different genetic backgrounds, in addition to providing a
framework for transferring genetic information between
different marker technologies and for integrating DArT
markers with other genomic resources.

Methods
Mapping populations

A total of six component mapping populations were used
to integrate over 2000 unique loci, including 1182 unique
DArT markers, into a single consensus map (Table 1). The
TAMU-ARS population, developed at Texas A&M Univer-
sity, is a reference mapping population and has been sub-
ject to extensive phenotypic and genotypic analysis
[14,20,22,23,25]. One of the TAMU-ARS population par-
ents, BTx623, is the genotype selected for the sorghum
genome sequencing project [47]. The four mapping pop-
ulations, S2, S4, S5 & S6, were developed at the Depart-
ment of Primary Industries & Fisheries, Queensland by D.
Jordan (pers. comm.) and have also been used in studies
to map target traits (e.g. [9,28,48]). The CIRAD popula-
tion was developed at the Saria Research Station, Burkina
Faso by Trouche (pers. comm.), from the cross between
the genotype SSM249 (guinea from Burkina Faso) and the
genotype SARIASO10 (caudatum from Burkina Faso) and
has been used for QTL mapping on target traits (Rami,
pers. comm.).

Genotyping data

Several sources of markers, including DArTs, RFLPs and
SSRs, mapped in the individual component maps were
used to prepare the sorghum consensus map. Segregation
data from a total of 331 unique SSRs/STSs (with prefix: cup

http://rice.plantbiology.msu.edu/
http://rice.plantbiology.msu.edu/
http://www.maizegdb.org/
ftp://ftp.jgi-psf.org/pub/JGI_data/Sorghum_bicolor/v1.0/Sbi/
ftp://ftp.jgi-psf.org/pub/JGI_data/Sorghum_bicolor/v1.0/Sbi/
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as described by [49]; gap and Sb as described by [50] and
[22]; gpsb, msbcir and SSmsbcir as described by CIRAD
(Rami, pers. comm.); SbAG as described by [51] and txp as
described by [22,23] and 497 unique RFLPs (from barley
cDNA with bcd prefix; from maize genomic and cDNA
probes with prefix: bnl, csu, isu and umc; from oat cDNA
with cdo prefix, from sorghum genomic DNA with psb and
txs prefix, from rice genomic and cDNA probes with RG and
rz prefix, and from sugar cane genomic and cDNA probes
with, EST, FC, GE, JH, MT, RG, SSCIR, SG, ST and STr pre-
fixes, as described by [9,18,20,26]) across the six compo-
nent mapping populations were included in this study. All
six populations were genotyped with an identical set of
DArT markers from a PstI+BanII representation ('sPb' mark-
ers), following the methodology detailed in [28]. The
CIRAD population was also assayed with a unique set of
MITE-DArT markers (Bouchet, pers. comm.). The segrega-
tion data of 489 non-DArT marker loci mapped in TAMU-
ARS were obtained from P. E. Klein (pers. comm.) and inte-
grated with 306 polymorphic DArT markers. The 2454
AFLP loci mapped in the TAMU-ARS population by [25]
were excluded from this study due to the problems in trans-
ferability of this marker type among laboratories, as dis-
cussed by [52]. Marker data previously generated for the
four DPI&F mapping populations (S2, S4, S5 and S6) were
integrated with segregation data from a total of 884 DArT
markers. The non-DArT data for the S4 population con-
sisted of both SSRs and AFLPs [46], however as with the
TAMU-ARS data set, the AFLP markers were excluded from
this study. The non-DArT data sets previously generated for
the S2, S5 and S6 populations are unpublished (Jordan,
pers comm.). For the CIRAD map, segregation data for 180
non-DArT loci, obtained from J.F. Rami (pers. comm.),
were integrated with segregation data from a total of 627
DArT markers, which included 269 newly identified poly-
morphic MITE DArT clones. With the exception of DPI&F
mapping population S2, the component maps' segregation
data predominantly consisted of DArT markers. DArT
markers with a quality parameter and a call rate both
greater than 77% were selected for inclusion in the compo-
nent genetic linkage maps. DArT markers with a quality
parameter between 75 and 77% were incorporated on a
case-by-case basis.

Marker nomenclature

DArT marker names are standardised and automatically
generated by a DArT-specific Laboratory Information
Management System (DArTdb; DArT P/L, Canberra, Aus-
tralia). Different laboratories used slightly different names
for the same SSR and RFLP markers. Non-DArT marker
names were therefore curated to the extent required to cre-
ate an unambiguous nomenclature.

Component genetic linkage map construction

The component genetic linkage maps of the six sorghum
mapping populations were constructed using MultiPoint

software [53]. The RIL_Selfing population setting was
selected and a maximum threshold rfs value of between
0.1 to 0.40 was used to initially group the markers into a
minimum of ten linkage groups. Multipoint linkage anal-
ysis of loci within each LG was then performed and
marker order was further verified through re-sampling for
quality control via jack-knifing [54]. Markers that could
be ordered with a jack-knife value of 90% or greater were
included as 'framework' markers, with any remaining
markers causing unstable neighborhoods being initially
excluded from the map, including redundant markers
mapping to the same location. Following a repeated
multipoint linkage analysis with the reduced set of mark-
ers for each LG to achieve a stabilised neighbourhood, the
previously excluded markers were attached by assigning
them to the best intervals on the framework map. Finally,
known chromosomal locations of a subset of the DArT
[28], SSR and RFLP [25] markers were used to assign the
linkage groups to sorghum chromosomes, SBI-01 to SBI-
10 according to the recent nomenclature system as sug-
gested by [55]. The Kosambi [56] mapping function was
used to calculate the centimorgan (cM) values. The
marker orders generated by MultiPoint for each compo-
nent map were then displayed in map order per LG as
color-coded graphical genotypes in Microsoft Excel using
a conditional cell formatting formula. The graphical gen-
otypes of these maps were then investigated to identify
'singletons' (apparent double crossover events) pointing
to either a potentially incorrect marker order or a genotyp-
ing error. Individual singletons were not, however,
replaced with missing data, in contrast to [57]. The obser-
vation of singletons depends on their context of flanking
markers and also the population type; the number of
recombination events that can have occurred in a RIL pop-
ulation make it more likely that a singleton represents a
real event compared to a DH population, which has only
had one generation of cross-overs.

The distance measurement of interval variables between 2
individuals, proposed originally by [36] and modified by
[27] was used to compare the genetic distances between
each map and the TAMU-ARS base map. The modified
distance measure [27] is based on the following formula:

where Aik is the length (cM) of the kth shared marker inter-
val on the ith chromosome of map A, and Bik is the length
(cM) of the kth shared marker interval on the ith chromo-
some of map B. The Σ|Aik - Bik| is the absolute value of the
length difference of each shared marker interval on the ith
chromosome between maps A and B, and Ai + Bi is an
additive value of all shared intervals for the ith chromo-
some of maps A and B which is used to normalise the dif-
ference value, Σ|Aik - Bik| [27].

Difference ratio
A B

A B
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Construction of the consensus map

The locus positions from the six component maps were
merged to build a 'synthetic' map using basic Microsoft
Excel functionalities. This strategy differs from the alterna-
tive approach of constructing a consensus map using the
segregation data from different mapping populations to
compute the optimum order of loci [32]. The TAMU-ARS
map was selected as the 'base' or reference map, as the one
containing the largest number of common loci across
populations and the one with the greatest genome cover-
age. Bridge markers were initially identified as having an
identical name and being present in TAMU-ARS and at
least one of the other 5 mapping populations and having
a similar map position in the different mapping popula-
tions concerned. Markers with the same name that had
inconsistent positions in different populations were not
considered as bridge markers. The TAMU-ARS distances
were used for the locus positions of the bridge markers
along each chromosome. This framework map then
served as a backbone onto which the remaining loci from
each component map were projected, in a "neighbours"
map approach as described by [58]. For a target locus, the
two nearest flanking bridge markers shared by the frame-
work map and by the component map were identified and
the coordinate of this locus was calculated relative to the
ratio of the intervals defined by the flanking bridge mark-
ers on the two maps. For placing markers at group extrem-
ities, projection was based on the relative genetic distance
of common markers nearest to the end of the LG between
the framework map and the component map.
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