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Abstract

Background: A number of molecular marker linkage maps have been developed for melon (Cucumis melo L.) over

the last two decades. However, these maps were constructed using different marker sets, thus, making

comparative analysis among maps difficult. In order to solve this problem, a consensus genetic map in melon was

constructed using primarily highly transferable anchor markers that have broad potential use for mapping, synteny,

and comparative quantitative trait loci (QTL) analysis, increasing breeding effectiveness and efficiency via marker-

assisted selection (MAS).

Results: Under the framework of the International Cucurbit Genomics Initiative (ICuGI, http://www.icugi.org), an

integrated genetic map has been constructed by merging data from eight independent mapping experiments

using a genetically diverse array of parental lines. The consensus map spans 1150 cM across the 12 melon linkage

groups and is composed of 1592 markers (640 SSRs, 330 SNPs, 252 AFLPs, 239 RFLPs, 89 RAPDs, 15 IMAs, 16 indels

and 11 morphological traits) with a mean marker density of 0.72 cM/marker. One hundred and ninety-six of these

markers (157 SSRs, 32 SNPs, 6 indels and 1 RAPD) were newly developed, mapped or provided by industry

representatives as released markers, including 27 SNPs and 5 indels from genes involved in the organic acid

metabolism and transport, and 58 EST-SSRs. Additionally, 85 of 822 SSR markers contributed by Syngenta Seeds

were included in the integrated map. In addition, 370 QTL controlling 62 traits from 18 previously reported

mapping experiments using genetically diverse parental genotypes were also integrated into the consensus map.

Some QTL associated with economically important traits detected in separate studies mapped to similar genomic

positions. For example, independently identified QTL controlling fruit shape were mapped on similar genomic

positions, suggesting that such QTL are possibly responsible for the phenotypic variability observed for this trait in

a broad array of melon germplasm.

Conclusions: Even though relatively unsaturated genetic maps in a diverse set of melon market types have been

published, the integrated saturated map presented herein should be considered the initial reference map for

melon. Most of the mapped markers contained in the reference map are polymorphic in diverse collection of
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germplasm, and thus are potentially transferrable to a broad array of genetic experimentation (e.g., integration of

physical and genetic maps, colinearity analysis, map-based gene cloning, epistasis dissection, and marker-assisted

selection).

Background
Saturated genetic linkage maps (< 1 cM between mar-

kers) are required for the efficient and effective deploy-

ment of markers in plant breeding and genomic

analysis. Linkage map applications include, but are not

limited to: gene mapping, positional cloning, QTL analy-

sis, MAS, epistasis dissection, linkage disequilibrium

analysis, comparative genomics, physical and genetic

map integration, and genome assembly. The construc-

tion of highly saturated maps is often a time-consuming

process, especially if investigators are employing differ-

ent parental stocks and markers are not easily transfer-

able. Merged maps are attractive since their integration

allows for an increase in marker density without the

need of additional genotyping, increased marker port-

ability (i.e., polymorphic markers can be used in more

than one population), improved marker alignment preci-

sion (i.e., congruent anchor maker position), and

broader inferential capabilities (i.e., cross-population

prognostication). A number of integrated linkage maps

have been developed in numerous economically impor-

tant crop plants including grapevine (Vitis vinifera L.)

[1], lettuce (Lactuca sativa L.) [2], maize (Zea mays L.)

[3], red clover (Trifolium pratense L.) [4], ryegrass

(Lolium ssp.) [5], wheat (Triticum aestivum L.) [6],

among others.

The genome of melon (Cucumis melo L.; 2n = 2x =

24) is relatively small (450 Mb, [7]), consisting of 12

chromosomes. The first molecular marker-based melon

map was constructed in 1996 [8] using mainly restric-

tion fragment length polymorphism (RFLP) markers and

morphological traits, although the markers did not

cover the predicted 12 melon chromosomes. This was

comparatively late for a major crop species like melon

that is among the most important horticultural crops in

terms of worldwide production (25 millions of tons in

2009) and which production has been increased around

40% in the last ten years [9]. Subsequently, the first link-

age maps that positioned markers on 12 linkage groups

(LG) were constructed few years later, using the F2 pro-

geny of a cross between the Korean accession PI161375

and the melon type “Pinyonet Piel de Sapo” [10] and

two Recombinant Inbred Line (RIL) populations derived

from the crosses “Védrantais” × PI161375 and “Védran-

tais” × PI414723 [11]. However, these maps had few

markers in common and different LG nomenclature,

making comparative mapping intractable. More recently,

dense linkage maps have been constructed using Simple

Sequence Repeat (SSR) [12-16] and Single Nucleotide

Polymorphism (SNP) [17,18] markers. Nevertheless,

although these maps share common markers, they pos-

sess large numbers of map-specific markers that makes

map-wide comparisons complicated.

Melon germplasm displays an impressive variability for

fruit traits and response to diseases [19-22]. Recently,

part of this variability has been genetically dissected by

QTL analysis [18,23-27]. Inter-population QTL compari-

sons among these maps are, however, difficult given the

aforementioned technical barriers.

Databases integrating genomic, genetic, and phenoty-

pic information have been well developed in some plant

species such as the Genome Database for Rosaceae [28],

SOL Genomics Network for Solanaceae [29] or Gra-

mene [30], and provide powerful tools for genomic ana-

lysis. In 2005, the International Cucurbit Genomics

Initiative (ICuGI) [31] was created to further genomic

research in Cucurbitaceae species by integrating geno-

mic information in a database (http://www.icugi.org).

Thirteen private seed companies funded this project,

which sought to construct an integrated genetic melon

map through merging existing maps using common SSR

markers as anchor points. We present herein an inte-

grated melon map, including the position of QTL con-

trolling economically important traits, to facilitate

comparative mapping comparison and to create a

dynamic genetic backbone for the placement of addi-

tional markers and QTL.

Results and discussion
Construction of the integrated map

Anchor molecular markers

Based on their previously observed even map distribu-

tion, polymorphism, and repeatability, 116 SSR markers

and 1 SNP marker (Additional File 1) were chosen as

anchor points to integrate the eight genetic maps (Table

1). Anchor marker segregation varied among maps,

where the greatest number of polymorphic anchor mar-

kers were in IRTA (Institut de Recerca i Tecnologia

Agroalimentáries, Barcelona, Spain) [15] and INRA

(Institut National de la Recherche Agronomique, Mon-

tfavet Cedex, France) [11] maps containing 100 and 82

anchor polymorphic markers, respectively. The mini-

mum number of anchor polymorphic markers was

recorded in the NERCV (National Engineering Research

Center for Vegetables, Beijing, China) [32] map (35

polymorphic markers). Most of the anchor markers
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were originally mapped in the IRTA population, that

shared a common parent (the Korean line PI 161375)

with the INRA population, while the other parent was

an Occidental cultivar ("Piel de Sapo” and “Vedrantais”

for IRTA and INRA populations, respectively), so it was

actually expected that the proportion of markers that

can be transferred successfully from IRTA to INRA

populations is larger than to the any other studied

population developed from different germplasm.

Molecular marker segregation analysis among individual

maps

Considerable and significant skewed marker segregations

(p < 0.005) were detected in seven genomic regions of

the DHL-based IRTA map (Table 1). Although signifi-

cant skewed segregations were also detected in a region

on LG VIII of the F2-based IRTA map [10], on LGs I,

IV, and VI in NIVTS (National Institute of Vegetable

and Tea Science, Mie, Japan) map [116] and on LGs V,

VII, VIII and X in the ARO (Agricultural Research

Organization, Ramat Yishay 30095, Israel) map [18]. No

significant segregation distortion was detected in the

other maps used herein (data not shown). The relatively

high number of genomic regions with skewed segrega-

tion detected in the DHL-based map reinforces the

hypothesis that such distortion likely originated from

unintentional selection during the in vitro line develop-

ment process [33]. The low number of genomic regions

showing skewed segregation in most melon maps con-

trasts with that reported in other crops such as lettuce

[2], red clover [4], sorghum [34], and tomato [35]. The

degree of such distortion has been correlated to the

extent of taxonomic divergence between mapping par-

ents [36]. The use of inter-specific hybrids in order to

construct genetic maps is a common strategy to ensure

the availability of a high number of polymorphic mar-

kers, and in such cases segregation distortion may be

frequent [37]. However, depending on the relative fre-

quency and intensity, segregation distortion may not

interfere on the map construction. Nevertheless, such

distortion may hinder the transfer of economically

important alleles during plant improvement. The com-

paratively low frequency of segregation distortion

Table 1 Mapping populations

Map Parental
lines

Subspecies Market
class

Horticultural
group

Population
type

Population
size

Number
of
markers

Number of
polymorphic
anchor
markers

Maximum
number of
shared
markers

Map
length
(cM)

Reference

INRA Védrantais melo Charentais cantalupensis RIL 154 223 82 68 1654 [11,27]

PI 161375 agrestis chinensis

ARO Dulce melo Cantaloup reticulatus RIL 94 713 56 64 1222 [18]

PI 414723 agrestis momordica

IRTA Piel de
sapo

melo Piel de
sapo

inodurus DHL 69 238 100 111 1244 [15]

DHL 14 528 [17]

PI 161375 agrestis chinensis F2 93 293 37 111 1197 [10]

NITVS AR 5 melo Cantaloup reticulatus RIL 93 228 70 70 877 [16]

Hakurei 3 melo Cantaloup reticulatus

NERCV K7-1 melo Hami
melon

cantalupensis RIL 107 237 35 41 [32]

K-7-2 melo Hami
melon

cantalupensis

USDA USDA
846-1

hybrid RIL 81 245 37 64 1116 [13]

Top Mark melo Western reticulatus

Shipper

Top Mark melo Western reticulatus

Q 3-2-2 melo Shipper conomon/ F2 117 168 35 64 1095 [14]

momordica

Summary of the mapping populations used to construct the integrated map. Each map is named by the abbreviation of the collaborating institutions (INRA,

Institut National de la Recherche Agronomique, France; ARO, Agricultural Research Organization, Israel; IRTA, Institut de Recerca i Tecnologia Agroalimentàries,

Spain; NITVS, National Institute of Vegetable and Tea Science, Japan; NERCV, National Engineering Research Center for Vegetables, China; and USDA-ARS U. S.

Department of Agriculture, Agricultural Research Service, USA). The genotypes used as mapping parents belong to the subspecies (Cucumis melo L.: ssp. melo or

C. melo ssp. agrestis), and the market class and horticultural group are classified according to Pitrat et al. (2000) [49]. The DHL population of 14 genotypes is

actually a selected sample for bin mapping of the 69 DHLs [12]. The number of polymorphic anchor markers segregating within each map and the maximum

number of markers shared by each map with at least one of the other maps are also shown.
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present in melon maps may be partially explained by the

use of intra-specific crosses during population develop-

ment. Given the infrequent occurrence of segregation

distortion in melon, the introgression of novel, econom-

ically important alleles from exotic melon germplasm

into elite modern cultivars should be relatively

unimpeded.

Marker polymorphism and recombination rates among

individual maps

The number of polymorphic markers for individual

maps ranged from 168 (USDA-ARS, Vegetable Crops

Research Unit, Department of Horticulture, Madison

USA) to 713 (ARO) (Table 1). INRA and IRTA maps

consisted of 12 LGs, coinciding with the basic chromo-

some number of melon, whereas the remaining maps

consisted of more LGs (see http://www.icugi.org for

further details). The number of common markers in

pairwise individual map comparisons was quite variable,

with a mean of 40 common markers among maps. Each

individual map shared between 41 and 111 markers

with at least one of the other maps (Table 1). Marker

order and recombination rates among markers were

very consistent among maps, where significant recombi-

nation rate heterogeneities (p < 0.001) were detected

between only a few marker pairs (CMN22_85-

CMTCN66 in LGIII, CMAGN75-CMGA15 in LG VII,

and TJ2-TJ3 in LG VIII). Similar results have been

found during genetic map integration in grapevine [1],

but more frequent recombination rate differences have

been reported among integrated maps in apple (Malus

domestica Borkh) [38], Brassica ssp. [39], and lettuce [2].

Differences in locus order and recombination rates may

be attributed, in part, to bands that were scored as sin-

gle alleles instead of duplicated loci or to evolutionary

events (chromosomal rearrangements). Nevertheless, it

must be concluded from the data presented that major

chromosomal rearrangements have not occurred during

the recent evolutionary history (i.e., domestication) of

this species.

Consensus linkage map

The construction of the integrated map described herein

involved two stages: 1) the building of a framework map

by merging all the available maps (Table 1) using Join-

map 3.0 [40]; 2) the addition of subsequent markers

using a “bin-mapping” approach [41].

Given the high co-linearity among melon maps, 1565

markers from all maps were initially employed for map

integration. However, 258 (16%) of these markers could

not be included in the final integrated map. This pro-

portion was smaller than that obtained during map inte-

gration of lettuce (19.6% [2]), and larger than in the

grapevine integrated map (8%, [1]). The markers segre-

gating within each individual map were quite comple-

mentary, what made the inclusion of a large number of

markers into the final merged map possible. For exam-

ple, the IRTA_F2 map was constructed with an impor-

tant proportion of RFLP markers that were not used in

most of the other maps. However, this map had enough

RFLP markers in common with the IRTA_LDH map,

which has a good proportion of common markers with

INRA (68) and NIVTS (70) maps, making possible to

integrate the IRTA_F2 RFLP markers in the final map.

Given the congruency detected among melon maps,

the inability to incorporate some previously mapped

markers into the integrated map is likely due to the lack

of sufficient linkage among markers in some genomic

regions, especially in small LGs drawn from some indivi-

dual maps where there was a paucity of common frame-

work map markers.

The framework integrated map contained 1307 mar-

kers (110 SNPs, 588 SSRs, 252 AFLPs, 236 RFLPs, 89

RAPDs, 6 indels, 15 IMAs, and 11 morphological traits)

spanning 1150 cM that were distributed across 12 LGs

with a mean genetic distance between adjacent loci of

0.88 cM (Figures 1 and 2, Additional Files 2 and 3).

Integrated map length was similar to previously pub-

lished maps (Table 1). While the largest marker gap was

11 cM (on the distal ends of LG × and LG IV), the

remaining gaps were less than 10 cM, and occurred

mainly on the distal ends of LGs (Figures 1 and 2).

These gaps are likely due to the lack of sufficient com-

mon anchor markers in some maps or slight inconsis-

tencies (distance and/or order) among maps.

Bin-mapping subsequently resulted in the addition of

285 markers (225 SNPs, 52 SSRs, 3 RFLPs, and 5 indels)

producing the final integrated map containing 1592

markers (640 SSRs, 335 SNPs, 252 AFLPs, 239 RFLPs,

89 RAPDs, 15 IMAs, 11 indels, and 11 morphological

traits) with a mean marker density of 0.72 cM/marker

(Table 2 Figures 1 and 2, Additional Files 2 and 3,

http://www.icugi.org). One hundred and seventy-eight of

these markers were developed, released, or mapped for

the first time for the ICuGI Consortium. The marker

saturation of this integrated map is far greater than pre-

viously published maps (Table 1), increasing dramati-

cally the number of easily transferable markers from 200

[17] to 3353 SNPs and from 386 [18] to 640 SSRs.

Noteworthy is the fact that 17 previously bin-mapped

markers were positioned on the integrated map after

being genotyped in several populations. In each case,

these markers mapped to their predicted positions

inferred by the bin mapping approach (Table 3), demon-

strating the suitability of the bin mapping set [15] to

quickly map new markers onto the melon reference

map.

Marker distribution in the integrated map varied

depending on the marker type. For instance, AFLP mar-

kers clustered mainly in certain regions of LGs I, II, III,
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Figure 1 Integrated melon marker map. Linkage groups I to VI. Six out of the 12 melon linkage groups (LG) are designated with Roman
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V, VI, VIII, and × (Figures 1 and 2). AFLP clustering has

been commonly reported (e.g., in saturated maps of let-

tuce [2], potato [42] or tomato [43]), and it is usually

associated with heterochromatic regions near

centromeres. Even though regions showing AFLP clus-

tering are likely indicative of centromeric positions,

comprehensive cytogenetic analyses would be necessary

to demonstrate this association in melon. In contrast,
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Figure 2 Integrated melon marker map. Linkage groups VII to XII. The remaining six linkage groups of melon (VII-XII). Color code for markers

are the same as Figure 1.
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SSR, SNP and RFLP markers were generally more evenly

distributed throughout the genome. Similar conclusions

can not be reached about the remaining markers

(RAPDs, IMAs, indels and morphological traits) due to

their low number. Nevertheless, SSR marker clustering

was observed in LGs III, IV, VII, VIII, XI, and XII,

involving mainly SSR markers originated from genomic

libraries (e.g., CMBR-SSRs [44]), not from ESTs. This

result might indicate that those SSRs are located in

repetitive DNA regions as centromeres or telomeres.

However, such SSR marker clusters did not overlap

those of AFLPs, even though these clusters were in the

same LG (i.e., LGs III and VIII), suggesting that SSR

marker clustering may be due to reasons not associated

with centromeric or telomeric regions.

Integration of QTL information

Eighteen previously reported melon-mapping experi-

ments identified 370 QTL for 62 traits (Table 4 and

Additional File 4), and these were aligned in the inte-

grated map described herein. The distribution of these

QTL varied from 18 on LG IV to 57 on LG VIII (Fig-

ures 3 and 4, Additional File 5). The number of QTLs

defined per trait ranged from 1 (e.g., CMV, ETH, and

FB) to 40 (FS), with QTL for FS, FW, and SSC being

identified in 7, 5, and 5 of the previously reported 18

mapping experiments, respectively. The number of QTL

experiments in melon must be considered modest when

compared with other major species, with a significant

number of the traits being genetically characterized in

only one or two different mapping experiments, which

thereby limits the meta-analysis of QTL in this species.

Even though additional studies would be necessary to

draw definitive conclusions, the position of FS QTL

tend to be more consistent among experiments than

those for FW and SSC QTL, mapping on LG I in six

out of seven works, and on LGs II, VI, VII, VIII, XI, and

XII in at least three experiments. Clustering of FW and

SSC QTL was, however, only observed in LGs VIII and

XI, and in LGs II, III, and V, respectively. FS is a highly

heritable trait in melon, whereas FW and SSC usually

show a lower heritability [25]. The differences in QTL

detection among experiments might be partially

explained by trait heritability differences. Another possi-

ble explanation is that the variability of FS among the

germplasm used in the experimental crosses might be

controlled by a low number of common QTL with large

effects, whereas a higher number of QTL with lower

effects and/or more allelic variability among them might

be underling SSC and FW.

Utility of the integrated molecular and QTL map

The integrated map described herein dramatically

enhances the development and utility of genomic tools

(i.e., markers, map-based cloning and sequencing) over

previous melon maps. A large proportion of the markers

Table 2 Distribution of genetic markers in the melon

integrated map

Linkage
Group

Framework
markers

Bin
markers

Total Genetic
length
(cM)

Marker
density

(cM/marker)

I 131 31 162 99 0.61

II 108 18 126 94 0.74

III 105 23 128 95 0.74

IV 104 27 131 119 0.91

V 115 25 140 110 0.79

VI 102 23 125 98 0.78

VII 108 30 138 99 0.72

VIII 147 30 177 123 0.69

IX 74 18 92 84 0.91

X 89 23 112 73 0.65

XI 131 22 153 80 0.52

XII 93 15 108 77 0.71

1307 285 1592 1150 0.72

Distribution and density of markers across the 12 linkage groups, specifying

the number of markers that were integrated using Joinmap 3.0 (framework)

and bin mapping.

Table 3 Comparison of marker positions among bin and

integrated melon map

Marker Linkage
group

Bin position
(cM)

Integrated map position
(cM)

ECM58 I 38-56 58

GCM168 I 75-99 82

CMBR105 III 42-65 42

CMBR100 III 42-65 45

GCM336 IV 52-77 59

GCM255 VI 45-68 55

GCM303 VI 45-68 55

ECM132 VI 80-92 91

ECM182 VII 32-60 49

ECM204 VII 73-86 81

ECM217 VIII 30-41 19

ECM128 VIII 30-41 35

GCM241 VIII 67-90 83

ECM78 X 0-14 11

ECM228 X 26-30 29

ECM164 XI 38-59 59

ECM105 XII 20-41 22

Several markers previously mapped using the bin mapping strategy [15] were

included in the integrated map. The expected interval for position of the

markers in centiMorgans (cM) in the integrated map based on the markers

defining the bins according to Fernandez-Silva et al. (2008) [15] is shown in

the “Bin position” column, while the actual position in the integrated map is

given in the “Integrated map position” column.
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in the integrated map are SSRs and SNPs, which are

easily transferable across laboratories. Moreover, the

populations used to construct the integrated map

include genotypes from the most important market class

cultivars ("Charentais”, “Cantaloup”, “Hami melon”, “Piel

de Sapo” and “U. S. Western Shipper”) in broad horti-

cultural groups (cantalupensis, inodorus, and reticula-

tus), guaranteeing the future utility of the markers in a

broad range of cultivars and experimental crosses. The

high marker density of the map allows for the selection

of specific markers to customize mapping and molecular

breeding applications, such as fine mapping, the devel-

opment of novel genetic stocks (e.g., nearly isogenic

lines and inbred backcross lines), MAS, and hybrid seed

production.

The positioning of economically important QTL in the

integrated map and the standardization of trait nomen-

clature will facilitate comparative QTL analyses among

populations of different origins to provide deeper

insights into the genetic control of the diverse phenoty-

pic variability observable in melon germplasm. For

example, QTL for SSC on LG III co-localize with QTL

associated with SUC, GLU, and SWEET, suggesting per-

haps the existence of pleiotropic effects (Figures 3 and

4). The search of candidate genes is also facilitated, as

Table 4 Name and abbreviations of the traits analysed in

the current report

Trait Abbreviation

Ripening rate RR

Early yield Eay

Fruit Weight FW

Fruit Shape FS

Fruit diameter FD

Fruit Length FL

Fruit Convexity FCONV

Ovary Shape OVS

Soluble Solid Content SSC

Fruit number FN

Fruit Yield FY

Primary branch number PB

Percentage of mature fruit PMF

Flesh firmmes FF

Seed cell diameter SCD

Fruit Flesh proportion FFP

Percent netting PN

beta-carotene b-car, b-carM and b-
carE

Ethylene production ETH

Powdery mildew resistance PM

Aphis gossypii tolerance Ag

External Color ECOL

Flesh Color FCOL

Ring sugar content RSC

Leaf Area LA

Total losses TL

Over ripening OVR

Finger texture FT

Water -soaking WSD

Flesh browing FB

Fusarium rot FUS

Stemphylium rot ST

Fruit flavor FLV

Necrosis NEC

Vine weight VW

Primary root length PRL

Average diameter of the primary root PAD

Secondary root density SRDe

Average lenght of secondary roots ALSR

Skin netting SN

Skin thickness STH

Dry matter DM

pH pH

Titratable acidity TA

3-hydroxy-2,4,4-trimethylpentyl 2-
methylpropanoate

PRO

Octanal OCT

Glucose GLU

Fructose FRU

Sucrose SUC

Table 4 Name and abbreviations of the traits analysed in

the current report (Continued)

Total sugars TSUG

Succinic SUCC

Sourness SOUR

Bitterness BITTE

Sweetness SWEET

Cucumber mosaic virus CMV

Net cover NTC

Net density NTD

Stripes STR

Sutures SUT

Softness WFF

Total carotenoids CAR

Phytoene PHY

a-carotene aCR

Lutein LUT

Pentamerous p

Resistance to Fusarium races 0 and 2 Fom_1

Resistance to Fusarium races 0 and 1 Fom_2

Monoecious a

Spots on the rind mt_2

Melon necrotic spot virus Nsv

Sutures s-2

Virus aphid transmision Vat

White flesh wf

Zucchini Yellow Mosaic Virus Zym
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Figure 3 Quantitative Trait Loci (QTL) positioned in the melon integrated map. Linkage groups I to VI. QTL are located in a skeleton of the

integrated map, where candidate genes for fruit ripening (green), flesh softening (blue), and carotenoid (orange), and sugar (brown) content are

also shown. QTL are designated according to additional files 4 and 5 using the same colour code given for the candidate genes.

Figure 4 Quantitative Trait Loci (QTL) positioned in the melon integrated map. Linkage groups VII to XII. Color codes are indicated in

Figure 3.
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presently little correlation has been detected between

candidate gene and trait for ethylene production [45,46],

fruit flesh firmness [46], carotenoid content [13,18], or

sugar accumulation [18]. These associations were stu-

died in single population, which limits the possibility of

identifying associations between candidate genes and

QTL. Multi-population analysis is a more powerful

approach for detecting QTL/candidate gene associations.

For instance, two clusters of QTL involved in carotenoid

accumulation and flesh color co-localized with carote-

noid-related genes: CMCRTR and BOH_1 in LG VI and

CMBCYC and LYCB in LG VIII (Figures 3 and 4), and

as such become candidate genes for those QTL. Similar

associations can been found between genes involved in

polysaccharide metabolism and transport and clusters of

QTL related to fruit sugar content on LGs II, III, V,

VIII, and X. Likewise, associations have been detected

between ethylene biosynthesis genes and groups of QTL

with effects on fruit ripening on LG VIII.

Preliminary synteny analyses have been conducted

between cucumber and melon based on the IRTA SNP

and EST-SSR based melon map [17] and the cucumber

genome sequence [47]. A large number of EST-based

markers (RFLPs, EST-SSRs, and SNPs) mapped in the

integrated map will facilitate synteny studies with

cucumber and other cucurbit species such as waterme-

lon, squash, and pumpkins as genomic information on

such species becomes available. Most cucurbit species

display a myriad of variability for economically impor-

tant vegetative (e. g., branch number, sex expression)

and fruit (e.g. morphology, carotenes, sugars) traits.

Comparative QTL mapping based on syntenic relation-

ships will allow the evaluation of associations between

the allelic constitution at the same genetic loci and the

phenotypic variability among the different cucurbit spe-

cies, as is the case with fruit size between pepper and

tomato in Solanaceae family [48].

Conclusion
Eight molecular marker melon maps were integrated

into a single map containing 1592 markers, with a mean

marker density of 0.72 cM/marker, increasing dramati-

cally the density over previously published maps in

melon. The integrated map contains a large proportion

of easily transferable markers (i.e. SSRs and SNPs) and

putative candidate genes that control fruit ripening,

flesh softening, and sugar and carotenoid accumulation.

Moreover, QTL information for 62 traits from 18 differ-

ent mapping experiments was integrated into the melon

map that, together with the mapped candidate genes,

may provide a suitable framework for QTL/candidate

gene analysis. In summary, the integrated map will be a

valuable resource that will prompt the Cucurbitaceae

research community for next generation genomic and

genetic studies. All the individual maps, the integrated

map, marker and QTL information are available at

ICuGI web site (http://www.icugi.org). Researchers

interested in including their QTL data into the inte-

grated map may contact the corresponding author.

Methods
Mapping populations

Eight mapping populations derived from seven indepen-

dent crosses were used to develop the integrated map

(Table 1). Three crosses involved genotypes from the

two C. melo subspecies (ssp. melo and ssp. agrestis),

three of them between two C. melo ssp. melo cultivars

and one cross between a C. melo ssp. melo cultivar and

a breeding line derived from a cross between C. melo

ssp. melo and C. melo ssp. agrestis cultivars. The C.

melo ssp. melo genotypes represent the most important

economically market classes (Charentais, Cantaloup,

Hami melon, Piel de Sapo, and U. S. Western Shipper)

belonging to horticultural groups inodorus, cantalupen-

sis, and reticulatus (Table 1) according to the classifica-

tion described by Pitrat et al. (2000) [49]. Most of the

mapping populations were RILs, where two were F2 and

one was a double haploid line (DHL) population (Table

1).

Development of new genomic SSR markersNew geno-

mic SSR marker (designated DE- and DM-) were devel-

oped by Syngenta seeds. DNA plasmid libraries were

constructed using approximately 1 kb fragments of

sheared total DNA. SSRs were targeted via 5’-biotiny-

lated total LNA capture probes (12-16 bases long and

containing 2, 3, or 4 base repeating units) (Proligo

LLC–now IDT). These probes disrupted the double

helix of the library DNA at the probe sequence and as a

consequence the single strand subsequently formed a

double helix with the LNA probe sequence. Streptavidin

coated magnetic beads (Invitrogen M-280 Dynabeads)

were then used to separate the targeted plasmids from

the library. Beads were washed several times and the

DNA was then eluted from the beads and transformed

into electrocompetent Escherichia coli DH12S cells (Life

Technologies, California, USA) which were grown up

and plated on large Qubit plates. Resultant colonies

were then picked using the Qubit, incubated in LB

broth, purified and recovered DNA was Sanger

sequenced. Proprietary programs selected sequences

with SSRs and designed flanking primers.

Molecular markers

A large proportion of molecular markers developed and/

or mapped in previous works (Table 1) were positioned

in the integrated map. Additionally, 196 unpublished

markers described bellow were included in the merged

map. Additional file 2 details the major properties of
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these markers. On one hand, Syngenta Seeds kindly

released 822 SSR markers (see above) to the ICuGI

mapping project that were polymorphic in either ARO

and/or INRA mapping populations. Eighty-five of them

(selected based on their position calculated in in-house

built genetic maps by Syngenta, unpublished results)

were mapped in the ARO population and subsequently

included in the merged map.

On the other hand, new 9 SSRs, 5 indels, s and 27

SNPs were released by ARO group. These indels and

SNPs were detected and genotyped according to Harel-

Beja et al. (2010) [18] in genes associated with organic

acid metabolism or transport (designated OAMG-

organic acid melon genes) that were cloned by two

methods: (1) from melon cDNA and gDNA by PCR

using degenerate primers based on conserved protein

sequences; (2) ICuGI database mining. All of them were

incorporated to the ARO’s map [18].

In contrast, MU- markers are EST-SSRs were devel-

oped from their respective EST contigs available at

ICuGI web page and mapped by the NERCV group.

Four SNPs (AF- and AB- markers) were released by

NIVTS (National Institute of Vegetable and Tea Science,

Mie, Japan) group and mapped in their respective map.

Finally, the unpublished indel MC264 and the SSR mar-

ker TJ22 were included in the IRTA map [10,15,17].

Construction of the integrated map

Various combinations of RFLP, RAPD, IMA, AFLP, SSR,

indel and SNP markers had previously been employed

to genotyped individuals in each of the eight mapping

populations (Table 1). In order to ensure a minimum

number of common anchor points among markers, 116

SSR and 1 SNP markers evenly distributed through the

melon genome according to two previous linkage maps

[15,16] (Additional File 1) were selected to be genotyped

in the eight mapping populations. When possible, two

markers per anchor-point position were chosen to maxi-

mize the probability of identifying polymorphisms in

populations examined. Standard, published protocols

were employed for SSR marker genotyping [13-16,18].

Marker segregation distortion was investigated

employing Joinmap 3.0 software [40] in each of the

mapping populations used for map merging. Given the

large number of maps and markers evaluated, marker

distortion was considered significant at p < 0.005 and

when adjacent linked markers also showed distortion at

p < 0.01. The heterogeneity of recombination frequency

(REC) between common markers among different maps

was also evaluated with Joinmap 3.0 and declared signif-

icant at p < 0.001.

Initially, a map was constructed for each mapping

population, where LGs were defined with the “group”

command with a minimum LOD score of 4.0. Groups

were then assigned to LGs by comparing their marker

composition with the LGs defined in previous reference

maps [11,12,15,17]. Groups belonging to the same LG in

different populations were then integrated with the

“combine groups for map integration” module of Join-

map 3.0 using the following parameters: Kosambi’s map-

ping function LOD > 2, REC < 0.4, goodness of fit jump

threshold for removal of loci = 5, performing ripple

after adding 1 locus and the third integration round =

No. The resulting map was designated the “framework

map” and was used in further marker integrations. To

add markers mapped by bin mapping [15,17], markers

defining the bins in the IRTA map were identified on

the framework map. The bins were redefined in the fra-

mework map and markers were located subsequently to

their respective bins from the IRTA to the framework

map..

Trait and QTL definition

Traits and QTL were selected from 17 published works

and 1 unpublished work (Additional Files 4 and 5) by

the collaborating project researchers. Crosschecking and

evaluation of recording methods allowed for the unifica-

tion of trait descriptions and common abbreviations

were assigned accordingly (Additional File 4). QTL were

defined following the directions of the Gramene data-

base [50].

Nevertheless, QTL controlling the same trait expres-

sion were often defined in independent publications

and/or in different mapping populations and, conse-

quently, QTL characterized in those different popula-

tions may correspond to the same genetic locus.

Therefore, each QTL was treated independently, making

it possible to notice the number of times that a QTL is

reported in a similar genomic location across indepen-

dent experiments.

A specific identifier was assigned to each QTL, where

the first letters designate the trait abbreviation, followed

by a “Q” that stands for QTL, then a letter indicating a

reference to a mapping experiment (publication) fol-

lowed by a digit representing the LG to which the QTL

maps, and then followed by a dot and a final digit that

distinguishes different QTL from the same experiment

on the same LG (Additional File 5). For example, the

designation FDQJ2.2 stands for one of the QTL for FD

(fruit diameter) reported in the experiment J and map-

ping in the LG II.

QTL were defined within a marker interval according

to the information presented in the original publication

from which it was taken or as a personal communica-

tion from a project collaborator. If a flanking marker

defining a QTL was not included in the framework map

during the merging process, then the next closely linked

marker was chosen for representation in the integrated
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map. Where only a single marker was associated with a

QTL, marker position was used as both the start and

stop position of the QTL. For illustration purposes, gra-

phic representation of a QTL’s position was defined in

the centre of a marker interval (Figures 3 and 4).

To provide visual images of their genomic positions,

integrated markers and QTL were plotted using Map-

chart 2.0 [51]. Colour codes were used to identify mar-

ker types, traits, QTL, and candidate genes in order to

facilitate visualization of the co-localization of possible

QTL and candidate genes involved in similar processes

across different mapping experiments.

Additional material

Additional file 1: Markers selected as anchor points for map

integration. PowerPoint file depicting a skeleton of the IRTA map [12]

and the position of the markers distributed among the collaborating

laboratories for use as anchor points for map integration.

Additional file 2: Source of markers. Excel spreadsheet with two

sheets: “Markers in ICuGI consensus map” containing the references in

which markers were described and where full details may be obtained,

marker type (SSR, Single Sequence Repeat; SNP, Single Nucleotide

Polymorphism; RFLP, Restriction Fragment Length Polymorphism; IMA,

Inter Microsatellite Amplification; RAPD, Random Amplified Polymorphic

DNA; AFLP Amplified Fragment Length Polymorphism; indel, insertion/

deletion), the forward, reverse and extension primers (for some SNPs);

and “Non-mapped markers” containing the new SSR markers released by

Syngenta Seeds that are polymorphic in either ARO and/or INRA

mapping populations.

Additional file 3: Integrated melon map. Excel spreadsheet containing

the position of mapped marker on 12 (I-XII) melon linkage groups.

Additional file 4: Consensus vocabulary for the traits positioned on

the melon integrated map. Excel spreadsheet containing consensus

definitions for the traits used in the different QTL mapping experiments.

Additional file 5: Quantitative Trait Loci (QTL) located on the melon

integrated map. Excel spread sheet containing the definition of the QTL

located on the melon integrated map. QTL are designated according to

the following rules: the first letters are the trait abbreviation, followed by

a “Q”, then a letter indicating the reference followed by a digit

representing the LG to where the QTL maps, and the last digit

distinguishes different QTL from the same publication in the same LG.

The last column indicates molecular markers from the integrated map

that flank the mapped QTL.
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