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A Consensus Model for Group Decision Making

with Incomplete Fuzzy Preference Relations
E. Herrera-Viedma, S. Alonso, F. Chiclana, and F. Herrera

Abstract— Two processes are necessary to solve group decision
making problems: a consensus process and a selection process.
The consensus reaching process is necessary to obtain a final
solution with a certain level of agreement between the experts;
and the selection process is necessary to obtain such a final
solution. In [19], we present a selection process to deal with
group decision making problems with incomplete fuzzy prefe-
rence relations, which uses consistency measures to estimate the
incomplete fuzzy preference relations. In this paper we present
a consensus model. The main novelty of this consensus model is
that of being guided by both consensus and consistency measures.
Also, the consensus reaching process is guided automatically,
without moderator, through both consensus and consistency
criteria. To do that, a feedback mechanism is developed to
generate advice on how experts should change or complete their
preferences in order to reach a solution with high consensus
and consistency degrees. In each consensus round, experts are
given information on how to change their preferences, and
to estimate missing values if their corresponding preference
relation is incomplete. Additionally, a consensus and consistency
based induced ordered weighted averaging operator to aggregate
the experts’ preferences is introduced, which can be used in
consensus models as well as in selection processes. The main
improvements of this consensus model is that it supports the
management of incomplete information and it allows to achieve
consistent solutions with a great level of agreement.

Index Terms— Group Decision Making, Fuzzy Preference Re-
lations, Consensus, Aggregation.

I. INTRODUCTION

Group decision making (GDM) problems consist in finding

the best alternative(s) from a set of feasible alternatives X =
{x1, ..., xn} according to the preferences provided by a group

of experts E = {e1, ..., em}. Due to their apparent merits when

aggregating experts’ preferences into group preferences [20],

[22], [38], we assume that experts provide fuzzy preference

relations [6], [14], [22], [26], [32], [36].

A difficulty that has to be addressed when dealing with

real GDM problems is the lack of information. Indeed, there

may be cases where an expert would not be able to efficiently

express any kind of preference degree between two or more

of the available options. This may be due to an expert not

possessing a precise or sufficient level of knowledge of part
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of the problem, or because that expert is unable to discriminate

the degree to which some options are better than others.

Experts in these situations would rather not guess those

preference degrees and as a consequence they might provide

incomplete information [1], [9], [19], [27], [28], [40].

Usually, GDM problems are faced by applying two different

processes before a final solution can be given [5], [16],

[18], [24]: 1) the consensus process and 2) the selection

process. The consensus process refers to how to obtain the

maximum degree of consensus or agreement between the set

of experts. Usually, the consensus process is guided by a

human figure called moderator [16], [23], [24]. The selection

process obtains the final solution according to the preferences

given by the experts. It involves two different steps [17],

[33]: aggregation of individual preferences and exploitation

of the collective preference. Clearly, it is preferable that the

experts had achieved a high level of consensus concerning

their preferences before applying the selection process.

In [1], [19] we introduce a selection process to deal with the

GDM problems with incomplete fuzzy preference relations.

In this selection process we present a consistency based

procedure which is able to estimate all missing values from the

known preferences. In this paper, we focus on the consensus

process. In the literature, we can find many approaches to

model the consensus processes in GDM [3]–[5], [7], [10],

[11], [16], [18], [23]–[25], [29], [35], [37], [46]. Most of these

approaches use only consensus measures to control and guide

the consensus process. If a consensus process is seen as a

type of persuasion model [8], then other criteria could be

used to guide the consensus reaching processes as it could

be, for example, the cooperation or consistency criterion. A

first approach to consensus using a consistency criterion can

be found in [12], although preference relations were assumed

to be complete. Also, in the context of the analytical hierarchy

process (AHP) [34], consistency has been used in GDM [2],

[39].

The aim of this paper is to present a consensus model for

GDM problems with incomplete fuzzy preference relations.

This consensus model will not only be based on consensus

measures but also on consistency measures. As in [16], we

use two kinds of consensus measures to guide the consensus

reaching processes, consensus degrees (to evaluate the agree-

ment of all the experts) and proximity degrees (to evaluate the

agreement between the experts’ individual preferences and the

group preference). To compute them, firstly, all missing values

of the incomplete fuzzy preference relations are estimated

using the consistency based estimation procedure presented in

[19]. Afterwards, some consistency measures for each expert

are computed. Both consensus measures and consistency mea-
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Fig. 1. Consensus Model for GDM with Incomplete Information

sures are used to design a feedback mechanism that generates

advice to the experts on how they should change and complete

their fuzzy preference relations to obtain a solution with a

high consensus degree (making experts’ opinions closer), but

also maintaining a certain consistency level on their fuzzy pre-

ference relations (avoiding self contradiction). This feedback

mechanism is able to substitute the actions of the moderator.

Figure 1 depicts this consensus model. The experts provide

their preferences by means of incomplete fuzzy preference

relations. After the fuzzy preference relations are completed,

the system computes consistency and consensus measures. If

they satisfy a condition based on a consensus and consistency

threshold value, then the selection process to obtain the final

solution of the problem is applied; otherwise, the system

will generate advice to the experts to help them make their

opinions closer, more consistent and complete. Additionally,

we also introduce an Induced Ordered Weighted Averaging

(IOWA) operator [31], [42]–[44] to aggregate the experts’

preferences in the whole decision process which uses both

consensus and consistency criteria as inducing variable. The

main novelty of this consensus model is that it supports the

management of incomplete information allowing to achieve

consistent solutions with a high consensus degree.

This paper is set out as follows. Section II deals with

the preliminaries necessary to develop our consensus model.

Section III introduces the consensus model for GDM problems

with incomplete fuzzy preference relations. Finally, in Sec-

tion IV we draw our conclusions.

II. PRELIMINARIES

In this section, we briefly present the tools necessary to

design the consensus model, that is, the concept of incom-

plete fuzzy preference relation, consistency measures, and the

consistency based procedure to estimate missing values.

A. Incomplete Fuzzy Preference Relations

Among the different representation formats that experts may

use to express their opinions, fuzzy preference relations [6],

[14], [22], [26], [32], [36] are one of the most used because of

their effectiveness as a tool for modelling decision processes

and their utility and easiness of use when we want to aggregate

experts’ preferences into group ones [20], [22], [38].

Definition 1: A fuzzy preference relation P on a set of

alternatives X is a fuzzy set on the product set X ×X , i.e.,

it is characterized by a membership function µP : X×X −→
[0, 1].

When cardinality of X is small, the preference relation may

be conveniently represented by the n × n matrix P = (pik),
being pik = µP (xi, xk) (∀i, k ∈ {1, . . . , n}) interpreted as the

preference degree or intensity of the alternative xi over xk:

pik = 1/2 indicates indifference between xi and xk (xi ∼ xk),

pik = 1 indicates that xi is absolutely preferred to xk, and

pik > 1/2 indicates that xi is preferred to xk (xi ≻ xk). Based

on this interpretation we have that pii = 1/2 ∀i ∈ {1, . . . , n}
(xi ∼ xi).

It has been common practice in research to model GDM

problems in which all the experts are able to provide all the

required preference values, that is, to provide all pik values.

This situation is not always possible to achieve. Experts could

have some difficulties in giving all their preferences due to lack

of knowledge about part of the problem, or simply because

they may not be able to quantify some of their degrees of

preference. In order to model such situations, we define the

concept of an incomplete fuzzy preference relation [19].

Definition 2: A function f : X −→ Y is partial when not

every element in the set X necessarily maps onto an element

in the set Y . When every element from the set X maps onto

one element of the set Y then we have a total function.

Definition 3: An incomplete fuzzy preference relation P on

a set of alternatives X is a fuzzy set on the product set X×X
that is characterized by a partial membership function.

B. Consistency Measures

In real GDM problems with fuzzy preference relations some

properties about the preferences expressed by the experts are

usually assumed desirable to avoid contradictions in their

opinions, that is, to avoid inconsistent opinions. One of these

properties is the transitivity property, which represents the

idea that the preference value obtained by directly comparing

two alternatives should be equal to or greater than the pre-

ference value between those two alternatives obtained using

an indirect chain of alternatives. There are several possible

characterizations for the transitivity property (see [20]). In this

paper, we make use of the additive transitivity property. The

mathematical formulation of the additive transitivity was given

by Tanino in [38]:

(pij − 0.5) + (pjk − 0.5) = (pik − 0.5) ∀i, j, k ∈ {1, . . . , n}
(1)

The underlying concept on which the additive transitivity

property is based has been applied in both Saaty’s AHP [34]

and Fishburn SSB Utility Theory [13]. In the first case, as

shown in [20], additive transitivity for fuzzy preference rela-

tions can be seen as the parallel concept of Saaty’s consistency

property for multiplicative preference relations. In the second

case, as shown in [12] if we represent the degree of preference

of xi over xj by means of a Skew-Symmetric Bilinear function

φ(xi, xj) ∈ R the consistency condition can be stated as

φ(xi, xj) + φ(xj , xk) = φ(xi, xk)

which corresponds to expression (1), taking into account that

Fishburn represents indifference with the value of 0. We

acknowledge that additive transitivity is a condition difficult

to be satisfied by experts’ preferences. However, as shown
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in [20], [30] additive transitivity can be used to obtain more

consistent fuzzy preference relation from a given one, and as

shown in [1], [19] it is also a valuable concept for incomplete

fuzzy preference relations as it reduces experts’ uncertainty

when choosing values to estimate their unknown ones, which

is not the case if other types of weaker transitivity conditions

were to be used.

Additive transitivity implies additive reciprocity. Indeed,

because pii = 0.5 ∀i, if we make k = i in equation (1) then

we have: pij +pji = 1 ∀i, j ∈ {1, . . . , n}. Then, equation (1)

can be rewritten as:

pik = pij + pjk − 0.5 ∀i, j, k ∈ {1, . . . , n} (2)

We will consider a fuzzy preference relation to be “additive

consistent” when for every three options in the problem

xi, xj , xk ∈ X their associated preference degrees pij , pjk, pik
fulfil (2).

Expression (2) can be used to calculate an estimated value of

a preference degree using other preference degrees in a fuzzy

preference relation. Indeed, the preference value pik (i 6= k)
can be estimated using an intermediate alternative xj in three

different ways:

1) From pik = pij + pjk − 0.5 we obtain the estimate

(cpik)
j1 = pij + pjk − 0.5 (3)

2) From pjk = pji + pik − 0.5 we obtain the estimate

(cpik)
j2 = pjk − pji + 0.5 (4)

3) From pij = pik + pkj − 0.5 we obtain the estimate

(cpik)
j3 = pij − pkj + 0.5 (5)

The overall estimated value cpik of pik is obtained as the

average of all possible (cpik)
j1, (cpik)

j2 and (cpik)
j3 values:

cpik =

∑n

j=1;i 6=k 6=j(cpik)
j1 + (cpik)

j2 + (cpik)
j3

3(n− 2)
(6)

When the information provided is completely consistent

then (cpik)
jl = pik ∀j, l. However, because experts are not

always fully consistent, the information given by an expert

may not verify (2) and some of the estimated preference degree

values (cpik)
jl may not belong to the unit interval [0, 1]. We

note, from expressions (3–5), that the maximum value of any

of the preference degrees (cpik)
jl (l ∈ {1, 2, 3}) is 1.5 while

the minimum one is -0.5. Taking this into account, we define

the error between a preference value and its estimated one as

follows:

Definition 4: The error between a preference value and its

estimated one in [0, 1] is computed as:

εpik =
2

3
· |cpik − pik| (7)

Thus, it can be used to define the consistency level between

the preference degree pik and the rest of the preference values

of the fuzzy preference relation.

Definition 5: The consistency level associated to a prefe-

rence value pik is defined as

clik = 1− εpik (8)

When clik = 1 then εpik = 0 and there is no inconsistency at

all. The lower the value of clik, the higher the value of εpik
and the more inconsistent is pik with respect to the rest of

information.

Easily, we can define the consistency measures for particular

alternatives and for the whole fuzzy preference relation:

Definition 6: The consistency measure associated to a par-

ticular alternative xi of a fuzzy preference relation P is defined

as

cli =

n
∑

k=1
i 6=k

(clik + clki)

2(n− 1)
(9)

with cli ∈ [0, 1].

When cli = 1 all the preference values involving the alterna-

tive xi are fully consistent, otherwise, the lower cli the more

inconsistent these preference values are.

Definition 7: The consistency level of a fuzzy preference

relation P is defined as follows:

cl =

n
∑

i=1

cli

n
(10)

with cl ∈ [0, 1].

When cl = 1 the preference relation P is fully consistent,

otherwise, the lower cl the more inconsistent P .

Example 1: Suppose the following complete fuzzy prefe-

rence relation

P =









− 0.2 0.6 0.4
0.8 − 0.9 0.7
0.4 0.1 − 0.3
0.6 0.3 0.7 −









The computation of the consistency level of the preference

value p43 is as follows:

(cp43)
11 = p41 + p13 − 0.5 = 0.6 + 0.6− 0.5 = 0.7

(cp43)
21 = p42 + p23 − 0.5 = 0.3 + 0.9− 0.5 = 0.7

(cp43)
12 = p13 − p14 + 0.5 = 0.6− 0.4 + 0.5 = 0.7

(cp43)
22 = p23 − p24 + 0.5 = 0.9− 0.7 + 0.5 = 0.7

(cp43)
13 = p41 − p31 + 0.5 = 0.6− 0.4 + 0.5 = 0.7

(cp43)
23 = p42 − p32 + 0.5 = 0.3− 0.1 + 0.5 = 0.7

cp43 = 0.7 ⇒ εp43 = 2
3 · |cp43 − p43| = 0 ⇒

cl43 = 1− εp43 = 1

The same consistency value 1 is obtained for all the preference

values of this fuzzy preference relation, which means that it

is a completely additive consistent fuzzy preference relation.

When working with an incomplete fuzzy preference rela-

tion, expression (6) cannot be used to obtain the estimate of

a known preference value.

If expert eh provides an incomplete fuzzy preference rela-
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tion Ph, the following sets can be defined [19]:

A = {(i, j) | i, j ∈ {1, . . . , n} ∧ i 6= j}
MV h =

{

(i, j) ∈ A | phij is unknown
}

EV h = A \MVh

Hh1
ik =

{

j 6= i, k | (i, j), (j, k) ∈ EV h
}

Hh2
ik =

{

j 6= i, k | (j, i), (j, k) ∈ EV h
}

Hh3
ik =

{

j 6= i, k | (i, j), (k, j) ∈ EV h
}

EV h
i = {(a, b) | (a, b) ∈ EV h ∧ (a = i ∨ b = i)}

MV h is the set of pairs of alternatives whose preference

degrees are not given by expert eh, EV h is the set of pairs of

alternatives whose preference degrees are given by the expert

eh; Hh1
ik , Hh2

ik , Hh3
ik are the sets of intermediate alternative

xj (j 6= i, k) that can be used to estimate the preference

value phik (i 6= k) using equations (3), (4), (5) respectively;

and EV h
i is the set of pairs of alternatives whose preference

degrees involving the alternative xi are given by the expert

eh. Then, the estimated value of a particular preference degree

phik
(

(i, k) ∈ EV h
)

can be calculated as follows [19]:

if (#Hh1
ik +#Hh2

ik +#Hh3
ik ) 6= 0 ⇒ cphik =

∑

j∈Hh1

ik

(cphik)
j1 +

∑

j∈Hh2

ik

(cphik)
j2 +

∑

j∈Hh3

ik

(cphik)
j3

(#Hh1
ik +#Hh2

ik +#Hh3
ik )

(11)

In decision-making situations with incomplete information,

the notion of completeness is also an important factor to

take into account when analyzing the consistency. Clearly,

the higher the number of preference values provided by an

expert the higher the chance of inconsistency [19]. So, we can

define the consistency level associated to a preference value

in a incomplete fuzzy preference relation as follows:

Definition 8 ([19]): The consistency level clhik associated to

a preference value phik, (i, k) ∈ EV h, is defined as

clhik = (1− αh
ik) · (1− εphik) + αh

ik ·
Ch

i + Ch
k

2
; αh

ik ∈ [0, 1]

(12)

where Ch
i is the completeness level of the alternative xi

according to the preferences provided by the expert eh which

is defined as the ratio between the actual number of preference

values known for xi, #EV h
i , and the total number of possible

preference values in which xi is involved with a different

alternative, 2(n−1), i.e., Ch
i =

#EV h
i

2(n− 1)
; and αh

ik a parameter

to control the influence of completeness in the evaluation of

the consistency levels for eh defined as

αh
ik = 1−

#EV h
i +#EV h

k −#(EV h
i ∩ EV h

k )

4(n− 1)− 2
(13)

Remark 1: Note that αh
ik decreases with respect to the

number of known preference values. In such a way, αh
ik = 0 if

all possible preference values between xi and xk are known,

in which case the completeness concept lacks any meaning,

and αh
ik = 1 if no values are known.

Clearly, expression (12) is an extension of expression (8),

because when P is complete both EV and A coincide and

αik = 0 ∀i, k.

C. Estimation Procedure of Missing Values for Incomplete

Fuzzy Preference Relations

As we have already mentioned, missing information is a

problem that has to be addressed because experts are not

always able to provide preference degrees between every pair

of possible alternatives. Therefore, it is necessary to estimate

the missing values before the application of a consensus model

or a selection model. To do that, we use the estimation

procedure of missing values for incomplete fuzzy preference

relations developed in [19]. This procedure estimates missing

information in an expert’s incomplete fuzzy preference relation

using only the preference values provided by that particular

expert. It is an iterative procedure that is designed using the

expression (11). The procedure estimates missing values by

means of two different tasks:

1) Establish the elements that can be estimated in each step

of the procedure

Given an incomplete fuzzy preference relation Ph, the

subset of missing values MV h that can be estimated in

step t is denoted by EMV h
t and defined as follows:

EMV h
t = { (i, k) ∈ MV h \

t−1
⋃

l=0

EMV h
l |

i 6= k ∧ ∃j ∈ {Hh1
ik ∪Hh2

ik ∪Hh3
ik } }

(14)

and EMV h
0 = ∅ (by definition). When EMV h

maxIter =
∅ with maxIter > 0 the procedure will stop as there

will not be any more missing values to be estimated.

Moreover, if

maxIter
⋃

l=0

EMV h
l = MV h then all missing

values are estimated, and consequently, the procedure is

said to be successful in the completion of the incomplete

fuzzy preference relation.

2) Estimate a particular missing value

In order to estimate a particular value phik with (i, k) ∈
EMV h

t , the following function estimate p(h, i, k) is

used

function estimate p(h,i,k)

a) (cphik)
1 = 0, (cphik)

2 = 0, (cphik)
3 = 0

b) if #Hh1
ik 6= 0 then (cphik)

1 =
∑

j∈Hh1

ik

(cphik)
j1

c) if #Hh2
ik 6= 0 then (cphik)

2 =
∑

j∈Hh2

ik

(cphik)
j2

d) if #Hh3
ik 6= 0 then (cphik)

3 =
∑

j∈Hh3

ik

(cphik)
j3

e) Calculate cphik =
(cphik)

1 + (cphik)
2 + (cphik)

3

(#Hh1
ik +#Hh2

ik +#Hh3
ik )

end function

Then, the complete iterative estimation procedure is the fol-

lowing
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ITERATIVE ESTIMATION PROCEDURE

0. EMV h
0 = ∅

1. t = 1
2. while EMV h

t 6= ∅ {
3. for every (i, k) ∈ EMV h

t {
4. estimate p(h,i,k)

5. }
6. t++
7. }

Example 2: Suppose the following incomplete fuzzy prefe-

rence relation

P 1 =









− 0.2 0.6 0.4

x − x x
x x − x
x x x −









The application of the estimation procedure is provided:

Step 1: The set of elements that can be estimated are:

EMV 1
1 = {(2, 3), (2, 4), (3, 2), (3, 4), (4, 2), (4, 3)}

After these elements have been estimated, we have:

P 1 =









− 0.2 0.6 0.4

x − 0.9 0.7
x 0.1 − 0.3
x 0.3 0.7 −









As an example, to estimate p143 the procedure is as follows:

H11
43 = ∅ ⇒ (cp143)

1 = 0
H12

43 = {1} ⇒ (cp143)
12 = p113 − p114 + 0.5 =

0.6− 0.4 + 0.5 = 0.7 ⇒ (cp143)
2 = 0.7

H23
43 = ∅ ⇒ (cp143)

3 = 0

cp143 =
0 + 0.7 + 0

1
= 0.7

Step 2: The set of elements that can be estimated are:

EMV 1
2 = {(2, 1), (3, 1), (4, 1)}

After these elements have been estimated, we have the

following completed fuzzy preference relation:

P 1 =









− 0.2 0.6 0.4

0.8 − 0.9 0.7
0.4 0.1 − 0.3
0.6 0.3 0.7 −









As an example, to estimate p41 the procedure is as follows:

H21
41 = ∅ ⇒ (cp141)

1 = 0
H22

41 = ∅ ⇒ (cp141)
2 = 0

H23
41 = {2, 3} ⇒

{

(cp141)
23 = p142 − p112 + 0.5 = 0.6

(cp141)
33 = p143 − p113 + 0.5 = 0.6

}

⇒ (cp141)
3 = 1.2

cp141 =
0 + 0 + 1.2

2
= 0.6

Remark 2: We should point out that although the estimation

procedure of missing values is based on the additive consis-

tency property, this does not mean that a fuzzy preference

relation emerging from its application is necessarily additive

consistent.

III. A CONSENSUS MODEL FOR GDM WITH INCOMPLETE

PREFERENCE RELATIONS

A consensus process can be viewed as an iterative process

with several consensus rounds, in which the experts accept

to change their preferences following the advice given by

a moderator. The moderator knows the agreement at each

moment of the consensus process by means of the computation

of some consensus measures. As aforementioned, consensus

measures are used to guide and control most of the consensus

models developed up to now [3]–[5], [7], [10], [11], [16], [18],

[23]–[25], [29], [35], [37], [46].

To solve GDM problems with incomplete fuzzy preference

relations, firstly it is necessary to deal with the missing values

[27], [28], [40]. The previous consistency based procedure of

missing values allows us to measure the consistency levels

of each expert. This consistency information is used in this

section to propose a consensus model based not only on

consensus criteria but also on consistency criteria. We consider

that both criteria are important to guide the consensus process

in an incomplete decision framework. In such a way, we get

that experts change their opinions toward agreement positions

in a consistent way, which is desirable to achieve consistent

and consensus solutions. In [12] an additive consistency based

consensus model was proposed, although in the context of

complete fuzzy preference relations.

The proposed consensus model is designed with the aim

of obtaining the maximum possible consensus level while

trying to achieve a high level of consistency in experts’

preferences. Thus, we try to maintain a balance between

both. Moreover, we not only achieve a solution with certain

consensus and consistency degrees simultaneously, but also we

get to deal with incomplete fuzzy preference relations, giving

personalised advice to the experts on how to complete them.

In GDM situations, the search for consistency often could

lead to a reduction of the level of consensus, and viceversa.

Therefore, whether to proceed from consistency to consensus

or viceversa is a matter that has to be addressed. We have

decided to proceed from consistency to consensus because in

GDM situations consensus between experts is usually searched

using the basic rationality principles that each expert presents.

To simulate this, the consistency criteria is first applied in our

model to fix the rationality of each expert and afterwards it

searches to meet experts’ preferences to reach consensus. If we

were to secure consensus and only thereafter consistency, we

could destroy the consensus in favour of the individual con-

sistency and the main aim of our process, which is consensus,

would be distorted.

Figure 2 depicts this consensus model. We assume that

experts provide their opinions on a set of alternatives by

means of incomplete fuzzy preference relations. These are

completed by using the above estimation procedure. Later,

consistency and consensus measures are computed from the

completed fuzzy preference relations. These measures are used

in a consistency/consensus control step to determine if an

appropriate consistency/consensus level has been reached. If

so, the consensus reaching process finishes and a selection

process is applied to obtain the solution. Otherwise, the
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Fig. 2. Consensus Model Based on Consistency and Consensus Criteria

consensus reaching process activates a feedback mechanism,

where the preference values which are not contributing to

obtain a high consensus/consistency level are detected and

some easy rules about how to alter them are generated to help

the experts to change and complete their opinions.

The steps of this consensus model are the following:

1) Computing Missing Information

2) Computing Consistency Measures

3) Computing Consensus Measures

4) Controlling the Consistency/Consensus State

5) Feedback Mechanism

They are presented in detail in the following subsections, along

with a step-by-step example which illustrates the computations

that are being carried out. For the sake of simplicity, we will

assume a low number of experts and alternatives.

Example 3: Let us suppose that four different experts

{e1, e2, e3, e4} provide the following incomplete fuzzy pre-

ference relations over a set of four alternatives X =
{x1, x2, x3, x4}:

P 1 =









− 0.2 0.6 0.4
x − x x
x x − x
x x x −









P 2 =









− x 0.7 x
0.4 − x 0.7
0.3 x − x
x 0.4 x −









P 3 =









− 0.3 x 0.75
0.6 − x x
x x − x
0.3 0.4 x −









P 4 =









− x 0.6 0.3
0.4 − 0.4 0.2
0.5 0.6 − 0.3
0.7 0.7 0.7 −









A. Computing Missing Information

In this first step each incomplete fuzzy preference relation

is completed by means of the estimation procedure described

in subsection II-C. Therefore, for each incomplete fuzzy

preference relation Ph we obtain its corresponding complete

fuzzy preference relation P
h

.

Example 4 (Example 3 continuation): The complete fuzzy

preference relations associated to P 1, P 2, P 3 and P 4 are:

P
1
=









− 0.2 0.6 0.4
0.8 − 0.9 0.7
0.4 0.1 − 0.3
0.6 0.3 0.7 −









P
2
=









− 0.62 0.7 0.8
0.4 − 0.6 0.7
0.3 0.4 − 0.57
0.25 0.4 0.45 −









P
3
=









− 0.3 0.54 0.75
0.6 − 0.69 0.87
0.46 0.31 − 0.73
0.3 0.4 0.27 −









P
4
=









− 0.6 0.6 0.3
0.4 − 0.4 0.2
0.5 0.6 − 0.3
0.7 0.7 0.7 −









B. Computing Consistency Measures

To compute consistency measures, firstly, for each P
h

we

compute its corresponding fuzzy preference relation CPh =
(

cphik
)

according to expression (6). Secondly, we apply expres-

sions (8)–(10) to (P
h
, CPh)(∀h) to compute the consistency

measures CLh =
(

clhik
)

, clhi , cl
h ∀i, k ∈ {1, ..., n}. Finally,

we define a global consistency measure among all experts to

control the global consistency situation.

Definition 9: The global consistency measure is computed

as follows:

CL =

∑m

h=1 cl
h

m
(15)

Example 5 (Example 3 continuation): Global consistency

measure

I) The corresponding fuzzy preference relations {CPh} for
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P 1, P 2, P 3 and P 4 are:

CP 1 =









− 0.2 0.6 0.4
0.8 − 0.9 0.7
0.4 0.1 − 0.3
0.6 0.3 0.7 −









CP 2 =









− 0.63 0.72 0.77
0.4 − 0.6 0.67
0.3 0.42 − 0.58
0.25 0.35 0.45 −









CP 3 =









− 0.45 0.51 0.7
0.6 − 0.62 0.89
0.48 0.41 − 0.64
0.33 0.1 0.42 −









CP 4 =









− 0.6 0.5 0.35
0.4 − 0.45 0.2
0.5 0.55 − 0.3
0.65 0.8 0.7 −









II) The consistency measures for every pair of alternatives

in the experts’ preferences are:

CL1 =









− 1.0 1.0 1.0
1.0 − 1.0 1.0
1.0 1.0 − 1.0
1.0 1.0 1.0 −









CL2 =









− 0.99 0.98 0.97
1.0 − 1.0 0.97
1.0 0.98 − 0.99
1.0 0.95 1.0 −









CL3 =









− 0.85 0.97 0.95
1.0 − 0.93 0.98
0.96 0.9 − 0.91
0.97 0.7 0.86 −









CL4 =









− 1.0 0.9 0.95
1.0 − 0.95 1.0
1.0 0.95 − 1.0
0.95 0.9 1.0 −









III) The consistency measure that each expert presents in

his/her preferences are:

cl1 = 1.0 ; cl2 = 0.99 ; cl3 = 0.91 ; cl4 = 0.97

IV) The global consistency level is:

CL =
1.0 + 0.99 + 0.91 + 0.97

4
= 0.97

C. Computing Consensus Measures

We compute several consensus measures for different fuzzy

preference relations. In fact, as in [16], [21] we compute two

different kinds of measures: consensus degrees and proximity

measures. Consensus degrees are used to measure the ac-

tual level of consensus in the process, whilst the proximity

measures give information about how close to the collective

solution every expert is. These measures are given on three

different levels for a fuzzy preference relation: pairs of al-

ternatives, alternatives and relations. This measure structure

will allows us to find out the consensus state of the process

at different levels. For example, we will be able to identify

which experts are close to the consensus solution, or in which

alternatives the experts are having more trouble to reach

consensus.

1) Consensus Degrees: Firstly, for each pair of experts

(eh, el) (h < l) we define a similarity matrix SMhl =
(

smhl
ik

)

where

smhl
ik = 1− |phik − plik| (16)

Then, a collective similarity matrix, SM = (smik) is obtained

by aggregating all the (m− 1)× (m− 2) similarity matrices

using the arithmetic mean as the aggregation function φ:

smik = φ(smhl
ik) ; ∀h, l = 1, ...,m | h < l. (17)

Once the similarity matrices are computed we proceed to

calculate the consensus degrees in the three different levels:

Level 1. Consensus degree on pairs of alternatives. The con-

sensus degree on a pair of alternatives (xi, xk), de-

noted copik, is defined to measure the consensus degree

amongst all the experts on that pair of alternatives:

copik = smik (18)

Level 2. Consensus degree on alternatives. The consensus

degree on alternative xi, denoted cai, is defined to

measure the consensus degree amongst all the experts

on that alternative:

cai =

∑n

k=1;k 6=i(copik + copki)

2(n− 1)
(19)

Level 3. Consensus degree on the relation. The consensus

degree on the relation, denoted CR, is defined to measure

the global consensus degree amongst all the experts’

opinions:

CR =

∑n

i=1 cai
n

(20)

Example 6 (Example 3 continuation): Computation of

consensus degrees

Following with our example, we need to compute the 6

possible similarity matrices between every pair of different

experts (not included for simplicity), and the collective one,

which is:

SM =









− 0.74 0.92 0.69
0.77 − 0.74 0.67
0.89 0.74 − 0.74
0.73 0.8 0.74 −









From SM we obtain the following consensus degree on the

relation

CR = 0.76.

2) Proximity Measures: To compute proximity measures

for each expert we need to obtain the collective fuzzy pre-

ference relation, P c, which summarizes preferences given by

all the experts. To obtain P c we use an IOWA operator [42]–

[44], which uses both consensus and consistency criteria as

inducing variable. In such a way, we obtain each collective
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fuzzy preference degree according to the most consistent and

consensual individual fuzzy preference degrees.

Definition 10 ([43]): An IOWA operator of dimension n is

a function ΦW : (R×R)n → R, to which a weighting vector

is associated, W = (w1, . . . , wn), with wi ∈ [0, 1], Σiwi = 1,

and it is defined to aggregate the set of second arguments of

a list of n 2-tuples {〈u1, p1〉 , . . . , 〈un, pn〉} according to the

following expression,

ΦW (〈u1, p1〉 , . . . , 〈un, pn〉) =
n
∑

i=1

wi · pσ(i)

σ being a permutation of {1, . . . , n} such that uσ(i) ≥
uσ(i+1), ∀i = 1, . . . , n − 1, i.e.,

〈

uσ(i), pσ(i)
〉

is the 2-tuple

with uσ(i) the i-th largest value in the set {u1, . . . , un}.

In the above definition, the reordering of the set of values

to be aggregated, {p1, . . . , pn}, is induced by the reordering

of the set of values {u1, . . . , un} associated to them, which

is based upon their magnitude. Due to this use of the set of

values {u1, . . . , un}, Yager and Filev called them the values

of an order inducing variable and {p1, . . . , pn} the values of

the argument variable [42]–[44].

Following Yager’s ideas on quantifier guided aggregation

[41], we could compute the weighting vector of an IOWA

operator using a linguistic quantifier Q [45] as

wh = Q

(

∑h

j=1 uσ(j)

T

)

−Q

(

∑h−1
j=1 uσ(j)

T

)

(21)

being T =
∑n

j=1 uj and σ the permutation used to produce

the ordering of the values to be aggregated.

Thus, to obtain each collective fuzzy preference degree pcik
according to the most consistent and consensual individual

fuzzy preference degrees we propose to use an IOWA operator

with the consistency/consensus values, {z1ik, z
2
ik, . . . , z

m
ik}, as

the values of the order inducing variable, i.e.,

pcik = ΦW (
〈

z1ik, p
1
ik

〉

, · · · , 〈zmik , p
m
ik〉) =

m
∑

h=1

wh · p
σ(h)
ik (22)

where

• σ is a permutation of {1, . . . ,m} such that z
σ(h)
ik ≥

z
σ(h+1)
ik , ∀h = 1, . . . ,m − 1, i.e.,

〈

z
σ(h)
ik , pσ(i)

〉

is the

2-tuple with z
σ(h)
ik the h-th largest value in the set

{z1ik, . . . , z
m
ik};

• the weighting vector is computed according to the fol-

lowing expression

wh = Q

(

∑h

j=1 z
σ(j)
ik

T

)

−Q

(

∑h−1
j=1 z

σ(j)
ik

T

)

(23)

with T =
∑m

j=1 z
j
ik;

• and the set of values of the inducing variable

{z1ik, . . . , z
m
ik} are computed as

zhik = (1− δ) · clhik + δ · cohik, (24)

being cohik a consensus measure for the preference value

pik expressed by expert eh and δ ∈ [0, 1] a parameter

to control the weight of both consistency and consensus

criteria in the inducing variable. Usually δ > 0.5 will be

used to give more importance to the consensus criterion.

We should note that in our framework, each value cohik
used to calculate {z1ik, . . . , z

m
ik} is defined as

cohik =

∑n

l=h+1 sm
hl
ik +

∑h−1
l=1 smlh

ik

n− 1
(25)

Example 7 (Example 3 continuation): Computation of the

collective fuzzy preference relation

I) To compute the proximity measures it is necessary

to obtain the consistency/consensus values of the inducing

variable of the IOWA operator. To do so, firstly we compute

the consensus values matrices coh = (cohik):

co1 =









− 0.69 0.95 0.72
0.67 − 0.66 0.78
0.92 0.66 − 0.77
0.75 0.8 0.77 −









co2 =









− 0.75 0.88 0.68
0.8 − 0.8 0.78
0.85 0.8 − 0.77
0.72 0.87 0.77 −









co3 =









− 0.76 0.91 0.72
0.8 − 0.8 0.66
0.92 0.8 − 0.66
0.75 0.87 0.65 −









co4 =









− 0.76 0.95 0.65
0.8 − 0.67 0.44
0.88 0.67 − 0.77
0.68 0.67 0.77 −









II) With values cohik and clhik (Example 5), the inducing

variable values for each expert, zh = (zhik) (we assume that

δ = 0.75), are obtained:

z1 =









− 0.77 0.96 0.79
0.75 − 0.75 0.83
0.94 0.75 − 0.83
0.81 0.85 0.83 −









z2 =









− 0.81 0.91 0.76
0.85 − 0.85 0.83
0.89 0.85 − 0.82
0.79 0.89 0.83 −









z3 =









− 0.78 0.92 0.77
0.85 − 0.83 0.74
0.93 0.83 − 0.72
0.81 0.82 0.7 −









z4 =









− 0.82 0.94 0.73
0.85 − 0.74 0.58
0.91 0.74 − 0.83
0.75 0.73 0.83 −









III) Using the following fuzzy linguistic quantifier “most
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of” Q:

Q(r) =







0 if r < 0.3
r−0.3
0.8−0.3 if 0.3 ≤ r < 0.8

1 if r ≥ 0.8

to compute the weighting vector of the IOWA operator, the

collective fuzzy preference relation P c is:

P c =









− 0.43 0.58 0.74
0.42 − 0.77 0.78
0.46 0.23 − 0.46
0.31 0.37 0.57 −









Once we have computed P c, we can compute the proximity

measures in each level of a fuzzy preference relation:

Level 1. Proximity measure on pairs of alternatives. The

proximity measure of an expert eh on the pair of alterna-

tives (xi, xk) to the group one, denoted pphik, is calculated

as

pphik = 1− |phik − pcik| (26)

Level 2. Proximity measure on alternatives. The proximity

measure of an expert eh on alternative xi to the group

one, denoted pahi , is calculated as:

pahi =

∑n

k=1;k 6=i(pp
h
ik + pphki)

2(n− 1)
(27)

Level 3. Proximity measure on the relation. The proximity

measure of an expert eh on his/her preference relation to

the group one, denoted prh, is calculated as:

prh =

∑n

i=1 pa
h
i

n
(28)

Example 8 (Example 3 continuation): Computation of

proximity measures

I) The proximity measures on pairs of alternatives for each

expert are:

pp1 =









− 0.77 0.98 0.66
0.62 − 0.87 0.92
0.94 0.87 − 0.84
0.71 0.93 0.87 −









pp2 =









− 0.81 0.88 0.94
0.98 − 0.83 0.92
0.84 0.83 − 0.89
0.94 0.97 0.88 −









pp3 =









− 0.87 0.96 0.99
0.82 − 0.92 0.91
0.98 0.92 − 0.73
0.99 0.97 0.7 −









pp4 =









− 0.83 0.98 0.56
0.98 − 0.63 0.42
0.96 0.63 − 0.84
0.61 0.67 0.87 −









II) The proximity measures on alternatives for each expert

are:

pa1 =
(

0.78 0.83 0.9 0.82
)

pa2 =
(

0.9 0.89 0.86 0.92
)

Fig. 3. Consensus/Consistency State Control Routine

pa3 =
(

0.94 0.9 0.87 0.88
)

pa4 =
(

0.82 0.69 0.82 0.66
)

III) The proximity measures on the relation for each expert

are:

pr1 = 0.83 ; pr2 = 0.89 ; pr3 = 0.90 ; pr4 = 0.75.

D. Controlling Consistency/Consensus State

The consistency/consensus state control process will be used

to decide when the feedback mechanism should be applied to

give advice to the experts or when the consensus reaching

process has to come to an end. It should take into account

both the consensus and consistency measures. To do that,

we define a new measure or level of satisfaction, called

consistency/consensus level (CCL), which is used as a control

parameter:

CCL = (1− δ) · CL+ δ · CR (29)

with δ the same value used in (24). When CCL satisfies

a minimum satisfaction threshold value γ ∈ [0, 1], then the

consensus reaching process finishes and the selection process

can be applied.

Additionally, the system should avoid stagnation, that is,

situations in which consensus and consistency measures never

reach an appropriate satisfaction value. To do so, a maximum

number of iterations maxIter should be fixed and compared

to the actual number of iterations of the consensus process

numIter.

The consensus/consistency control routine follows the

schema shown in Figure 3: first the consistency/consensus

level is checked against the minimum satisfaction threshold

value. If CCL > γ the consensus reaching process ends.

Otherwise, it will check if the maximum number of iterations

has been reached. If so, the consensus reaching process ends,

if not it activates the feedback mechanism.

Example 9 (Example 3 continuation): We fix a minimum

threshold value γ = 0.85. Because the consistency/consensus

level at this moment is CCL = (1 − 0.75) · 0.97 + 0.75 ·
0.76 = 0.81, then the consensus process applies the feedback

mechanism.
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E. Feedback Mechanism

The feedback mechanism generates personalised advice to

the experts according to the consistency and consensus criteria.

It helps experts to change their preferences and to complete

their missing values. This activity is carried out in two steps:

Identification of the preference values that should be changed

and Generation of advice.

1) Identification of the Preference Values: We must identify

preference values provided by the experts that are contributing

less to reach a high consensus/consistency state. To do that, we

define the set APS that contains 3-tuples (h, i, k) symbolising

preference degrees phik that should be changed because they

affect badly to that consistency/consensus state. To compute

APS, we apply a three step identification process that uses

the proximity and consistency measures previously defined.

Step 1. We identify the set of experts EXPCH that should

receive advice on how to change some of their preference

values. The experts that should change their opinions are

those whose preference relation level of satisfaction is

lower than the satisfaction threshold γ, i.e.,

EXPCH = {h | (1− δ) · clh + δ · prh < γ} (30)

Step 2. We identify the alternatives that the above experts

should consider to change. This set of alternatives is

denoted as ALT . To do this, we select the alternatives

with a level of satisfaction lower than the satisfaction

threshold γ, i.e.,

ALT = {(h, i) | eh ∈ EXPCH ∧
(1− δ) · clhi + δ · pahi < γ}

(31)

Step 3. Finally, we identify preference values for every alter-

native and expert (xi ; eh | (h, i) ∈ ALT ) that should

be changed according to their proximity and consistency

measures on the pairs of alternatives, i.e.,

APS = {(h, i, k) | (h, i) ∈ ALT ∧
(1− δ) · clhik + δ · pphik < γ}

(32)

Additionally the feedback process must provide rules for

missing preference values. To do so, it has to take into account

in APS all missing values that were not provided by the

experts, i.e.,

APS′ = APS ∪ {(h, i, k) | phik ∈ MVh} (33)

Example 10 (Example 3 continuation): Following with our

example, the set of 3-tuples APS that experts should change

is:

APS = {(4, 2, 3), (4, 2, 4), (4, 4, 1), (4, 4, 2)}

Taking into account all missing values not provided by the

experts, the APS′ set is:

APS′ = {(1, 2, 1), (1, 2, 3), (1, 2, 4), (1, 3, 1), (1, 3, 2),
(1, 3, 4), (1, 4, 1), (1, 4, 2), (1, 4, 3), (2, 1, 2),
(2, 1, 4), (2, 2, 3), (2, 3, 2), (2, 3, 4), (2, 4, 1),
(2, 4, 3), (3, 1, 3), (3, 2, 3), (3, 2, 4), (3, 3, 1),
(3, 3, 2), (3, 3, 4), (3, 4, 3), (4, 1, 2), (4, 2, 3),
(4, 2, 4), (4, 4, 1), (4, 4, 2)}

Note that there are so many 3-tuples in APS′ because there

were many missing values in the incomplete fuzzy preference

relations provided by the experts.

2) Generation of Advice: In this step, the feedback mecha-

nism generates personalised recommendations to help the ex-

perts to change their fuzzy preference relations. These recom-

mendations are based on easy recommendation rules that will

not only tell the experts which preference values they should

change, but will also provide them with particular values for

each preference to reach a higher consistency/consensus state.

The new preference degree of alternatives xi over alternative

xk to recommend to the expert eh, rphik, is calculated as the

following weighted average of the preference value cphik and

the collective preference value pcik:

rphik = (1− δ) · cphik + δ · pcik, (34)

As previously mentioned, with δ > 0.5 the consensus model

leads the experts towards a consensus solution rather than

towards an increase on their own consistency levels.

Finally, we should distinguish two cases: the recommenda-

tion is given because a preference value is far from the con-

sensus/consistency state; the recommendation is given because

the expert did not provide the preference value. Therefore,

∀(h, i, k) ∈ APS:

1) If phik ∈ EVh the recommendation generated for the

expert eh is: “You should change your preference value

(i, k) to a value close to rphik.”

2) If phik ∈ MVh the recommendation generated for the

expert eh is: “You should provide a value for (i, k) close

to rphik.”

For each 3-tuple using the recommendation rules we gene-

rate a recommendation:

Example 11 (Example 3 continuation): The recommenda-

tions for our example are:

To expert e1 ⇒ You should provide a value for (2, 1) close

to 0.52

To expert e1 ⇒ You should provide a value for (2, 3) close

to 0.8

To expert e1 ⇒ You should provide a value for (2, 4) close

to 0.76

To expert e1 ⇒ You should provide a value for (3, 1) close

to 0.44

To expert e1 ⇒ You should provide a value for (3, 2) close

to 0.2

To expert e1 ⇒ You should provide a value for (3, 4) close

to 0.42

To expert e1 ⇒ You should provide a value for (4, 1) close

to 0.38

To expert e1 ⇒ You should provide a value for (4, 2) close

to 0.35

To expert e1 ⇒ You should provide a value for (4, 3) close

to 0.6

To expert e2 ⇒ You should provide a value for (1, 2) close

to 0.48

To expert e2 ⇒ You should provide a value for (1, 4) close

to 0.75

To expert e2 ⇒ You should provide a value for (2, 3) close

to 0.73
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To expert e2 ⇒ You should provide a value for (3, 2) close

to 0.28

To expert e2 ⇒ You should provide a value for (3, 4) close

to 0.49

To expert e2 ⇒ You should provide a value for (4, 1) close

to 0.29

To expert e2 ⇒ You should provide a value for (4, 3) close

to 0.54

To expert e3 ⇒ You should provide a value for (1, 3) close

to 0.56

To expert e3 ⇒ You should provide a value for (2, 3) close

to 0.73

To expert e3 ⇒ You should provide a value for (2, 4) close

to 0.81

To expert e3 ⇒ You should provide a value for (3, 1) close

to 0.46

To expert e3 ⇒ You should provide a value for (3, 2) close

to 0.28

To expert e3 ⇒ You should provide a value for (3, 4) close

to 0.5

To expert e3 ⇒ You should provide a value for (4, 3) close

to 0.53

To expert e4 ⇒ You should provide a value for (1, 2) close

to 0.47

To expert e4 ⇒ You should change your preference value for

(2, 3) to a value close to 0.69

To expert e4 ⇒ You should change your preference value for

(2, 4) to a value close to 0.64

To expert e4 ⇒ You should change your preference value for

(4, 1) to a value close to 0.39

To expert e4 ⇒ You should change your preference value for

(4, 2) to a value close to 0.48

Once experts receive the recommendations, another round

of the consensus process takes place, with the experts giving

new fuzzy preference relations closer to a consensus solution

and with higher levels of consistency.

Example 12 (Finishing Ex. 3: Second Consensus Round):

We assume that all the experts follow the recommendations

they were given, which implies that the new fuzzy preference

relations for the second round of the consensus process are:

P 1 =









− 0.2 0.6 0.4
0.52 − 0.8 0.76
0.44 0.2 − 0.4
0.38 0.35 0.6 −









P 2 =









− 0.48 0.7 0.75
0.4 − 0.73 0.7
0.3 0.28 − 0.49
0.29 0.4 0.54 −









P 3 =









− 0.3 0.56 0.75
0.6 − 0.73 0.81
0.46 0.28 − 0.5
0.3 0.4 0.53 −









P 4 =









− 0.47 0.6 0.3
0.4 − 0.69 0.64
0.5 0.6 − 0.3
0.39 0.48 0.7 −









Applying the same process (which will not be detailed here)

we obtain the following global consistency and consensus

levels:

CL = 0.91 and CR = 0.88.

Obviously, the consistency level has decreased a little bit

because the process gave more importance to the consensus

criteria than the consistency one. However, the consensus

level has increased. Finally, as the consistency/consensus level

satisfies the minimum consensus threshold value, i.e.,

CCL = 0.89 > γ = 0.85,

then the consensus reaching process ends and a solution of

consensus is obtained at this point by applying a selection

process.

F. Analysis of the Consensus Model

In this subsection we provide a discussion on some relevant

aspects of our proposed consensus model with regards to other

different consensus models.

1) Firstly, we should point out that our model presents two

main advantages with respect to others consensus models

proposed in the literature [3]–[5], [7], [10], [11], [16],

[18], [23]–[25], [29], [35], [37], [46]: (i) Our consensus

models deals with decision situations with incomplete

information, and (ii) it helps experts to reach consen-

sus with consistency and consensus criteria simultane-

ously, and therefore, it guides experts in their preference

changes allowing them to maintain their basic rationality

principles. Also, due to the role of the parameter δ used in

expression (29) for the consistency and consensus levels

to guide the consensus reaching process, our consensus

model can be seen as a more general model than previous

proposed models. Take for example the extreme cases of

δ = 1 and δ = 0. In the first one our model is guided

using just consensus criteria, while in the latter it would

be just the consistency one.

2) The consistency based consensus model proposed in [12],

although it presents similarities with our consensus model

in that a consistency index of preferences is proposed

in order to ‘endogenously assign different weights to

decision makers,’ it differs with respect to our consensus

model in that: (i) it is defined in decision situations with

complete fuzzy preference relations, (ii) it applies a con-

sensus measure defined over pairwise preference degrees,

i.e., it does not incorporate the different consensus levels

of a relation and it does not use proximity measures, and

more significantly (iii) it provides recommendations in-

discriminately to all experts given that it acts dynamically

over all experts’ preferences.

3) The steps of our consensus model with incomplete infor-

mation are designed emulating the human behaviour in

real group decision making processes. In such processes,
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although initially an expert may not be able to provide

some preference degrees, however as discussion process

progresses this expert may be in a situation of, based on

on his own rationality principles and the fact of having

known other experts’ preferences, providing values for

those preferences he was not able before. In our model, to

simulate this behaviour we introduce the consistency cri-

terion. By doing this, experts with incomplete information

can complete their preferences by using estimate values

consistent with his opinions and, therefore, they partic-

ipate in a better and fully way in the decision process.

Also, as a result of this, situations in which one particular

expert or group of experts may control and dominate

the decision process are avoided. Indeed, using the ex-

ample provided in this paper to illustrate our consensus

model, if those values not given were simply ignored

in constructing the collective preference relation, expert

e1 would receive too many recommendations based only

on the preferences of the rest of the experts, which

would decrease her/his real participation in the decision

process. Furthermore, in this scenario of ignoring values

not given, the more complete a fuzzy preference relation

is provided by an expert, the more the decision process

would be dominated by that expert. Following with our

example, expert e4 would be the most dominant in the

decision process and,for example, his preference values

p423, p
4
32, p

4
34 and p443 would determine the corresponding

preference values for the rest of experts. However, our

model overcomes these problems: (i) expert e1 receives a

recommendation value of 0.8 for p123 and not 0.4 (the cor-

responding value provided by e4); (ii) this recommended

value is obtained by taking into account his rationality

principles and therefore closer to his consistent estimated

preference value of 0.9; (iii) finally, expert e4 receives a

recommendation value of 0.69 to change his preference

value p423 to make it closer to the values p123, p
2
23, p

3
23,

which shows that he does not possess a dominant position

in this preference value when the values not given are

consistently estimated.

4) Obviously, the feedback mechanism would make the

group to move towards the consensus only if their rec-

ommendations are taken into account and implemented

in each round of the consensus process. An important

characteristic of our consensus model is that it does

not provide indiscriminate recommendations to experts,

which in the end guarantees its convergence. The two

processes within the feedback mechanism that guarantee

this convergence towards consensus are:

(i) Preference Identification Process by which only those

experts and their preference values to be considered in the

advice process are identified. This is represented by the

set APS. In such a way, we get that all experts do not have

to change all their preference values in each round of the

consensus process and furthermore a minimum consensus

level among experts’ opinion is established.

(ii) Advice Process by which the recommended values

are computed from both the corresponding consistent

and collective preference values (see expression (34))

in the same proportion (δ, 1 − δ)than the one already

fixed and used in expression (29) for the consistency and

consensus levels. As a consequence, the acceptance of the

recommendation by the experts would lead the decision

process towards the consensus because in each round

the cardinality of APS would diminish and the achieved

consensus level would be greater than in the previous

consensus round.

Obviously, the consensus reaching process will depend on

the size of the group of experts as well as on the size of

the set of alternatives, so that when these sizes are small

and when opinions are homogeneous, the consensus level

required is easier to obtain.

IV. CONCLUSIONS

In this paper we have presented a new consensus model for

GDM problems with incomplete fuzzy preference relations.

Contrary to many other previous consensus models, it uses two

different kinds of measures to guide the consensus reaching

process, consistency and consensus measures, and generates

advice to experts in a discriminate way. As a consequence,

the consensus model will contribute to achieve consistent and

consensus solutions. Furthermore, the consensus model can be

developed automatically without the participation of a human

moderator.

This consensus model applies a feedback mechanism to

give personalised advice to the experts on how to change and

complete their fuzzy preference relations. This feedback mech-

anism could be used like an estimation procedure of missing

values because it generates possible values to complete the

missing values in the incomplete fuzzy preference relations.

Therefore, it could act as an estimation procedure based on

consistency/consensus criteria.

In the future, we will refine and extend this consensus model

to linguistic decision frameworks.
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