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Noncooperative Behaviors in Large-Scale Group

Decision Making
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Abstract—Consensus reaching processes in group decision mak-
ing attempt to reach a mutual agreement among a group of decision
makers before making a common decision. Different consensus
models have been proposed by different authors in the literature
to facilitate consensus reaching processes. Classical models focus
on solving group decision making problems where few decision
makers participate. However, nowadays, societal and technolog-
ical trends that demand the management of larger scales of de-
cision makers, such as e-democracy and social networks, add a
new requirement to the solution of consensus-based group deci-
sion making problems. Dealing with such large groups implies the
need for mechanisms to detect decision makers’ noncooperative
behaviors in consensus, which might bias the consensus reaching
process. This paper presents a consensus model suitable to man-
age large scales of decision makers, which incorporates a fuzzy
clustering-based scheme to detect and manage individual and sub-
group noncooperative behaviors. The model is complemented with
a visual analysis tool of the overall consensus reaching process
based on self-organizing maps, which facilitates the monitoring
of the process performance across the time. The consensus model
presented is aimed to the solution of consensus processes involving
large groups.

Index Terms—Consensus, e-democracy, fuzzy clustering, group
decision making (GDM), preference relation, self-organizing maps
(SOMs), social networks.

I. INTRODUCTION

D
ECISION making processes are one of the most frequent

mankind activities in daily life. The need for multiple

views in decision making makes group decision making (GDM)

increasingly necessary in many societies and organizations.

GDM problems can be defined as decision situations where

a group of decision makers or experts try to achieve a com-

mon solution to a problem consisting of two or more possible

solutions or alternatives [1]. In real-world GDM problems, dif-
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ferent situations might usually occur, such as collaboration and

competitiveness among individuals, compatible or incompatible

proposals, etc. Some guiding rules, including the majority rule,

minority rule, and unanimity [2], have been proposed to support

decision making in such situations. For instance, the majority

rule is classically the most usual rule to deal with GDM prob-

lems in democratic systems [3].

Traditionally, GDM problems have been solved by applying a

selection process to choose the best alternative or subset of alter-

natives, paying no attention to the level of agreement achieved

among experts [4]. However, many real-world problems that af-

fect entire groups or societies (civil rights, raising taxes, political

and religious issues, etc.) may require highly agreed decisions.

Therefore, the need for making consensus-based decisions is

becoming increasingly apparent in these contexts. Consensus

reaching processes (CRPs) [2], [5] attempt to reach an experts’

agreement before making a decision, thus yielding a more ac-

cepted solution by the whole group. In a CRP, experts discuss

and modify their preferences, guided and supervised by a human

figure known as moderator [6].

GDM and consensus models have been normally focused on

dealing with a few number of decision makers [7]–[11], be-

cause classically in companies and administrations, important

decisions have been made by one or a few number of them. How-

ever, current technological and societal demands have given

birth to new paradigms in which decisions can be made tak-

ing into account a large number of decision makers (such as

e-democracy [12], [13] and social networks [14]–[16]). Most

current models are not appropriate to manage large groups, due

to the high cost, complexity, and human supervision required.

Additionally, a noticeable drawback usually found in such large

groups is the presence of experts and subgroups of experts who

present a behavior that does not contribute to achieve consen-

sus [17], because they do not want to modify their initial position

in order to achieve an agreement. In large groups, it is common

that there exist several subgroups or coalitions of experts with

similar interests. Some of these subgroups are prone to modify

their preferences to achieve an agreement (they can be referred to

as pro-coalitions), while some others do not modify their prefer-

ences or even do it on the contrary way to the remaining experts

(they can be referred to as con-coalitions). Con-coalitions of ex-

perts introduce a bias in the collective opinion, since they move

their preferences against consensus coordinately. Therefore, it

would be advisable to detect and manage noncooperating indi-

viduals and subgroups [5], [17], with the aim of improving CRP

performance.
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A visual analysis of the consensus evolution among deci-

sion makers’ preferences throughout the discussion process, by

means of a CRP monitoring tool to distinguish between those

decision makers who move their preferences toward consensus

and those ones who do not cooperate to achieve it, would also be

very convenient to analyze consensus models. Self-organizing

maps (SOMs) are a widely used tool capable of projecting high-

dimensional data (such as experts’ preferences, for instance)

into a low-dimensional space, maintaining the main topological

properties of data to facilitate its visual analysis and interpreta-

tion [18]–[20].

In order to address the multiple challenges stated previously,

in this paper, a consensus model capable of managing large

groups of decision makers is proposed. Such a model incorpo-

rates an approach that classifies decision makers (based on their

fuzzy preference relations) to detect noncooperative behaviors

in CRPs and manage them. In order to achieve these objectives,

fuzzy clustering techniques are used to facilitate the detection

of noncooperating individuals or subgroups and deal with them

accordingly. In line with the presented consensus model, we

propose the use of a monitoring tool based on SOMs, which fa-

cilitates a visual analysis of experts’ agreement evolution across

the consensus process and their behavior.

This paper is organized as follows: In Section II, some pre-

liminaries related to consensus processes in GDM, CRPs, fuzzy

clustering techniques, and SOMs are reviewed. In Section III,

the consensus model that deals with large scales of decision

makers is presented, describing in detail the mechanisms to de-

tect and manage experts’ noncooperative behaviors. Section IV

describes the use of SOM-based techniques to develop a mon-

itoring tool to visualize the CRP performance. An illustrative

example of the model’s utility and applicability, including a

visual analysis of the CRP, is shown in Section V. Finally, in

Section VI, some concluding remarks are drawn.

II. PRELIMINARIES

In this section, we revise GDM problems, CRPs, and consen-

sus models. We then briefly review fuzzy clustering techniques,

which are the basis for the behavior detection scheme imple-

mented in the proposed consensus model, and SOMs, which

will be considered to propose a visual monitoring tool of the

CRP performance.

A. Group Decision Making

GDM problems are characterized by the participation of two

or more experts in a decision problem, where a set of alterna-

tives or possible solutions to the problem are presented [1], [2].

Formally, the main elements found in any GDM problem are as

follows.

1) A set X = {x1 , . . . , xn}, (n ≥ 2) of alternatives to be

chosen as possible solutions to the problem.

2) A set E = {e1 , . . . , em}, (m ≥ 2) of decision makers or

experts, who express their judgements on the alternatives

in X .

Each expert ei , i ∈ {1, . . . , m}, provides his/her opinions

over alternatives in X by means of a preference structure. One

Fig. 1. Selection process in GDM problems.

of the most usual preference structures in GDM problems un-

der uncertainty is the so-called preference relation [21], [22].

More specifically, fuzzy preference relations have proved to be

especially effective to deal with uncertain information. They are

defined as follows.

Definition 1 (see [23]): Given an expert ei ∈ E, i ∈
{1, . . . , m} and two different alternatives xl , xk ∈ X; l, k ∈
{1, . . . , n} (l �= k), a fuzzy preference relation’s assessment on

the pair (xl , xk ), denoted as plk
i ∈ [0, 1], represents the degree

of preference of alternative xl with respect to alternative xk

assessed by expert ei so that plk
i > 1/2 indicates that xl is pre-

ferred to xk , plk
i < 1/2 indicates that xk is preferred to xl , and

plk
i = 1/2 indicates indifference between xl and xk .

Definition 2 (see [21] and [24]): A fuzzy preference rela-

tion Pi associated with expert ei , i ∈ {1, . . . , m}, on a set of

alternatives X is a fuzzy set on X × X , which is characterized

by the membership function μP i
: X × X −→ [0, 1]. When the

number of alternatives n is finite, Pi is represented by an n × n
matrix of assessments plk

i = μP i
(xl , xk ) as follows:

Pi =

⎛

⎜

⎝

− . . . p1n
i

...
. . .

...

pn1
i . . . −

⎞

⎟

⎠
.

Assessments pll
i , l ∈ {1, . . . , n}, situated in the diagonal of the

matrix, are not defined, since an alternative xl is not assessed

with respect to itself.

The solution to a GDM problem may be obtained either by

a direct approach, where the solution is immediately obtained

from experts’ preferences, or by an indirect approach, where

a social opinion is computed to determine the chosen alterna-

tive/s [4]. Regardless of the approach considered, it is necessary

to apply a selection process to solve the GDM problem, which

usually consists of two main phases (see Fig. 1) [25]: 1) an Ag-

gregation phase, where experts’ preferences are combined; and

2) an Exploitation phase, which consists of obtaining an alter-

native or subset of alternatives as the solution to the problem.

B. Consensus Reaching Processes and Consensus Models

The resolution of GDM problems by applying a selection

process solely does not always guarantee that the decision would

be accepted by all experts in the group, since some of them

might consider that their opinions have not been sufficiently

considered. In order to achieve a solution to the GDM problem

which is accepted by the whole group, CRPs have been paid

great attention as part of the decision process. Consensus can be
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Fig. 2. General consensus process scheme in GDM problems.

understood as a state of mutual agreement among members of a

group, in which the decision made satisfies all of them [2], [5].

Reaching a consensus usually requires that experts modify their

initial opinions, making them closer to each other and toward a

collective opinion which must be satisfactory for all of them.

The notion of consensus can be interpreted in different ways,

ranging from consensus as total agreement to more flexible ap-

proaches [9], [26]. Consensus as a total agreement, where all

experts achieve a mutual agreement in all their opinions, may

be quite difficult to achieve in practice, and in cases that it could

be achieved, the cost derived from the CRP would be unac-

ceptable, and it might have been sometimes achieved under a

normative point of view, through intimidation or other social

strategies [17]. Subsequently, more flexible notions of consen-

sus have been proposed to soften the strict view of consensus

as a total agreement [26], [27], considering different degrees of

partial agreement among experts to decide about the existence

of consensus. One of the most widely accepted approaches for

a flexible measurement of consensus is the so-called notion

of soft consensus, which was proposed by Kacprzyk [1]. This

approach introduces the concept of fuzzy linguistic majority,

which establishes that consensus exists if most experts, partic-

ipating in a problem, agree on the most important alternatives.

Soft consensus-based approaches have been used in different

GDM problems providing satisfactory results [28]–[30].

The process to reach a consensus in GDM problems is a dy-

namic and iterative discussion process [5], which is frequently

coordinated by a human figure known as moderator, who is

responsible for supervising and guiding experts in the overall

process, as well as giving them advice to modify their opin-

ions [6]. A general scheme of the phases required for con-

ducting CRPs, which is depicted in Fig. 2, is briefly described

below.

1) Gather preferences: Each expert provides moderator a

preference structure with his/her opinion on the existing

alternatives.

2) Determine degree of consensus: The moderator computes

the level of agreement in the group by means of a con-

sensus measure [26], usually based on different similarity

measures and aggregation operators [31].

3) Consensus control: The consensus degree is compared

with a threshold level of agreement desired by the group.

If such degree is enough, the group moves on to the se-

lection process; otherwise, more discussion rounds are

required.

4) Generate feedback information: The moderator identifies

furthest preferences from consensus and gives experts

some pieces of advice, suggesting them how to modify

their opinions and make them closer. Afterward, a new

round of discussion begins with the gathering preferences

phase.

In order to deal with CRPs, a large number of theoretical con-

sensus models have been proposed in the literature by different

authors [5], [8], [9], [11], [32]–[34]. These models have been

designed to deal with GDM problems where small groups of de-

cision makers participate, as has traditionally occurred in most

companies and organizations, where decisions were delegated

to one or, at the most, a low number of them.

However, new trends stemming from current demands in soci-

etal and technological contexts, such as e-democracy [12], [13]

and social networks [14]–[16], make necessary to cope with

consensus challenges in order that CRPs would be suitable to

deal with larger scales of decision makers participating in the

GDM problem [35], which implies a higher cost and complexity

in such processes.

C. Fuzzy Clustering

Clustering is a widely used methodology, which is catego-

rized as an unsupervised machine learning technique, aimed to

data analysis and interpretation [36]. The problem of clustering

consists in separating a set of data objects into a number of

groups so-called clusters, based on a measure of similarity, so

that data objects within the same cluster are more similar to each

other than data objects belonging to different clusters [37]. Usu-

ally, each cluster is represented by a prototype or cluster center

that characterizes all data objects belonging to such a cluster.

Many clustering algorithms compute these cluster centers as the

centroid of data belonging to the cluster considered.

Traditional or crisp clustering methods, such as k-means [38],

are partitioning methods, i.e., each data object is assigned to

one and only one cluster. Since this may not always provide

a convincing representation of data, fuzzy clustering methods

based on fuzzy set theory [39] have been later proposed under

the assumption that data objects may belong to multiple clusters

with different degrees of membership [37]. Fuzzy clustering

methods are objective function-based methods which seek to

find cluster centers for a predefined number N of fuzzy clusters

(for the sake of brevity, they will be referred to as clusters in the

rest of this paper) and assign data objects a fuzzy membership

degree to each cluster, during an iterative process aimed to

minimize a predefined loss function [36], [40].

One of the most popular fuzzy clustering algorithms is the

fuzzy c-means (FCM) algorithm [41], consisting in an optimiza-

tion process where both cluster centers and data objects are iter-

atively updated until a locally optimal solution is found (which

occurs when the variation between cluster membership degrees

in two consecutive iterations of the algorithm approaches zero).

Algorithm 1 shows the basic steps in the standard FCM

algorithm, defined according to our purpose of solving
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GDM problems with fuzzy preference relations, assuming the

following.

1) Considering the scope and purpose of this paper, the

set of data objects is formed by all experts’ preferences

P1 , . . . , Pm ; therefore, Pi is regarded as a data object. As

a result, cluster centers Ch , h = 1, . . . , N also consist of

fuzzy preference relations.

2) Parameter b, (b > 1) indicates the degree of fuzziness of

clusters. The larger b, the fuzzier the clusters [41]. A com-

mon value for this parameter is b = 2.

3) A cluster initialization technique is required to set initial

values for cluster centers Ch . Different cluster initializa-

tion techniques to perform this task can be found in the

literature [42], [43].

4) Experts’ fuzzy membership degrees to each cluster

μCh
(Pi) are computed by using similarity measures,

which are based on distance metrics. The distance be-

tween preference Pi and cluster center Ch is denoted as

d(Pi , Ch), and it will be introduced in Section III.

5) Further detail about the specific stopping condition con-

sidered in our proposal will be given in Section III-B.

D. Self-Organizing Maps

SOMs are a learning tool used in exploratory data mining, due

to its prominent visualization properties [20], [44]. They were

introduced by Kohonen [18] as a type of unsupervised learning

algorithm based on neural networks [45], which is one of the

most popular unsupervised learning methods for constructing

topographic maps, i.e., low-dimensional (usually 2-D or 3-D)

visualizations of high-dimensional data.

In the SOM algorithm, a set of d-dimensional training data

is used to iteratively modify connections between artificial neu-

rons (with the same dimension d) situated in a rectangular- or

hexagonal-shaped grid, which is progressively adapted to such

data. For each data object in the training set, the most similar

neuron to such data object, the so-called Best Matching Unit

(BMU), must be found among all the artificial neurons in the

grid. Connection weights in the BMU and its nearest neigh-

boring neurons are updated upon the given data object. This

process is iteratively conducted to progressively learn the struc-

ture of the whole SOM [36], [45]. The resulting SOM can then

be used as a visualization surface to represent future sets of

data objects in a low-dimensional space, preserving its main

topological properties [18], [45].

Once constructed, the SOM can visualize high-dimensional

datasets. There are multiple methods based on SOMs to visu-

alize data, such as distance matrices, similarity coloring, data

histograms, and PCA projections [19], the latter of which will

be considered in this paper. Most of these methods can be used

either for a 2-D or a 3-D visualization of data [20].

SOMs have proved themselves to be a useful tool in different

data mining applications to obtain qualitative information, such

as full-text and financial data analysis, cluster analysis, vector

quantization and projection, etc., [19], [44].

III. CONSENSUS MODEL TO DETECT AND MANAGE

NONCOOPERATIVE BEHAVIORS

In this section, a consensus model that is suitable to deal

with a large number of decision makers in the resolution of

GDM problems is presented. The main novelty of such a model

is the approach to classify decision makers according to their

preferences and detect individual and subgroup noncooperative

behaviors in the CRP, based on fuzzy clustering techniques, as

well as dealing with those experts who present such behaviors,

with the aim of improving the overall CRP performance.

The consensus model description will be divided into three

parts.

1) a general scheme of the model, according to the main

phases conducted in CRPs (see Section III-A);

2) a fuzzy clustering-based method to classify experts’

preferences and detect noncooperative behaviors (see

Section III-B);

3) a scheme based on weights to manage noncooperating

experts and subgroups of experts (see Section III-C).

Fig. 3 shows a scheme of the consensus model, whose main

phases and modules are developed in the following sections.

A. Consensus Model Scheme

The proposed consensus model aims to serve as a guide to

carry out the main tasks required to conduct CRPs, as stated in

Section II-B. Such a model (see Fig. 3) extends the basic ideas

of the ones previously proposed in [7] and [10] and incorporates

additional modules to achieve our goal of detecting experts’

noncooperative behaviors and dealing with them.

The consensus model design allows an easy automation of the

human moderator tasks, thus removing his/her inherent subjec-

tive bias and facilitating the resolution of GDM problems with

large groups of experts computationally. Let us remark that, re-

garding the scheme presented later to deal with noncooperating

experts, which will be based on experts’ importance weights, we

propose that each expert ei ∈ E has an associated importance

weight wi ∈ [0, 1], which is initially wi = 1,∀i ∈ {1, . . . , m},

and may vary when the CRP goes on. Further detail on the

meaning and use of such weights will be given in Section III-C.
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Fig. 3. Consensus model scheme.

In the following, the four basic phases of the proposed con-

sensus model are described in detail.

1) Gathering Preferences: Each expert ei ∈ E provides

his/her preference on alternatives in X to the moderator,

by means of a fuzzy preference relation Pi = (plk
i )n×n ,

consisting of a matrix of assessments plk
i on each pair

of alternatives (xl , xk ), l, k ∈ {1, . . . , n}. Consistency in

preferences can be improved if experts provide recip-

rocal assessments, i.e., if plk
i = p, p ∈ [0, 1], l �= k, then

pkl
i = 1 − p.

2) Computing Consensus Degree: The moderator computes

the level of agreement between experts by means of the

following steps:

a) For each pair of experts ei , ej , (i < j), a similarity

matrix SMij = (smlk
ij )

n×n defined by

SMij =

⎛

⎜

⎜

⎝

− . . . sm1n
ij

...
. . .

...

smn1
ij . . . −

⎞

⎟

⎟

⎠

is computed. smlk
ij ∈ [0, 1] is the similarity degree

between experts ei and ej in their assessments

plk
i , plk

j , which is obtained by means of a similar-

ity function as follows [8]:

smlk
ij = 1 − |(plk

i − plk
j )| (3)

b) A consensus matrix CM = (cmlk )n×n is computed

by aggregating similarity matrices, taking into ac-

count the importance weights wij ∈ [0, 1] associ-

ated with each pair of experts (ei , ej ), i < j. Each

element cmlk ∈ [0, 1], l �= k, is computed as the

weighted average of similarity degrees:

cmlk =

∑m−1
i=1

∑m
j=i+1 wijsm

lk
ij

∑m−1
i=1

∑m
j=i+1 wij

. (4)

Further detail about weights wij and the way they are

computed upon single experts’ weights wi , wj can

be found in the scheme to manage noncooperating

experts described in Section III-C. Notice here that

if all experts are given equal importance weights,

cmlk can be computed as

cmlk =

∑m−1
i=1

∑m
j=i+1 smlk

ij

m(m − 1)/2
(5)

with m(m − 1)/2 being the number of different

pairs of experts (ei , ej ) in the group [in both (4)

and (5)].

c) Consensus degree is computed at three different lev-

els [8], [10]:

i) Level of pairs of alternatives (cplk ): ob-

tained from CM as cplk = cmlk , l, k ∈
{1, . . . , n}, l �= k.

ii) Level of alternatives (cal): The level of agree-

ment on each alternative xl ∈ X is computed

as

cal =

∑n
k=1,k �= l cp

lk

n − 1
(6)

iii) Level of preference relation (overall consensus

degree, cr):

cr =

∑n
l=1 cal

n
(7)

3) Consensus Control: The overall consensus degree cr is

compared with a consensus threshold μ ∈ [0, 1] estab-

lished a priori. If cr ≥ μ, then the CRP ends and the group

moves on to the selection process; otherwise, more discus-

sion rounds are required. A parameter Maxround can be

used to limit the number of discussion rounds conducted

in the cases that consensus cannot be achieved.

4) Advice Generation: If cr < μ, the moderator advises ex-

perts to modify their preferences in order to increase the

level of agreement in the following rounds. Since this is
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the last phase of each discussion round in the CRP, the

schemes to detect and manage noncooperative behaviors

must be applied in a parallel way (see Sections III-B and

C) so that experts’ importance weights wi will be updated

before initiating the following round of discussion. Three

steps are considered in the advice generation phase.

a) Compute a collective preference and proximity ma-

trices for experts: A collective preference Pc is com-

puted for each pair of alternatives by aggregating

experts’ preference relations:

plk
c =

∑m
i=1 wip

lk
i

∑m
i=1 wi

(8)

where wi ∈ [0, 1] is the importance weight assigned

to ei (see Section III-C). If all experts have the same

importance, then plk
c can be computed as

plk
c =

∑m
i=1 plk

i

m
. (9)

Once computed Pc , we have all the necessary data

to initiate the fuzzy clustering-based algorithm to

classify and group experts according with their pref-

erences, as it will be shown in Section III-B.

b) A proximity matrix PPi = (pplk
i )n×n between each

expert’s preference relation and Pc , which is defined

by

PPi =

⎛

⎜

⎜

⎝

− . . . pp1n
i

...
. . .

...

ppn1
i . . . −

⎞

⎟

⎟

⎠

is computed. Proximity values pplk
i are obtained for

each pair (xl , xk ) as follows:

pplk
i = 1 − |(plk

i − plk
c )|. (10)

Proximity values are used to identify the fur-

thest preferences from the collective opinion, which

should be modified by some experts.

c) Identify preferences to be changed (CC): Pairs of

alternatives (xl , xk ) whose consensus degrees cal

and cplk are not enough are identified:

CC = {(xl , xk )|cal < cr ∧ cplk < cr}. (11)

Afterward, the model identifies experts who should

change their opinion on each of these pairs, i.e.,

those experts ei whose preference plk
i on the pair

(xl , xk ) ∈ CC is furthest to plk
c . An average prox-

imity pplk is calculated to identify them as follows:

pplk =

∑m
i=1 pplk

i

m
. (12)

As a result, experts ei whose pplk
i < pplk are ad-

vised to modify their assessment on pair (xl , xk ).
d) Establish change directions: Several direction rules

are applied to suggest the direction of changes pro-

posed to experts, in order to increase the level of

agreement in the following rounds [10]. Here, an

acceptability threshold ε ≥ 0 which may take a pos-

itive value close to zero is introduced to allow a

margin of acceptability when plk
i and plk

c are close

enough to each other.

i) DIR.1: If (plk
i − plk

c ) < −ε, then expert ei

should increase his/her assessment on the pair

of alternatives (xl , xk ).
ii) DIR.2: If (plk

i − plk
c ) > ε, then expert ei

should decrease his/her assessment on the pair

of alternatives (xl , xk ).
iii) DIR.3: If −ε ≤ (plk

i − plk
c ) ≤ ε, then expert

ei does not need to modify his/her assessment

on the pair of alternatives (xl , xk ).

B. Noncooperative Behavior Detection

Once described the main phases of the proposed consensus

model, here we define a method to identify those experts and

subgroups of them who do not tend to modify their initial pref-

erences to achieve a consensus or might move such preferences

against it, either individually or coordinately. We aim to de-

velop such a method by applying the FCM algorithm for fuzzy

clustering [41], in order to classify experts based on their fuzzy

preference relations Pi . Once applied the FCM algorithm, the

definition of several rules is proposed, based on cluster similar-

ity, cluster distance metrics, and fuzzy logic. These rules must

be checked before deciding about the existence of the aforemen-

tioned behaviors.

The detection scheme is conducted once for each round in

the discussion process, after the collective preference Pc for

that round is obtained during the Advice Generation phase of

the basic consensus model scheme (see Section III-A). Let t ∈
{1, . . . , Maxround − 1} be the current discussion round of the

CRP. From now onwards, experts’ preference values in round t
will be denoted as P t

i , i = 1, . . . , m, and cluster centers in such

a round will be denoted as Ct
h , h = 1, . . . , N .

The description of the proposed detection method is organized

into three parts:

1) application and settings of the FCM algorithm to classify

experts;

2) rules for the detection of subgroup behaviors contrary to

consensus achievement (con-coalitions);

3) rules for the detection of individual behaviors contrary to

consensus achievement (considered as outliers).

1) FCM Algorithm Settings: First, the FCM algorithm is

applied on experts’ preferences in the current CRP round t.
Several specifications and variations respect to FCM will be

considered here, and they are described as follows:

1) FCM parameters: Without loss of generality, a fuzziness

degree b ≈ 2 is usually taken.

2) Cluster initialization: As reviewed in Section II-C, the first

phase in the FCM algorithm consists in initializing clus-

ters, i.e., assigning each of them a cluster center Ct
h based

on an initialization technique. We consider the method

proposed by Katsavounidis et al. in [43] to define the ini-

tialization scheme described below for N clusters (N >
2):



522 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 22, NO. 3, JUNE 2014

Fig. 4. Scheme of the method to detect subgroup noncooperative behaviors.

a) The first cluster is initialized by assigning the col-

lective preference in the current round, P t
c , to cluster

center Ct
1 .

b) Initialize the second cluster center Ct
2 as the expert

preference P t
i which is farthest from P t

c .

c) For Ct
h (h ≥ 3), compute the minimum distance be-

tween each of the remaining experts’ preferences

P t
i and all current initial cluster centers, and find

the expert preference whose minimum distance is

the largest one, i.e., the one which accomplishes

maxi (minu<hd(P t
i , Ct

u )). Assign it to Ct
h .

d) Repeat the third step until all N clusters are

initialized.

3) Update process: Cluster centers Ct
h (h ≥ 2) and cluster

membership degrees μC t
h
(P t

i ) are updated iteratively, as

shown in Algorithm 1. Notice here that Ct
1 is not updated

in order to preserve P t
c as the center of one of the clusters

once applied the FCM algorithm, since it will play an

essential role in the subsequent detection scheme.

4) Distance metrics: In order to compute distances be-

tween preference relations (both experts’ preferences and

cluster centers indistinctly), the following normalized

Minkowski-based distance measure [36] is considered:

d(P t
i , Ct

h) = p

√

∑

lk ,l �=k

(plk ,t
i − clk ,t

h )p (13)

where p > 0 and l, k ∈ {1, . . . , n}.

5) Stopping criterion: The stopping condition considered is to

finalize the update process when all clusters stabilize. This

occurs when the variation in membership degrees between

two consecutive iterations approaches zero. Formally, the

iterative update process is stopped when
∑m

i=1

∑N
h=1 |μ

y
C t

h
(P t

i ) − μy−1
C t

h
(P t

i )|

m · N
≤ ǫ (14)

where y ∈ N denotes the current iteration of the FCM

algorithm, and ǫ is a threshold value (which should be

close to zero) used as a stopping condition. As an op-

timization algorithm where a locally optimal solution is

always found, FCM guarantees the necessary convergence

to achieve this condition.

2) Detection of Subgroup Noncooperative Behaviors (Con-

Coalitions): Once executed the FCM algorithm, we proceed

to apply a method to detect individual and subgroup noncoop-

erative behaviors, which is aimed to facilitate the subsequent

treatment of such experts, thus improving the performance of

the CRP. Since a different rule-based scheme will be considered

for each type of behavior (subgroup or individual), they will

be explained separately. In this section, we present the scheme

corresponding to the detection of subgroup noncooperative be-

haviors which, as stated in Section I, can be regarded in this

paper as con-coalitions. This detection scheme is first applied in

the second round of the CRP, because it requires comparisons

between clusters obtained in the previous and current rounds

of discussion, i.e., t − 1 and t, and it is based on a set of three

rules which must be checked for each cluster center Ct
h , h ≥ 2,

to decide about the existence of a subgroup behavior on it (see

Fig. 4).

1) There exists a cluster with “similar” composition to Ct
h in

round t − 1.

2) The distance between Ct
h and P t

c increases.

3) Membership of experts to Ct
h increases or membership to

P t
c decreases.

The accomplishment of all these rules by a cluster Ct
h can be

assumed as a subgroup noncooperative behavior performed by a

con-coalition of experts belonging to it, whose preferences must

be given some treatment, as will be explained in Section III-C.

In the following, the rules are described in detail.

R1. Similar Cluster Composition: This rule is checked to de-

termine whether a cluster is compound by the same experts

across the time or not. To do this, the similarity between

a given cluster Ct
h (h ≥ 2) determined in the current CRP

round t, i.e., t ∈ {2, . . . , Maxrounds − 1}, and each clus-

ter Ct−1
u (u ≥ 2) determined in the previous round, t − 1, is

computed. Two clusters Ct
h and Ct−1

u are considered to rep-

resent the same subgroup of experts, if experts’ membership

degrees to both of them, i.e., μt
Ch

(P t
i ) and μt−1

Cu
(P t−1

i ), have

close values to each other, for all ei ∈ E.

In order to decide whether cluster similarity is enough to

assume analogous cluster composition, a similarity thresh-

old κ ∈ [0, 1] can be defined. A cluster similarity measure

sim(Ct
h , Ct−1

u ) is proposed as follows:

sim(Ct
h , Ct−1

u ) = 1 −

∑m
i=1 ∆t

hu (Pi)

m
(15)

where ∆t
hu (Pi) ∈ [0, 1] is the variation in Pi membership to

both clusters, which is computed as

∆t
hu (Pi) = |μt

Ch
(P t

i ) − μt−1
Cu

(P t−1
i )|. (16)

For a given cluster Ct
h , if ∃Ct−1

u : sim(Ct
h , Ct−1

u ) ≥ κ, then

Ct
h and Ct−1

u are assumed to represent the same cluster across

time, due to their similar composition.

Remark 1: Since sim(Ct
h , Ct−1

u ) takes values in the unit in-

terval, the value fixed for similarity threshold κ should be
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Fig. 5. Scheme of the method to detect individual noncooperative behaviors.

close enough to 1 in order to guarantee an effective detection

of similar clusters in consecutive rounds of the CRP.

R2. Further Distance to Pc : Based on the previous rule and as-

suming that Ct
h and Ct−1

u are similar enough to be considered

the same cluster, distances between a cluster center and the

collective preference (i.e., Ct
1) in rounds t and t − 1, which

are denoted as d(Ct
1 , C

t
h) and d(Ct−1

1 , Ct−1
u ), respectively,

are computed by means of the distance measure shown in

(13).

Let ν ∈ [0, 1] be a parameter indicating a minimum dis-

tance between clusters, which should take a value close

to zero so that a distance value lower than ν means that

cluster centers are close enough to each other and no fur-

ther detection process is required. If d(Ct
1 , C

t
h) > ν and

d(Ct
1 , C

t
h) ≥ d(Ct−1

1 , Ct−1
u ), i.e., cluster centers Ct

1 and Ct
h

are not close enough to each other and distance between them

increases as the CRP progresses, then some experts in cluster

Ch are presumably presenting a noncooperative behavior.

R3. Membership Assembling: This rule is checked to decide

whether one of the following conditions occurs: 1) A sub-

group of experts become more assembled around a cluster

Ct
h (i.e., their membership to the cluster increases), or 2)

there is a lower concentration of experts around the col-

lective opinion P t
c . Assuming again that Ct

h and Ct−1
u are

considered to be same cluster, let St
h =

∑m
i=1 μC t

h
(P t

i ) and

St−1
u =

∑m
i=1 μC t−1

u
(P t−1

i ) be the sums of experts’ mem-

bership degrees to cluster Ch , (h ≥ 2), in rounds t and

t − 1, respectively. Analogously, let St
1 =

∑m
i=1 μC t

1
(P t

i )

and St−1
1 =

∑m
i=1 μC t−1

1
(P t−1

i ) be the sums of experts’ mem-

bership degrees to the collective preference in the aforemen-

tioned rounds.

If St
h > St−1

u , then experts are becoming more assembled

around Ct
h . On the other hand, if St

1 < St−1
1 , then experts

become less assembled around Ct
1 ≡ P t

c .

3) Detection of Individual Noncooperative Behaviors (Out-

liers): Here, the scheme corresponding to the detection of in-

dividual behaviors is described. Such behaviors must also be

managed later to optimize the performance of the consensus

process, and they are determined by preference relations that

present a low membership to all clusters in the group; therefore,

they can be viewed as outliers in the set of experts’ preferences.

This scheme is only applied toward the end of the CRP, i.e., when

discussion between experts has already been developed and the

consensus degree cr approaches the consensus threshold μ. An

additional consensus threshold γ < μ, γ ∈ [0, 1] can be used to

decide when the outlier detection mechanism is activated.

The following rules are checked to determine the existence of

an individual noncooperative behavior associated with a prefer-

ence relation P t
i (see Fig. 5):

R1. Pi does not present a high membership to any cluster:

A cluster membership threshold δ ∈ [0, 1] is established.

P t
i does not present a high membership to any cluster iff

μt
Ch

(P t
i ) < δ,∀h ∈ {1, . . . , N}.

R2. High/increasing distance to Pc : Distance to the collective

preference increases or it is higher than the average distance

between all experts’ preferences and the collective preference,

i.e., either one of the following conditions holds:

a) d(P t
i , Ct

1) > d.

The average distance to the collective preference, which

is denoted by d, is computed as follows:

d =

∑m
i=1 d(P t

i , Ct
1)

m
(17)

b) d(P t
i , Ct

1) > d(P t−1
i , Ct−1

1 ).

Remark 2: The rules described previously have been proposed

to detect the specific type of subgroup and individual noncoop-

erative behaviors this paper focuses on. However, the proposed

model offers enough flexibility to introduce new rules and/or

extend the current ones, if any new kind of behavior would be

considered.

C. Managing Noncooperative Behaviors

Once individual and subgroup behavior detection mecha-

nisms have been presented, it is necessary to define how to

manage experts involved in such behaviors. There exist different

proposals in the literature concerning this issue, for instance, dis-

carding preferences of experts who do not contribute to achieve

consensus [5] or penalizing their importance weights, thus re-

ducing their influence in the CRP [17], [26]. Here, a weight

penalizing method is proposed so that the weights of noncoop-

erating experts’ preferences are reduced accordingly throughout

the discussion process.

As mentioned in the consensus model scheme in Section III-

A, each expert ei ∈ E has an associated importance weight

wi ∈ [0, 1]. At the beginning of the CRP, all experts have a

maximum weight, wi = 1,∀i, and such a weight could be up-

dated whenever a behavior detection occurs.

Given a cluster Ct
h which contains a con-coalition in round

t ≥ 2, the procedure shown in Algorithm 2 is applied to each

expert preference relation P t
i ∈ Ct

h to update its correspond-

ing weight wi . The procedure to manage individual behaviors
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(outliers) consists in applying steps 3 and 4 of Algorithm 2 for

a detected P t
i .

Equation (18) is used to obtain the updated weight for ei ,

i.e., win ew
, based on its current weight wi , the distance to the

collective preference Ct
1 , and the maximum distance between

an expert’s preference and Ct
1 , i.e., maxjd(P t

j , Ct
1). This ex-

pression ensures that win ew
is bounded to the [0, wi ] ⊆ [0, 1]

interval and win ew
≤ wi . Notice here that if P t

i is the furthest

preference relation from P t
c , then d(P t

i , Ct
1) = maxjd(P t

j , Ct
1),

and consequently, win ew
= 0; therefore, ei’s importance weight

becomes null.

As previously shown in Section III-A, the reduction of ex-

perts’ importance weights in round t affects two steps in the

following round t + 1 of the CRP.

1) The computation of the consensus matrix CM upon ex-

perts’ similarities.

2) The computation of Pc upon experts’ preference relations.

Regarding the former step, since CM is obtained by ag-

gregating similarity values smlk
ij for each pair of experts, it is

necessary to combine wi and wj in order to obtain a weight wij

associated with such a pair. It is assumed that if at least one

expert weight in the pair (ei ,ej ) has been penalized, then the

importance weight wij assigned to their similarity degree smlk
ij

should be decreased. Therefore, it is proposed computing the

weight of the pair (ei , ej ) as wij = min(wi , wj ).
Finally, as it will be shown in the illustrative example in Sec-

tion V, two different weight penalizing schemes can be defined.

1) Partial weight penalizing: Reduced weights are taken into

account in the computation of Pc only [see (8)], with the

aim of making Pc closer to the preferences of those experts

who contribute to achieving a consensus.

2) Full weight penalizing: It is an extended case of the par-

tial weight penalizing where, besides considering reduced

weights to compute Pc , the agreement positions of those

experts who contribute to achieving a consensus are also

taken into account, in order to improve the convergence in

the consensus degree, cr. Therefore, reduced weights are

also integrated in the computation of CM [see (4)].

The effect of using either one of these penalizing schemes in

the CRP will be shown in Section V. Fig. 6 shows graphically

the overall process to manage noncooperating experts.

Fig. 6. Scheme of the method to manage noncooperating experts in CRPs.

IV. MONITORING TOOL BASED ON SELF-ORGANIZING MAPS

Besides the proposed consensus model, and due to the ne-

cessity of having a visual insight on experts’ preferences and

their evolution across the CRP, in this section, we propose a

monitoring tool based on SOMs. Such a tool can be considered

a complement to the consensus model presented in the previous

section, which not only provides a clearer vision of the CRP per-

formance, but also lets us find experts and subgroups of experts

who may present different patterns of behavior against consen-

sus, due to the fact that their preferences are moved against the

collective opinion.

Different applications and tools have been implemented to

support the SOM-based visualization of high-dimensional data.

One of them is SOM Toolbox,1 i.e., a powerful research-oriented

plug-in for the widely known MATLAB2 software suite [20],

which provides multiple ways of visualizing data, for instance,

by means of their 2-D PCA projection. SOM Toolbox can be

used to process and visualize experts’ preference relations and

cluster centers managed by the consensus model proposed in

this paper. To do so, we propose the following procedure, as

depicted in Fig. 7, which is applied at the end of each CRP

round t:
1) The collective preference Pc and cluster centers Ch in the

current round are computed from experts’ preferences Pi ,

as explained in Section III.

2) All preference relations, including Pc and cluster centers,

are gathered into a so-called preference-cluster dataset file,

where each data object is a preference relation, which is

represented as a vector of dimension n × n. The first line

of the dataset contains a number indicating the dimension

of data. Data objects corresponding with cluster centers

are given the label “C,” whereas the collective preference

1http://www.cis.hut.fi/somtoolbox/
2http://www.mathworks.com
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Fig. 7. Process to visualize experts’ preferences and cluster centers in a CRP round t.

Fig. 8. Two-dimensional visualization of experts’ preferences and clusters
with SOM Toolbox.

is given the label “P” so that they can be easily localizable

in the visual representation of preferences.

3) The preference-cluster dataset is processed by SOM Tool-

box to generate a 2-D PCA projection of experts’ prefer-

ences and cluster centers in the current CRP round.

Fig. 8 shows an example of 2-D visualization of experts’

preferences and clusters, generated with SOM Toolbox.

V. ILLUSTRATIVE EXAMPLE

In this section, an implemented version of the presented con-

sensus model is used to solve a real-life GDM problem where

a high number of decision makers participate. The main goal

of such a simulation is to show the effectiveness and useful-

ness of our proposal when dealing with large groups of experts,

some of which might present noncooperative behaviors during

the consensus process, thus hindering the achievement of an

agreement.

The problem formulation is as follows: Let us suppose that

an expert commission compound by 50 members belonging

to different areas E = {e1 , . . . , e50} must make an agreed

decision regarding a recent discovery of fossil fuels in the

province of Jaén, in Andalucı́a, Spain. The proposed alterna-

tives X = {x1 , x2 , x3 , x4} are the following ones.

1) x1 : Discard any exploitation actions, due to environmental

factors.

2) x2 : Authorize a national company to search for natural gas

sources.

3) x3 : Authorize a multinational company to search for oil.

4) x4 : Do a previous research on the area led by regional

government.

The commission must achieve a minimum level of agreement

of μ = 0.85 before making a decision; the maximum number

of rounds of discussion allowed is Maxround = 10, and the

acceptability threshold is set as ε = 0.02. Some experts in the

group may present individual behaviors, or they may form coali-

tions with a noncooperative behavior, as it will be shown in the

example.

Common parameters for the clustering, detection, and man-

agement of behaviors are set as follows:

1) Fuzziness coefficient: b = 2.

2) Threshold for stopping condition in FCM: ǫ = 0.001.

3) Distance measure: Minkowski distance with p = 1.

4) Cluster similarity threshold: κ = 0.9.

5) Minimum detectable distance among clusters: ν = 0.01.

6) Consensus threshold to activate outlier detection, γ =
0.75.

7) Membership threshold for outliers, δ = 0.4.

Two experimental studies have been conducted. In the first

one, the effects of applying the different penalizing schemes to

manage behaviors are shown, whereas the second one focuses

on analyzing the effects in the CRP of using different values for

the number of clusters, N , in the FCM algorithm.

Remark 3: No comparison with other techniques is shown in

this paper because, as far as we know, this is the first time a

methodology based on fuzzy clustering is implemented and ap-

plied to support CRPs, and most current proposals of consensus



526 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 22, NO. 3, JUNE 2014

TABLE I

CONSENSUS DEGREE cr ACHIEVED, AND DETECTION OF SUBGROUP AND INDIVIDUAL NONCOOPERATIVE BEHAVIORS IN EACH ROUND t (N = 4)

models are for small groups and they do not focus on large-scale

GDM.

A. Experiments With Different Penalizing Schemes

First, the model is used to solve the GDM three times,

applying the behavior detection scheme in all of them (with

N = n = 4 clusters; see Section III-B), and different varia-

tions in the behavior management scheme for each one (see

Section III-C):

1) Without weight penalizing: No penalizing is conducted

upon detection.

2) Partial weight penalizing: A penalization on experts’

weights is conducted only when computing the collective

preference, Pc .

3) Full weight penalizing: A penalization on experts’ weights

is conducted when computing Pc and the consensus ma-

trix, CM , from experts’ similarity values.

Our hypothesis states that the application of behavior detec-

tion and management schemes on experts’ preferences might

improve the CRP performance by increasing the convergence

of cr toward the desired level of agreement, μ:

a) A partial weight penalizing may cause Pc to become closer

to those experts who behave in favor of consensus, thus

increasing slightly the convergence of cr toward μ.

b) A full weight penalizing may also take into account rather

those experts who contribute to achieve an agreement in

the computation of CM , which might imply a more sub-

stantial increase in the convergence of cr.

Once conducted the CRP, results are shown and analyzed.

Table I shows the evolution of the consensus degree cr in

each round, as well as the detection of subgroup and individ-

ual (outlier) behaviors, for each resolution of the GDM prob-

lem. The convergence of cr during the CRP is also graphically

shown in Fig. 9. In the cases of applying null or partial penal-

izing, consensus is not achieved; therefore, it is necessary to

apply a full penalizing to achieve it, by assigning low impor-

tance weights to noncooperating individuals and subgroups not

only when computing Pc , but also when obtaining consensus

degrees.

In order to provide a visual monitoring of the overall CRP

performance, the SOM-based visualization tool SOM Toolbox

Fig. 9. Evolution of consensus degree cr in each round.

is used to show experts’ preferences in a 2-D plot, as explained

in Section IV. For the sake of space, we show the monitoring of

the whole CRP for the case of applying full penalization. Fig. 10

shows the visual representation of experts’ preferences, the col-

lective preference Pc (in the figure, denoted by “P”), and cluster

centers Ch (in the figure, denoted by “C”) for each round of the

CRP. As can be seen, a con-coalition of noncooperating experts

is first detected at the end of the third round and, consequently,

penalized from the fourth round onwards (solid rectangles rep-

resent penalized subgroups). When γ is exceeded, outliers (i.e.,

individual noncooperative behaviors) are also detected and their

weight is reduced (in the figure, they are surrounded by dashed

rectangles). Additionally, from the fourth discussion round on-

wards, the position of Pc in the SOM shifts from the center of

the SOM, which means that the weights of experts’ preferences,

which are used in the computation of Pc , have been updated due

to penalizing, favoring those experts who contribute positively

to achieve a consensus.

Remark 4: The SOMs do not represent the absolute position of

preference values, but rather the relative closeness of preferences

among each other. Therefore, a Pc in the center of several plots

[see, e.g., Fig. 10(a)–(c)] does not indicate equal values of Pc

in them, but rather a collective preference obtained by using (9)

(before penalizing weights).

Finally, Fig. 11 shows the visual representation of experts

in the final round for each one of the three cases studied. It is
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Fig. 10. Experts’ preferences visualization during the CRP, with full weight penalizing. (a) Round 1 (cr = 0.63060). (b) Round 2 (cr = 0.66614). (c) Round 3
(cr = 0.69743). (d) Round 4 (cr = 0.74663). (e) Round 5 (cr = 0.84651). (f) Round 6 (cr = 0.85743).

Fig. 11. Visualization of experts’ preferences in the last round of the CRP. (a) No penalizing (t = 10, cr ≃ 0.744). (b) Partial penalizing (t = 10, cr ≃ 0.802).
(c) Full penalizing (t = 6, cr ≃ 0.857).

remarkable here how the application of any of the two proposed

weight penalizing schemes affects the value of Pc , which is

moved with respect to the case of no penalizing, becoming closer

to the opinions of those experts who contribute to achieving

an agreement and further from the opinions of noncooperating

experts. This may affect the subsequent alternative selection

process and the final decision made. A similar position of Pc

is obtained for both types of penalizing, since the main effect

of applying a full penalizing with respect to a partial one is a

higher convergence of cr.

These results allow us to confirm the hypothesis formulated,

thus showing the importance and effectiveness of our approach

to deal with large groups of decision makers, some of which

might move their preferences against consensus and would pre-

vent achieving the desired level of agreement if they are not

detected and managed accordingly.

B. Experiments With Different Number of Clusters

Finally, some additional experiments are carried out by solv-

ing the consensus process with identical parameters, applying a

full weight penalizing and using different values for the number

of clusters considered in the FCM algorithm, i.e., N .

Table II shows the consensus degrees and detected behaviors

for different values of N , and Fig. 12 illustrates the position of

cluster centers obtained in the first CRP round. From experi-

ments conducted, we can conclude the following.



528 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 22, NO. 3, JUNE 2014

TABLE II

CONSENSUS DEGREES cr AND DETECTION OF BEHAVIORS FOR DIFFERENT NUMBERS OF CLUSTERS N (FULL PENALIZING)

Fig. 12. Visualization of cluster centers in the first round of the CRP. (a) N = 3 (t = 1). (b) N = 5 (t = 1). (c) N = 8 (t = 1).

1) N = 2 leads to undesired results, as C2 always tends to

approximate to Pc , which does not vary during the FCM

algorithm; therefore, its use has been discarded.

2) If N > n (with n being the number of alternatives, in

our case, n = 4), then some cluster centers are close to

each other and they tend to overlap as N increases (see

Fig. 12(c), where N = 8 and where some cluster centers

overlap). Moreover, if a too high value of N is chosen, an

excessive number of subgroup and individual misbehav-

iors are detected, which affects nearly all experts’ weights

during penalizing, and consequently, the convergence to-

ward consensus is not improved with respect to applying

no penalizing.

3) Values of N which are close to the number of alternatives

n provide good results in the behavior detection and an

adequate convergence toward consensus.

It is concluded that an appropriate value for N is n = 4

(as it was considered in Section V-A), which makes sense if

we assume that different experts’ in the group might have a

predilection for each one of the distinct alternatives xl ∈ X;

hence, it is usual that at most n different subgroups with a clear

preference over an specific alternative might appear during the

CRP.

VI. CONCLUDING REMARKS

Current challenges for the improvement of CRPs in GDM

include the necessity of developing new consensus models ca-

pable of managing large scales of decision makers effectively,

thus overcoming the difficulties derived from the high cost, com-

plexity, the constant human supervision, or even the possibility

of dealing with subgroups of decision makers who present non-

cooperative behaviors during the discussion process. Real-life

decision making problems involving a large number of decision

makers are becoming increasingly common, as what occurs,

for instance, with new trends such as e-democracy processes

and social networks. In this paper, a consensus model capa-

ble of dealing with large groups of decision makers has been

presented. Such a model utilizes an approach based on fuzzy

clustering to detect and manage individuals or subgroups of

decision makers who do not cooperate during the discussion

process. Additionally, the model is complemented with a mon-

itoring tool to visualize decision makers’ preferences and their

evolution during the CRP.

Despite the paper proposal has been presented under a

methodological viewpoint, future works are mainly focused on

developing a distributed software, which will be used to conduct

a real large-scale experiment and prove the validity of the pro-

posed model in a real-life problem. The proposed model is valid

as such for its application in any business and organizational

contexts, and it can also be easily extended by adapting it to

more specific contexts, as mentioned previously. Other future

works are focused on the use of the proposed methodology in

linguistic decision making [46], [47].
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