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Abstract

Background Between 2009 and 2011 an attempt has been
made to develop a consensus on the classification of
hydrocephalus. Clinicians and basic scientists who are
recognized internationally for their work in hydrocephalus
attended working meetings in which the concepts of
classification of hydrocephalus were discussed at length.
Purpose This review attempts to explain the relevance of a
classification scheme based on the point of obstruction to
the flow of cerebrospinal fluid to basic science research into
the pathophysiology and effects of hydrocephalus. The
review is designed to give examples of the value of this
classification in analyzing research utilizing animal models.
The development of hydrocephalus in the absence of a
point of obstruction (true communicating hydrocephalus) is
analyzed.

Conclusion Contemporary neuroimaging techniques are
now available that can identify the actual point of
obstruction to the flow of CSF, if any, which results in the
development of hydrocephalus. Such identification may
lead to improved ability to analyze animal models used in
hydrocephalus research as well as deciding among various
treatment options.
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The classification of hydrocephalus: historical
perspective

Research into the basic causes of hydrocephalus began with
Dr. Walter Dandy of Johns Hopkins University. As early as
1913 Dandy proposed a classification scheme for hydro-
cephalus that forms the basis of the accepted system still in
use at this time. Dandy had few tools available to him at the
time. The first studies in experimental animals related to the
injection of a supravital dye into the ventricle and
attempting to recover it from the spinal subarachnoid space
(SSAS) via lumbar puncture. Based on these studies he
classified hydrocephalus as either “communicating” or
“obstructive or non-communicating” in nature [l1]. The
only other technique he could use to study what was
happening in experimental animals or in affected indi-
viduals was to perform an autopsy. It was not until 1919
that Dandy was able to obtain more precise information
about abnormalities of the cerebrospinal fluid (CSF)
pathways by the injection of air either by lumbar
puncture or its installation within the ventricle. Pneumo-
ventriculography allowed more precise localization of the
point of obstruction within the ventricular system as well
as demonstrate distorted anatomy within the ventricles
such as that caused by tumors in various locations [2].
The findings of Dandy’s newly developed tests related to
the anatomy of CSF flow did not lead to modification of
the classification of hydrocephalus.

The concepts described in the Dandy classification led to
advances in the understanding of CSF dynamics and the
understanding of the pathogenesis and treatment of hydro-
cephalus. Based on these concepts, Dandy defined the
choroid plexus as the source of the production of CSF and
proposed choroid plexectomy for the treatment of this
condition. In patients with obstructive hydrocephalus,
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Dandy felt that creating an internal bypass was a likely
form of treatment and performed operations in which
communication between the third ventricle and the
cortical subarachnoid space (CSAS) was created. This
was originally done by the resection of one of the optic
nerves [1]. Dandy’s 1913 classification still forms the
basis of the bureaucratic methodology for physician
payment in the USA. The International Classification of
Diseases, Ninth Revision codes for hydrocephalus carry
the same words as did Dandy’s work except for the very
recent addition of the third category of Idiopathic Normal
Pressure Hydrocephalus [3].

Several authors have attempted to develop more
contemporary classification schemes, but none have
served to improve the understanding of hydrocephalus
and until now there has been no consensus as to a more
contemporary classification scheme. Raimondi decided to
use the translation of the term hydrocephalus as “water
head” to produce a classification that included all
conditions in which there were more than normal
amounts of water within the intracranial compartment
and thus included forms of cerebral edema, brain atrophy
and intracranial cysts as well as forms of hydrocephalus.
This classification is now only quoted in its historical
context [4].

Mori with the encouragement and support of the
Japanese ministry of health performed a study of various
forms of hydrocephalus in Japanese children from many
centers throughout Japan. The purpose of this study was to
define “intractable hydrocephalus.” By this he meant which
forms of hydrocephalus do not respond to treatment. In
which of these patients is treatment futile [5]? Beni-
Adani and her colleagues recognized that there was little
consensus as to how one selects patients, particularly
babies as to whether their hydrocephalus should be treated
with a shunt or with an endoscopic third ventriculostomy.
It was their intention that the proposed classification
would serve to rigorously study the outcome of various
treatments on various forms of hydrocephalus so that one
would have a better idea as to whom to offer third
ventriculostomy, and they presented the data from Israel
related to these criteria [6].

Studying the relationship between what is happening
in the developing brain and the pathologic processes
that were occurring at that point in time led Oi to
propose a classification of hydrocephalus that reflected
the effect of brain distortion on the fetus and infant. He
discussed its usefulness in the prediction of outcome in
babies born with hydrocephalus of various causes. Early
prediction of outcome is a very important issue, and the
ability to define that outcome in the early mid-trimester
would represent a major advance. Studies seem to be
ongoing [7].
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A consensus on the classification of hydrocephalus

In 2000 I was asked by Dr. David McLone to write a
chapter on the classification of hydrocephalus for the fourth
edition of Pediatric Neurosurgery: Surgery of the Develop-
ing Nervous System [8]. I had been working with the
School of Engineering at Case Western Reserve University
on the application of engineering principles to the study of
ventricular volume regulation. This process involved the
use of a mathematical model which attempted to predict
what would happen to the volume of the ventricles and the
pressures within those compartments produced by creating
resistance elements in the pathways between the CSF
compartments. Previous work on such a model was
reviewed and particularly the theoretical discussion by
Spertell regarding brain viscoelasticity [9]. Our multi-
compartmental model led to testable hypotheses which
could explain what would happen if the sagittal sinus
pressure was raised or what would happen if one created a
resistance element at the basal cisterns. Figure 1 is a
demonstration of the CSF system as interacting compart-
ments each with its own pressure and volume related to the
flow of CSF [10, 11]. Based on this diagram experiments
could be performed on animal models of hydrocephalus
that would challenge the results of the mathematics from
the mathematical model. The diagram led to the need to
measure the pressures and volumes in the individual
compartments and to attempt to define the resistances
between the various compartments. The result of this
thought process became a circuit diagram of the CSF
pathway as a hydraulic analog of an electrical circuit [12—
14]. Figure 2 is an artist’s rendering of this circuit diagram
analogous to an electrical circuit. Visualizing the flow of
CSF in this way serves as a template to assess the possible
treatment options that are available to treat an individual
patient. What followed has been a 30-year study of
hydrocephalus based on this model. It became evident to
me that this model would be useful in the classification of
hydrocephalus and formed the basis of the book chapter
that was produced [13, 15].

Review of the inconsistencies in the criteria that were
being used for the selection of patients for endoscopic third
ventriculostomy led to the unassailable conclusion that
simply classifying hydrocephalus as communicating or
non-communicating at a time when the actual point of the
obstruction or restriction of CSF flow could be determined
in most cases had become inadequate. Other questions that
remained to be answered and could not be using the simple
classification of Dandy included why some patients who
developed hydrocephalus in infancy or had arachnoid cysts
treated with shunts in infancy develop severely increased
intracranial pressure with no expansion of the ventricles or
cyst at the time of shunt failure. A more sophisticated
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Fig. 1 Multicompartmental a 0 if Pc<Po
model of ventricular volume .
regulation. Used with permission AlPc=Po) if Pc>Po
from Karger (Rekate et al. 1988)
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classification was now available but not generally known
or accepted. Techniques for the study of CSF dynamics
had improved dramatically since the studies of Dandy.
Tools such as magnetic resonance imaging (MRI), Cine
MRI flow studies, cisternography utilizing dye studies
and especially long-term studies of the outcomes of
treatment decisions make it possible to accurately define
a point of restriction of flow.

I was then invited at the inaugural meeting of the
International Society for Hydrocephalus and CSF Research
by meeting president Dr. Petra Klinge to give a talk on the

subject of the definition and classification of hydrocepha-
lus. In preparation for this talk I wrote an article published
in the open access on-line journal Cerebrospinal Fluid
Research entitled “A Contemporary Definition and Classi-
fication of Hydrocephalus: A Straw Man to Produce
Debate.” At the time of the presentation at the meeting
and during the experience in Hannover, I called on the
participants to challenge and discuss the classification [13].

Following the “roll-out” of the concepts a large number
of recognized experts in hydrocephalus treatment and
research were contacted, and two meetings were held. The
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Fig. 2 Artist’s concept of circuit diagram of cerebral blood flow and
CSF production and flow. Used with permission from Barrow
Neurological Institute (Rekate et al. 2008)

first occurred in Los Angeles at the 40th annual meeting of
the International Society for Pediatric Neurosurgery. The
second meeting was held in Phoenix in January of 2010.
The participants in the process of producing a consensus
statement are listed in the addendum at the end of this
discussion (“Appendix”). At the end of these discussions a
consensus was reached and agreed to by all. The results of
these meetings were presented at the International Hydro-
cephalus Symposium in Crete in May 2010 and at the
International Society for Research in Hydrocephalus and
Spina Bifida in June as well as the Hydrocephalus
Association Convention in July of that year. There was
widespread support for the classification and enthusiasm
that it would serve as a platform for research and structure
to analyze research using animal models.

The structure of the consensus was that the first level of
classification of hydrocephalus would be based on the point
where the flow of CSF is restricted. The potential sites of
restriction of flow as seen in Fig. 2 would be the foramina
of Monro, the aqueduct of Sylvius, the basal cisterns, the
arachnoid granulations, and outflow of venous blood from
the dural venous sinuses. It was also recognized that
hydrocephalus could exist and progress without a point of
obstruction or increased resistance to flow. This would truly
be communicating hydrocephalus.

The primary classification of point of obstruction would
then be modified by the etiology of the inciting condition,
the chronicity or rapidity of onset, and the age of the person
or experimental animal. It is expected that the point of
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obstruction will be sought in both experimental animals as
well as patients in clinical studies so that likes can be
compared.

Exploring the hydraulic circuit using animal models

The collaboration between the Division of Neurosurgery,
the department of Systems and Design Engineering and the
Electronics Design Center at Case Western Reserve Uni-
versity began with weekly meetings for several hours in
which engineering and physiological concepts were dis-
cussed and important literature researched. The plan was to
develop a mathematical model of ventricular volume
regulation and cerebrospinal fluid (CSF) dynamics which
would include actually measured parameters such as
starting CSF volumes, intracranial pressures (ICP) and rate
of CSF production as well as presumed but so far
unmeasured parameters such as the resistance elements
within the CSF system such as the resistance at the
aqueduct of Sylvius. We would then manipulate the
model to see what changes would occur in predicted
volumes and pressures of the CSF compartments.
Initially the expectation was that intracranial pulsation
would play a major role in the process, but at that time
there was no model available that could be used to add
an alternating current (AC) circuit to the model. We
decided that we would begin by testing the issues related
to the bulk flow model and would move on to the AC or
pulse-wave model at a later time.

The model thus created included a fixed volume of the
intracranial compartment, a spinal compartment that was
outside the fixed volume constraint and six CSF
compartments and the brain and spinal cord dealt with
as a single entity. It was essential that the research be
able to study and lead to the understanding of not only
hydrocephalus but also normal pressure hydrocephalus
(NPH) and pseudotumor cerebri (PC) [10, 11].

Resistance elements within the CSF pathways

The first step in the experimental design here was to
actually measure the significance of the proposed
resistance elements within the CSF pathways. Utilizing
a canine model of hydrocephalus and with normal
controls, we instrumented the compartments to measure
the pressure differentials across various presumed points
of obstruction. We cannulated the lateral ventricles, third
ventricle and cisterna magna in both normal and
hydrocephalic dogs and infused artificial CSF into one
of the lateral ventricles while measuring the pressure in
the various components. In these experiments we found
that no pressure differential could be measured any-
where in the system. This inability to measure pressure
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differentials within the intracranial compartment also
was found when there was a known point of obstruction
in the hydrocephalic animals.

We then implanted a balloon in the cortical subarachnoid
space of the dog and applied a wave form to it with multiple
ICP transducers intracranially and found that the pulse wave
was transmitted undiminished and instantaneously to all
transducers intracranially [16]. While one of the potential
explanations is that our transducers which were both strain
gauge and fluid-coupled types were not sufficiently sensitive
to measure the pressure differentials. They had a sensitivity
of plus or minus 1 mmHg. The alternative explanation and
the one that is most defensible is that the brain is a
viscoelastic substance and in this set of experiments was
acting as a fluid chamber where changes in pressure are
transmitted instantaneously and fully to all areas.

Measurable pressure differentials were found in only one
context. If one of the lateral ventricles is drained to a
subatmospheric pressure, a pressure differential of
12 mmHg can be accurately measured [17]. This condition
mirrors the situation of “post-shunt ventricular asymmetry”
seen in children who are shunted and have an intact septum
pellucidum whose shunted ventricle is uniformly smaller
than the contralateral ventricle [18, 19]. Anatomic studies
of the foramen of Monro have shown that this phenomenon
is due to the fact that the septum pellucidum is drawn
toward the shunted or drained ventricle and comes to rest
on the head of the caudate nucleus leading to a functional
and reversible obstruction to flow [17].

The intracisternal kaolin model utilized in our experi-
ments led to hydrocephalus by obstructing the outflow of

CSF from the outlet foramina of the fourth ventricle. The
condition was found using ventriculography to be accom-
panied by, in nearly all animals, syringomyelia as well
making this a model of what Oi would call hydromyelic
hydrocephalus [20].

Obstruction between the spinal and cortical subarach-
noid spaces is rarely diagnosed but is probably the
cause of many or most cases of NPH [21, 22]. Older
studies utilizing protein labeled with a radioisotope tracer
showed that the dye injected into the spinal subarachnoid
space in patients quickly entered the ventricles but its
clearance into the cortical subarachnoid space was dra-
matically delayed suggesting a blockage between the
SSAS and CSAS. Di Rocco performed autopsies on
patients who had responded to shunting for NPH and
who died subsequently of other causes. He found dense
arachnoidal thickening around the brainstem in the
posterior fossa [21].

McAllister has studied this extraventricular obstructive
hydrocephalus using a rat model of hydrocephalus where
the kaolin is injected through the skull base into the lower
CSAS. Hydrocephalus in these animals develops quite
slowly and is usually mild but does occur [23].

Blockage between the SSAS and CSAS results from
either subarachnoid hemorrhage or infection. It frequently
involves the area around the brainstem selectively, and this
form of hydrocephalus has been shown to be amenable to
endoscopic third ventriculostomy [24]. This point of
obstruction is also the explanation for the successful
management of NPH utilizing endoscopic third ventricu-
lostomy (ETV) [25].

Table 1 Utility of point of

obstruction model

DX diagnosis, ETVendoscopic
third ventriculostomy, CSAS
cortical subarachnoid space,

LP lumboperitoneal,
VP ventriculoperitoneal

Point of obstruction

Differential DX

Treatments available

Foramen of Monro

Aqueduct of Sylvius

4th Ventricle foramina

Spinal to CSAS

Arachnoid villi
Venous hypertension

Tumor

Congenital absence
Ventriculitis

Functional

Tumor

Birth defect

Secondary

Infection

Tumor

Severe Chiari
Subarachnoid
Hemorrhage

LP shunt

Hemorrhage or infection
Pseudotumor
Congenital hydrocephalus
Sinus thrombosis

Shunt (unilateral or bilateral)
Endoscopic septum opening

Shunt
ETV

Shunt

ETV

Surgical opening
Shunt

ETV

VP or LP shunt

VP or LP shunt

Clot lysis

Bariatric surgery for obesity-related pseudotumor
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Tenous hypertension causing hydrocephalus

Increased pressure in the dural venous sinuses that
occurs in adults results in PC and not hydrocephalus
[26]. Drainage of CSF into the dural venous sinuses
requires a gradient between the ICP and sagittal sinus
pressure of 5-7 mmHg [27, 28]. If the pressure in the
sagittal sinus is elevated, the ICP must elevate as well in
order for CSF to be absorbed. If the volume of the skull is
fixed, the ICP goes up until CSF can be absorbed. If on the
other hand the skull is not of a fixed volume, the ICP is in
communication with atmospheric pressure. This occurs in the
case of small babies and in the case of patients undergoing
large craniectomies for stroke or trauma. In this situation the
ICP cannot go above the atmospheric pressure, and the patient
develops hydrocephalus.

Exploring this phenomenon, Olivero occluded the
superior sagittal sinus of normal and craniectomized
rabbits. The rabbits whose skull was intact developed
intracranial hypertension without ventriculomegaly. The
craniectomized rabbits however developed hydrocephalus
[29].

True communicating hydrocephalus: Hydrocephalus
without a point of obstruction

Much of my fascination with the study of the physics of CSF
and hydrocephalus was stimulated by the experiments of Di
Rocco and colleagues who produced hydrocephalus in
experimental animals by implanting a balloon in the ventricle
and augmenting the pulse wave. There was no source of
obstruction to the flow of CSF in these animals [30-32].

In order to study whether it was possible to produce
hydrocephalus in experimental animals without a point
of obstruction and without the augmentation of the
pulsation, we did prolonged infusions of artificial CSF
into normal and hydrocephalic dogs to simulate the
overproduction of CSF by choroid plexus papillomas. In
these experiments the normal dogs did develop modest
ventriculomegaly, but the dogs that had been previously
made hydrocephalic with kaolin developed severe
ventriculomegaly [33].

Clinical utility of the classification scheme

As opposed to Dandy, we now have the ability to
actually define the specific point of obstruction to the
flow of CSF within the craniospinal axis utilizing MRI
sequences and the injection of iodine dye or radioactive
tracers. This information is valuable both in deciding
among different pathologic states in the differential
diagnosis as well as deciding among different treatment
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options. Table 1 outlines the potential diagnoses and the
treatment options related to the various points of obstruc-
tion to the hydraulic circuit. This classification should
prove useful in future experimental design, assessment of
unexpected results of treatment of hydrocephalus and the
design of prospective trials for the treatment of subtypes
of hydrocephalus.
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