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A Conservative Finite Element Method
for the Korteweg-de Vries Equation

By Ragnar Winther

Abstract.   A finite element method for the 1-periodic Korteweg-de Vries equation

"t + 2uux + "xxx = °

is analyzed.   We consider first a semidiscrete method (i.e., discretization only in the

space variable), and then we analyze some unconditionally stable fully discrete methods.
In a special case, the fully discrete methods reduce to twelve point finite difference

schemes (three time levels) which have second order accuracy both in the space and
time variable.

1.  Introduction.  The purpose of this paper is to study a Galerkin-type method
for the 1-periodic Korteweg-de Vries equation

(1.1)
"f + 2""* + "xxx = °.

w(x, 0) = u0(x),

for 0 < t < T, where T > 0 is a fixed real number.  This equation arises for example
as a model equation for unidirectional long waves in nonlinear dispersive media.  For a
discussion of this equation we refer the reader to Whitham [9] and references given
there.

We derive the numerical method by writing the equation (1.1) in the conserva-
tive form

(1.2) ut-wx = 0,

where the flux w is given by

(1.3) w = -uxx-u2.

We insist that the conservation law (1.2) be satisfied pointwise, while the elliptic type
relation (1.3) will be approximated by a Galerkin method.

We note that if we differentiate the relation (1.3) with respect to time, (1.2)
and (1.3) imply the system

(1.4)
ut-wx = 0,

wt + 2uwx + wxxx = 0
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24 RAGNAR WINTHER

Our numerical method can be written either as an analog of the single equation (1.1)
or of the system (1.4).  In the first case, we only compute an approximation of the
displacement u directly, while in the other case, the approximations of both u and w
are simultaneously computed.

In Section 4 we derive error estimates for a semidiscrete version of this method,
based on discretization in the space variable.  If U and W denote the semidiscrete ap-
proximations of u and w, respectively, we prove estimates of the form (/ = (0, 1))

\\u-U\\ 2     <chr,
L2H)

and

chr+x,   ifr>3,

ch2,       ifr = 2,

where c is a constant depending on u, r ~^ 2 is an integer and h > 0 is a small param-
eter indicating the space discretization.   Here U and W are sought in a class of piece-
wise polynomials of degree less than r and r + 1, respectively.

In Section 5 we analyze some fully discrete schemes which have second order ac-
curacy in time.  For each time step a linear system of equations has to be solved.  For
one of the schemes considered, the coefficient matrix is a function of time, while an-
other scheme has a coefficient matrix independent of time.  All the schemes considered
are unconditionally stable; i.e., no relation between h and the time step A: need to be
satisfied.  This should be compared to the stability relation kh     < c, where c is a
constant independent of k and h, which is usually required for explicit schemes for the
equation (1.1) (see, for example, Fornberg and Whitham [5]).

The semidiscrete method is precisely formulated in Section 3 and in Section 6
we briefly discuss a closely related finite difference scheme.

Finally, we mention that a different semidiscrete method for the equation (1.1)
was discussed by Wahlbin [8] and some numerical results for certain fully discrete
versions of this scheme can be found in [2].  Spectral methods for the equation (1.1)
have been proposed by Tappert [6] and Fornberg and Whitham [5].  Numerical re-
sults for some finite difference schemes are discussed by Vliegenthart [7].

Throughout this paper, c denotes a generic constant, not necessarily the same at
different occurrences.

2. Notation and Preliminaries.  On the space ¿2(7) let (-, •) and ||-|| denote the
inner product and norm, respectively.   For any integer m> 0, Hm denotes the Sobo-
lev space of 1-periodic functions on R with m derivatives in ¿2oc(R), where the asso-
ciated norm, ||i|m, is given by

■«.-(¿KW-
If 771 < 0 is an integer, then IT" denotes the dual of H~m with respect to the inner

\\w-W\\ 2     <
L2il)
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FINITE ELEMENT METHOD FOR THE KORTEWEG-DE VRIES EQUATION 25

product (•, •) with norm

Hull    =     SUD     (»>?)11 "m p    iui«,e//-m m-m

For any integer m take Hm to be the subspace of Hm consisting of functions of mean
value zero; i.e.,

Hm = {vEHm\iv, 1) = 0}.

IfuGC(0, T; Hm), then let

|IMIIm =    sup    \\vit)\\m.
0<t<T

Also, let Hoc denote the norm in ¿°°(/).  All functions above are assumed to be real
valued. We recall that Hx C ¿°°(/) with continuous injection; see for example [1].
This implies that there is a constant c such that

IMi <c||u||1|MI,    for v,^GHx;

and hence,
IMLi < cIML, IMIi    for v G H~x, v? G Hx.

We now recall that it was proved by Bona and Smith [3] that if the initial data
«0 of (1.1) is in Hm, m>2, then there is a unique solution u of (1.1) and

(^j'ueCiO,T;H"'-3'),

for each integer / > 0 such that m - 3/ > 0.  Furthermore, there is a constant c(||w0||m)
such that

(2.1) \l(it)'U\lm^j<Cimjm)-

3. The Semidiscrete Method.  First, we introduce two classes of finite dimen-
sional function spaces.  For any E C I let P¡iE) = [v: I —>■ R | ul^ is a polynomial of
degree less than /}.   Now let A be a family of partitions of /; i.e., if 5 G A, then
ô = {x^f-Q, where 0 = x0 <xx < •■■ <xM = 1.  We shall use the notation I¡ =
(x,-,, x,), h = hid) = maxj <1<M(x,. -x,._,) and h = A(S) = minj <I<M(x,. -x,_x).
Throughout this paper we make the assumption that the family A is quasi-uniform in
the sense that there is a constant c, independent of 6, such that

(3.1) h<ch    for all S G A.

For the rest of this paper we assume that r is a fixed integer > 2. We now de-
fine two families of function spaces {■S'6}6eA and {5*}6eA by

S6 = {p G Hx \p G />,(/,); i = 1, 2, ..., M},

and

S* ={xeH2\XePr+xiI,);i= 1,2, ...,M}.
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26 RAGNAR WINTHER

It is easy to see that Ss C C(/), 56* C Cxil) and dim Ss = dim S6* = M(r - 1). We
also observe that if x G S*, then xx G Ss.

Note that by (3.1) there is a constant c such that

(3.2) IWi <«*■"* M    for/iGS6.

This property, which is usually referred to as an inverse property, follows easily by a
homogeneity argument.  Finally, we observe that the spaces 56 and S* have the ap-
proximation properties that for any <p G Hm

i
(3.3) inf    £A'||*-Mll/<cAmIMIffl,      1 < m < r,

ß^ss j=0

and

(3.4) inf   Z *'"* - Xll/ < chm IMIm,      2 < m < r + 1,
x&s6*/=o

where c is a constant independent of h and <p.
Now let P: L2(/) —► 56 denote the L2-projection on S&.  For an arbitrary

ifi G Hm, m> 1, choose /i£5s such that (3.3) is satisfied.  Then we obtain from
(3.2) that

(3.5) II*-¿VII, < II*"Uli, + Wut-mi <<*"_1Mlm.
for 1 < m < r.   In particular, it follows that

(3.6) llalli <clMI,    for^G/Y1,

where c is independent of h and ¡p.
The semidiscrete method for (1.1) is now derived by seeking U: [0, T] —► Ss

and W: [0, T] —► S* as approximations of u and w, respectively, such that

(3.7) ut-Wx = 0,
where U and W are related by

(3.8) iUx,px)-iU2,p) = iW,p)    for pGSs.

Here (3.7) is a pointwise relation while (3.8) is a Galerkin approximation of the ellip-
tic type relation (1.3).  We note that if x G 56*, then it follows from (3.7) and (3.8)
that

iUt, X) = -W xx) = ~iux,xxx) + iu2, xx).

Hence, U satisfies

(3.9)
iUt, x) - iU2, xx) + iUx, Xxx) = 0    for x e S*,

UiO) = U0,

where the initial data U0 G Ss has to be specified.
Remark 3.1. We note that (3.9) is a nonlinear system of ordinary differential
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FINITE ELEMENT METHOD FOR THE KORTEWEG-DE VRIES EQUATION 27

equations.  We also observe that the coefficient matrix in front of the time-derivative
can be singular, since it can occur that PiS*) is strictly contained in Ss.  However, in
order to analyze (3.9), we shall in Section 4 assume that PiS*) = S& for all S G A.
This condition is for example always satisfied when 7 = 2 and § is a uniform partition
of /, which partitions / into an odd number of subintervals.  The assumption will be
removed in Section 5, where we consider an implicit time stepping scheme for (3.9).

Now note that if the initial value problem (3.9) is solved then, for any t G [0, T],
Wit) G S* can be determined from the facts that

Wx = Ut   and   (IV, 1) = -(/72, 1).

However, if we are interested in approximations of the flux w, then the method above
can also be written as a semidiscrete analog of the system (1.4), where both the vari-
ables U and W are computed directly.  In order to see this we differentiate (3.8) with
respect to time, and use (3.7) to obtain the system

/

(3.10)

ut-wx = 0,

iWt, p) + 2iUWx , p) - iWxx ,px) = 0   for p G Ss,

UiO) = U0,    WiO)=W0,

where U0 G 5g and WQ G S* have to be specified.
We remark that if U, W is any solution of (3.10), where U0 and W0 are chosen

such that (3.8) is satisfied, then U satisfies (3.9).  However, in general, the equations
(3.9) and (3.10) are not equivalent.  In fact, if U, W solves (3.10) for arbitrary i/0 and
W0, then

(3.11) iut,x)-iu2,xx) + iux,xxx) = io,xx)  for x es*,

where 0 G Ss is given by

(3.12) (Ö, ß) = iiU0)x, px) - HU0)2, p) - iW0, p)    for p G Ss.

We note particularly that the function 0 is independent of t.
The main difference between (3.9) and (3.11) is that (3.11) allows us to specify

initial values for both U and W.   As we shall see in Section 4, this extra flexibility
gives the equation (3.11) certain advantages over (3.9).

4. Error Estimates for the Semidiscrete Method. In this section we derive error
estimates for the semidiscrete method (3.9). At the end of this section we also obtain
certain variants of these results for the method (3.11) (or equivalently (3.10)). In or-
der to avoid some technical difficulties we make the assumption throughout this section
that PiS*) = Ss for all Ô G A (cf. Remark 3.1). We remark that the need for this as-
sumption does not indicate limited application of the method, but it is an assumption
which simplifies the analysis of the semidiscrete method.

Define an operator A: L2(/) —► Hx by

(A«p)   =*-(*, 1)   and   (A*, 1) = («p, 1).
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28 RAGNAR WINTHER

We note that if p G Ss, then Au G S * and, if we let Ss = Ss n Hx and 5j* = 5{* n H2,
then A(56) * S*.

Also let Px: Hx —> 5g be the //'-projection onto S6; i.e.,

(* - />, ju) + (^ - iPx«J)x ,px) = 0   for u G Ss.

We observe that it follows from (3.3) and standard theory for Galerkin methods for
elliptic equations (see for example [4] ), that for any * G Hs

(4.1) \\<p-P1^Lp<chs+"Ml,      -Kp<r-2,l<s<r,

where c is a constant independent of h and *.
We now define V: [0, 7] —» 56 by V\t) = (P,«X0> and we let PÍO =

«(f) - Vit). We note that it follows from (2.1) and (4.1) that, for any integer / > 0,
there is a constant c = c(||m0||j + 3.) such that

(4-2) \Ít)'p       <chS+P,      -l<P<r-2,Ks<r.

Also, observe that V satisfies the equation

(4-3)        iVt, x) - iV2, Xx) + iVx, xxx) = ((« + V)p + p, Xx) - ißv X).

for x 6 S*.
Now let e = u - U and r¡ = V - U, where U is the solution of (3.9).  Then

e = p + t?, and we note that (4.2) implies that e can be estimated by estimating 17
which is a function in 56.  This will be done by comparing (3.9) with (4.3).

Theorem 4.1.   Let s be an integer such that 1 < s < r and assume that
u0EHs + 6. Then there is a positive constant c = c(||«0\\s + 6) such that, if ||Ar/(0)||2 < 1
and h < c_1, the initial value problem (3.9) has a unique solution U satisfying

(4.4) HHIIp < c{hs-p + I|At7(0)||2},      1 > p > max(-l, 2 - r).

Furthermore, if u0 G Hs + 9, then there is a constant c = c(||«0||J + 9) such that

(4.5) |||ef|||p < c{A*-p + HAtK0)||2 + l|AT,f(0)||2},       1 > p > max(-1, 2 - r).

Proof.   We first prove the estimate (4.4).  Observe that (3.9) is a system of or-
dinary differential equations which has a local solution for all initial values.  Hence,
the existence of the solution U on [0, T] is established if we can show an a priori
bound for |||£/|||j.  Because of (2.1) it is, therefore, enough to show (4.4) under the
assumption that U exists on [0, 7"].  Also, note that it suffices to show (4.4) under
the assumption that there is a constant c, independent of h, such that

(4-6) sup    li/(0L < |||í/|||¿/2lllt/lll}/2<c.
0<t<T *

Now let
(0,    if r = 2,

(l,    ifr>3.
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FINITE ELEMENT METHOD FOR THE KORTEWEG-DE VRIES EQUATION 29

We note that in order to show (4.4), it is enough to show that

(4.7) Mil, <c{fcs+« + ||A,?(0)||2}.

Take \ = Apt + p + (w + V)p. Then, since ipt, 1) = 0, it follows from (3.9) and
(4.3) that 1? satisfies the equation

(4.8) in,,x)-iiv+ U)n, xx) + ivx, xxx) = (I, xx)  for x e s*.

The equation (4.8) will now be used to obtain error estimates for 17.  Take first
X = Arjf in (4.8).  Note that (r/f, 1) = 0, which implies that (r/f, Ar/f) = 0.  Therefore,
we obtain

ljtK\\2 = ii,vt) + iiv+u)v,nt).
By integration in time we, therefore, have for any 7 E [0, T]

llî?*(r~)ll2 = IM0)||2 + 2 Jo'{(i nt) + HV+ u)n, Vt)}dt.

Since (4.2) implies that 11(9/90^11-1 < chs+q, j = 0, 1, 2, we obtain by integration
by parts in time that

2/0'(Ç, Vt)dt = 2(£, 7?)|of - iffe, n)df

< \\Ki~t)\\2 + cjft2<* + ,»> + ||Ar,(0)||2 + IIAt?(7)||2 + j^\\Av\\2dtj.

In order to estimate the second term above, observe that

((F+(7)rí,T?í) = 2(KT?,7?f)-(r,2,r?í).

By (4.2), it follows that

4/0f(F77, Vt)dt = 2(K, 7j2)|0f - 2¡¿{Vt, v2)dt

<\\Ki~t)\\2 +cj||AT7(0)||2 + ||A77(7)||2 + ßltolfdrj.

Also, by (4.2) and (4.6) we have that

2JoV, Vt)dt = |(t?2, l)|Qf < \\\vxi7)\\2 + c{||At7(0)||2 + HArtfr)!!2}.

Hence, we have shown that there is a constant c such that, for any t G [0, T]

(4-9)      llrj^f)!!2 - c||Ar,(7)||2 < c \h2^s+^ + ||Ar,(0)||2 + £ UAt?«2. dtl,

where c is independent of h and t.
Next take x = APAtj in (4.8).  Then we have

(4.10) -^II^Aull2 - UV + U)v, iAPAv)x) + ivx, (PAv)x) - ft. (APAt?),).
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30 RAGNAR WINTHER

First note that by (3.5)

ivx, iPAV)x) = i-nx, HP -i)AV)x) < ch\\Ar,\\2.

By integrating (4.10) in time and using (3.6), (4.2), and (4.6) we, therefore, have

||Mr,(7)||2 <c ti2<î+«> + ||At?(0)||2 + JJllAnll2*  ,

for 0 < 7 < T.   But now we observe that

||/>AT7(7)||2 - ||Ar,(7)||2 - ||(/-/>)Ar,(7)||2 > ||Ar,(7)||2 - ca4||tïx(7)||2;

and hence, we have

(4.11) ||Ar,(7)||2 - ch*\\nxiT)\\2 <c\h2(s+<*) + ||Ar,(0)|| + J^IAr/U2* j.

By comparing this with (4.9) we now obtain that for h sufficiently small and 0 < 7 < T,

IIAr,(7)||2 <c ri2<i+«> + ||Atj(0)||2 + ¡¿\\Ar}\\jdt  ,

where c is independent of h and 7.  Therefore, GronwaU's lemma implies that

|||At?|||2<c{/Ií+* + HAt,(0)||2};

and this implies (4.7).  Thus, (4.4) is established.
In order to prove (4.5), observe first that, in the same way as above, it is enough

to show (4.5) under the assumption that

(4.12) sup    |t/f(0L<c,
0<f«T

where c is independent of h.
First, differentiate (4.8) with respect to time.  We then obtain

(4.13) ivtt,x)-iiiV+U)v)t,Xx) + irixt,Xxx) = %,Xx)    forX^S*.

Hence, if we take x = Ar¡tt and integrate (4.13) in time, then we have

\Ktin\2 = llT,,f(0)|i2 + 2/0'{G„ vtt) + Hiv+ u)n)t, vtt)}dt.

By integration by parts in time, we obtain as above that

2¡l%t r,tt)dt = 2i%t, „f)|of - 2/of(iff, Vt)dt

<\\\vxt(T)\\2 + c\h2^+^ + ||Ar?f(0)||2 + ||Ar/(7)||2 + f*||Atj||2dt .

In order to estimate the second term above we note that

HV + U)ri)t = iV+ U)Vt + 2VtV - rmt.

By integration by parts in time, we have
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FINITE ELEMENT METHOD FOR THE KORTEWEG-DE VRIES EQUATION 31

Hiiv + u)nt, vtt)dt = \av + U), int)2)\l -\Çoav + u)t,iVt)2)dt,

fcivt, rmtt)dt = ivt, rmTJTl - f*>{ivtt,mt) + ivt, int)2)}dt,
and

/oV, ntt)dt = \fciv, iivt)2)t)dt = \iv, intfX - ïfciint)3, »&
Therefore, by applying (4.2), (4.4), and (4.12), we obtain

2/0'(((K+ U)n)t, vtt)dt < |llr/Jcf(7)||2 + cH*('+«) + ||At?(0)||2 + ||Ar,f(0)||2

+ IIAr?i(7)||2 + Jof||AT7l|2* .

Hence, we have shown that there is a constant c, independent of 7 G [0, T] and h,
such that

||T7xf(7-)H2 -c||7jf(7)||2 <c 7z2(s + i?) + ||At?(0)||2 + ||A7,f(0)||2 + $¿\\Ar)t\\2dtl.

If we now take x = APAr¡t in (4.13) and proceed exactly as we did when we derived
(4.11), then the inequality above leads to the fact that

(4.14) IIIAT?flll2 < c{hs + o + ||Ar,(0)||2 + ||Ar?f(0)||2};

and hence, (4.2) implies (4.5).  Finally, we note that since (3.9) has a local (in time)
unique solution, the estimate (4.4) implies the existence of a unique solution for
0<r<7/.   D

Remark 4.1.  Assume for a moment that we wanted to solve the equation (1.1)
on the interval IL = (0, L) instead of /.   A careful examination of the proof of The-
orem 4.1 would show, that in this case the constants in (4.4) and (4.5) are independent
of L.   This is desirable if the periodic version of (1.1) on IL, with L large, is to be
used to approximate the pure initial value problem for (1.1).

Remark 4.2.  A careful study of the proof above would also show that the regu-
larity assumptions stated in Theorem 4.1 can be weakened when r > 4.  In this case
we only need, for example, u0 G Hs + S in order to prove (4.4), and if we are inter-
ested only in the //'-part of (4.4), then u0 G Hs + 3 is sufficient.

Now let U be the solution of (3.9), and let W: [0, T] -* S* he the correspond-
ing approximation of the flux w determined by (3.7) and (3.8).  Then W is uniquely
determined by the fact that

Wx = Ut    and    iW, 1) =-iU2, I)

or

W= AUt-iU2, 1).
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Hence, at any time t G [0, T], Wit) can be computed from i/(0 and Utit). As above,
it also follows from (1.2) and (1.3) that

w = Aut~iu2, 1).

Therefore, if we let / = w - W, then we have

/= Aet - Hu + U)e, 1) = Apt + Arjt - ((« + U)e, 1);

and hence, it follows from (4.2), (4.4) and (4.14) that

(4-15)  |||/|||p < c{hr + x~P + ||At,(0)||2 + ||AT7f(0)||},      2 > p > max(0, 3 - r),

where c = ci\\u0\\r + 9).
If we at any time t G [0, T] have computed Wit) as above, then this can again

be used to obtain a higher-order approximation Ua of u.   For any t G [0, T] define
uait)es*hy

(4.16) HUa)x, Xx) + iUa,x) = iW+U+U2,x)    for x £ S*.

Note that Ua is uniquely determined by (4.16), and we have the following error
estimate.

Theorem 4.2. Assume that u0 EHr + 9, let U be the solution of (3.9), and let
W be the corresponding approximation of the flux w. If Ua: [0, T] —> S* is defined
by (4.16), then there is a constant c = c(||«0||r + 9) such that

|||u - UJ\0 <c{hr+q + ||At?(0)||2 + ||Ar,f(0)||2},
where

\0    ifr=2,
q = \(1    ifr>3.

Proof.   Note that (1.3) implies that u and w satisfy the relation

-uxx +u = w + u+u2.

By comparing this with (4.16), and by using standard theory for Galerkin methods for
elliptic equations (see [4] ), we obtain that

III" - UJ\0<c{hr + x + \\\e+f+ iu + U)e\[\_x}

<c{hr+x + IHellL, + lll/IIL, + III" + t/lll,IIHLi};
and hence, the desired result follows from (4.4) and (4.15).  D

We note that if we choose U0 = Pxu0, then Theorem 4.1 implies that

HHIp < ch"-p,      l>p> max(-1, 2 - r).

However, if we are interested in the estimate for et (or the estimates for /or u - Ua),
then this choice of UQ might not lead to a good estimate for ||Ai7f(0)||2.  One way to
construct U0, such that both ||Ai7(0)||2 and ||Ar?f(0)||2 are small, is to first choose
WQ G S* close to w(0) and then take U0 G Ss to be a solution of (3.8) such that
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(Í70, 1) = («0, 1).  This leads to a nonlinear equation for U0.  It can be shown, by a
contractive mapping argument, that this equation has a unique solution U0, in a neigh-
borhood of u0, if ||w0||, is sufficiently small.   Furthermore, U0 can be approximated
by a linearly convergent iterative process.

An alternative way of overcoming the problem of choosing initial values described
above, is to use the equation (3.11) instead of (3.9).  In the rest of this section let U
denote the solution of (3.11) and as above let e = u - U.

Theorem 4.3. Let s be an integer such that 1 < s < r and assume that u0&Hs + 6.
Furthermore, let U0 = Pxu0 and W0 = APxwxiO).  77ze7i there is a positive constant
c = c(||m0||j + 6) such that, if h < c~x, the equation (3.11) has a unique solution U
satisfying

(4.17) |||e|||p < ch*-p,      l>p> max(-1, 2 - r).

Also, ifu0 G Hs + 9, then there is a constant c = c(||m0||j + 9) such that

(4.18) |||ef |||p < chs'P,      l>p> maxi-1, 2 - r).

Proof.   First note that since the equation (3.11) is independent of the mean
value of 0, it is enough to show the results above for W0 = APxwxiO) + (w(0), 1).
In this case, the right-hand side 0 of (3.11) is determined by

(4.19) (0, p) = (p(0), p) + Hu0 + H0))p(0), p) + (A(/ - Px)wxiO), p),

for pESs. We also note that (3.6) implies that there is a constant c such that

IML, <c   sup Ipfi   for any ̂ G56.
u=S6   IMIi

Hence, it follows from (4.1) and (4.19) that

(0   if r - 2,
11011   . <chs + q    where q = <

-1 (1    ifr>3.

The estimate (4.17) follows now by a trivial modification of the argument that led to
(4.4), by considering 0 as an extra error term. The estimate (4.18) follows exactly in
the same way as (4.5), since 6t = 0. D

We finally note that the estimates in Theorem 4.3 again can be used to prove
estimates analogous to (4.15) and Theorem 4.2.

5.   A Second Order Discretization in Time.  The purpose of this section is to
analyze examples of fully discrete versions of the semidiscrete methods discussed in
Section 4.  We shall consider two implicit methods which have second order accuracy
in time.  First, we consider a method where the associated system of linear equations
has a coefficient matrix which is independent of time; and then, at the end of this
section, we consider a method where a new matrix has to be inverted for each time
step.  The first method is of course desirable; but unfortunately, we need some extra
regularity assumptions on the initial data in order to establish the convergence of this
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method.  For the second method, however, we prove convergence with essentially the
same assumptions as in Theorem 4.1.  Also, recall that in this section we do not assume
that PiS*) = S5.

Let N be a positive integer, and let k = T/N. For t = 0, k, ..., Nk, we seek an
approximation of u in the space Ss. In order to formulate the method, we first intro-
duce some notation.  For any v defined at t = 0, k, ..., Nk, we let v" = vink) and

„« + 1/2 =Vi,vn + l/> + i)) „ = o, 1,...,N-1,

v" = ^(u"_1 +v" + x),      n=l,2,...,N-l,

iD+v)"=j-iv" + x -v"), n = 0,l,...,N-l,

iD0v)" = iD+v)"-x'2 =iv" + x -v"-x)/2k,      n= 1, 2, ..., N- 1.

We first consider the following fully discrete analog of (3.9):

(HD0U)", x) - HU2)", xx) + iU"x, Xxx) = 0    for x G S*,
(5.1)

\UX = UX,      U° = UQ,

where {U"}^=0 C Ss and where the initial values U0 and Ux have to be specified.
We observe that {U"} is uniquely determined by (5.1).

Now let V: [0, T] —> Ss be as in Section 4; i.e., V\t) = Pxuit), and let pit) =
uit) - Vit). We note that it follows from (2.1) and (4.1) that for any j> 0,

(5.2) max     \\iD'+p)"\\     < chs+p,      -1 <p <r- 2, Ks <r,
v       ' 0<n<AT-/' H

where c = c(||«0||J + 3/).
Also note that {V"}%=0 satisfies the equation

HDoV)",x)-iiv2)",xx) + ivx,xxx)

} =Hu"+ V")p" + -p" + Fxiu)", Xx) - HD0p)" + F2iu)", x)    for X £ S*,

where Fxiu)" = (U2)" - (u2)" and F2(u)n = «f" - (DQu)".
In analogy with Section 4, let e" = u" - U" and r¡" = V" - U". The following

theorem will be derived by using arguments which are closely related to the ones given
in the proof of Theorem 4.1. The main difference is that we here simultaneously prove
error estimates for {e"} and {(D+e)"}.

Theorem 5.1. Let s be an integer such that 1 < s < r and assume that
u0 G //max(i + 6,io)    yßew ^^ ûre pos¡tjve constants c = c(||m0||j + 6) and h0 =

h0(\\u0\\x0) such that, tf-||AT?°||2, |Aj|%, IIA(£)+tí)°||2, \\A(D+n)x\\2 < 1 and h < h0,
the solution U of (5.1) satisfies

(5.4)   max   ||<?"|L < c{k2 + hs~p + ||Ar?°||2 + \\AVX\\2},     1 >p > max(-l, 2 -r).
0<n<N v
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Furthermore, ifu0 G Hs + 9, then there is a constant c = c(||u0||s + 9) such that

max      \\iD+e)n\\   < c{k2 + hs~p + ||At?°||2 + [(Atï1 |U
0<n<N-l F i ¿

(5-5) +IIA(fl+77)°||2+||A(Z)+77)1||2},

1 >p>max(-l,2-r).

Proof.   We first note that it is enough to prove the estimates above under the
assumption that

(5.6) max   |t/"L,      max      |(£>+ U)nL < c,
0*in<N 0<n<N-l

for some constant c, independent of k and h.   Now let

(0   ifr = 2,
a = {

(1    ifr>3.

Observe that in order to show (5.4), it is enough to show that

(5-7) max   Ibrl, <c{k2 + hs+" + ||At,°|L + \\AVX\L}.
0<n<N ¿ i

We also observe that it follows from (5.1) and (5.3) that {tj"} satisfies the difference
equation

(5.8)    iiD0ri)", x) - HV" + U")n", Xx) ~ ivx, Xxx) = it1, Xx)    for X G S*,

where %" = A((Z>0p)" 4- F2iu)n) + («" + V")p" + p" 4- Fx(u)".
In order to simplify the writing we now introduce the following notation:

Ía" = ̂ (|| An" II2 + ||At," + 1|I2),
|3" = ^(llr£l|2 + ||r£ + 1|l2),

T" = H(||Ar?"||2 + ||AT?" + 1|li).

Now take x = A(D0r))" in (5.8).  We observe that (5.8) implies that ((D0r¡)", 1) = 0
and, hence, ((Z?0t?)", A(D0r¡)") = 0.  We, therefore, obtain

¿(llr£ + 1ll2 - llr/r1!!2) = (f, (DoV)") + ((V" + U")n", (D0v)");

and hence, by summing from n = 1 to n = m (1 < m < N - 1),
m

ßm-ß° = 2k£ {(f, (D0r¡)") + ((V" + U")r,", (D0r})")}.
n = l

By summation by parts we now have

m
2k x (r,(d0vT)=(r,vm+1) + (r_1,vm)-d2,vl)-a1,t?°)

n = l

m-1
-2kZ (OW.*.")-

n = 2
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Therefore, we obtain from (5.2) and Taylor's Theorem that

m | Í m—2       )
2k Z ft", iD0r))") < jßm + c h4 + h2{s + q) + 7° + am + k £ yn\.

n=l 4 { n=2       )

Similarly, we also obtain from (5.6) that
m m

2k £ HV" + U")v", iD0r¡)") = £  HV" + U"), Vn + Xn" ~ VnVn~l)
n=l «=1

= HVm + Um), Vm+xVm) - HVX + Ux), r/V)

m-l
-*£ HD+iv+u))",rf + xTf)

n = l

<\ßm +c\y° + am +km¿y4.

(Note that we here particularly have used that |(Z)+ U)"\m is uniformly bounded.)  The
estimates above imply that there is a constant c, independent of k, h, and m, such that

!m-2       )¿4 +h2is+q) + J0 +k   £   ynl      for 0 < 771 < W - 1.
n=2        )

Now observe that if we take x = PAP^" in (5.8), then an argument analogous to
the one that led to (4.11) implies that for 0 < m < N - 1,

k* +h2is+q) + yo + k-£ T"(

Irrt —¿. i
/t4 +h2{s+q) + 7° +k £ y"\,

Therefore, we obtain from (5.10) that, for h sufficiently small,

m-2z
( n = 2

where c is independent of k, h, and m (0 < m < W - 1).  Hence, by the discrete ver-
sion of Gronwall's Lemma we have

max      7m <c{rC4+7i2<i + <?) + 7°}
0<n<N-l

or

(5.11) max   ||At,"||2<c{A;2 + 7ii+<? + ||At,°||2 + \\An%h
0<n<N

and this implies (5.7).  Thus, (5.4) is established.
In order to show (5.5), we note that if we apply the difference operator D,  to

Eq. (5.8), then we have

HD0D+V)", x) - HD+iV2 - U2))", Xx) + HD+rix)n, Xxx)
(5.12)

= iD+k",Xx)     for x GS*.
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In analogy with the notation above, we now let a", ß", and 7" be defined by an ana-
log of (5.9), where 17" is replaced by iD+r\)n. We also note that

HD+ñx)", iD0D+Vx)") = ¿ri\[iD+V)n + 1\\2 - IIÍA^)"-»!!2).

Therefore, if we take x = AiD0D+r))" in (5.12) and sum from n = 1 to n = m
(1 < m < N - 2), then we have

m -,
(5.13)        ßm - ß°t = 2k £ {((£>+?)" + iD+iV2 - U2))", iD0D+v)")}.

n = l

By summation by parts we now obtain in the same way as above that
m

2k X HD+0", iD0D+v)n)
n = l

1 I m-2       )
<fö + cjrC4 + /l2(s + <7) + 7° + afm  + k £   7f"    •

In order to estimate the second term above we use the identity

iD+iV2 - U2))" =iVn + x'2 + U" + x,2XD+v)"

+ 2(£>+F)V + 1/2 -t?" + 1/2(£>+t?)".

By summation by parts we now have

m
2k £ HV" + X'2 + U" + x>2)iD+n)n, iD0D+V)")

M = l

= (Fm +1/2 + rjm +l/2> (Z)+7?)m + l(/5+T,)m)

-iV3'2 + U3l2,iD+V)xiD+r1)0)

m
-2k£ HDQiV+ U))",iD+V)"iD+rir^)-

n = 2

Similarly, we also have
m

2k Z iiD+V)"rr + xl2,iD0D+n)n)
n = l

= ((£>+ v)mVm+xl2, iD+r,)m+x) + HD+ vy»-ivm-U2) (D+r,)m)

- hd+ v)Wi2, iD+nf) - hd+ v)W2, íd+v)x)

m-l-kZ (2(A>£>+ »OV + l'2 + (D+ V)n +1W +1
n=2

V-l/T»  «V»+ iD+VY-xiD0rif,iD+n)n).
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Finally, we have

m
2k £ inn + xl2iD+ri)",iD0D+ti)")

n = l

= inm + xi2, iD+nTiD+ri)m + x) - in3'2, íd+v)°íd+v)x)

m
-2*£ iiD0n)n,iD+ri)"-xiD+Ti)n).

n=2

Therefore, it follows from (5.2), (5.6) and (5.11) that

m
2k £ HD+iV2-U2))",iD0D+v)")

Hence, we obtain from (5.13) that there is a constant c, independent of k, h, and m, such
that

*4 + /j2(* + <7> + yO + r0 + k  £   yn f
n=2 \

fotO<m<N-2.
By taking x = APAiD+r¡)" in (5.12) we obtain in the same way as above that

!m-2       )k4 + h2is + q) + y0 +y0 +k  J-   yn\
n=2        )

By comparing this with (5.14) we have that, for h sufficiently small,

I m-2       )
7fm <cjit4 +Aa<* + «)4-7° +7° +k X   1t\-

( n = 2       \

Therefore, the discrete version of Gronwall's Lemma again implies that

max      7" < c{/t4 + ti2<í+<?) + y° + y0}
0<n<N-2

or

max      ||A(£>+î?)',||2 < c{k2 + hs+<> + \\AV°\\2 + \\At¡%
(5.15)   0<n<N-l + ¿ 2 1

+ ||A(£>+7,)°||2 + ||A(D+t,)1II2},

where c is a constant independent of k and h.   Since (5.2) and (5.15) imply (5.5),
this completes the proof of the theorem.  D

In the same way as in the semidiscrete case we can now use the computed ap-
proximation {<7n}^_0 of the displacement u, in order to obtain an approximation of
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the flux w.   Define {W"}%7X C S* by

W? = iD0Uf    and   (IV", 1) = -((t/2)", 1)
or

W" = AiD0U)" - ÜU2)", 1).

Since it follows from (1.2) and (1.3) that w" = Au"t - ((w2)", 1), we immediately ob-
tain from (5.2), (5.4), (5.15) and Taylor's Theorem that

max      ||/"|| =c{k2 + hr + x-p + ||Ar/0||2 + \\AVX\\2}
,r , s\ 1 <n <N—l
(5.16)

+ ||A(D+n)°||2 + ||A(D+T()1|l2,

for 2 > p > max(0, 3 - r), where /" = w" - W" and c = c(||«0||r + 9).
If we for any 7i, 1 < n < A/ - 1, define C£ G S* by

iiU"a)x. *x) + iUa. X) = iW" + U"+ (U2)", x)    for x G 5*,

then it also follows, in the same way as we proved Theorem 4.2, that (with c =
c||w0||r + 9)

II«" - <7a"ll < c{k2 + hr+« + \\AV% + ||AijMl2 + ||A(D+77)°||2 + NAC^+tj)1 |l2},
where

(0    if r =2,

q    jl    ifr>3.

We shall now discuss how to choose the initial values U0 and Ux in (5.1). Note
that even if we are interested only in the estimate (5.4), Theorem 5.1 applies only if
U0 and Ux are chosen such that ||A(Z)+t,)0||2 and l|A(D+r/)1||2 are uniformly bounded
for all 5 G A.  In the same way as it was indicated in Section 4, such initial values can
be found by an iterative process if ||z^0||x is sufficiently small.  Here we shall instead
consider an analog of Theorem 4.3; i.e., we shall consider a fully discrete version of

(3.11).
First let, for any e > 0, w(e) = w(0) + ew,(0). Now define Wx G 56* by Wx =

APxwxik) and U0, Ux G S6 by U0 = Pxu0 and Ux = Pxu0 + kPxwxik/2). Further-
more, let 0 G Ss be given by the following analog of (3.12):

(5.17)       (0, M) = ((i/o), + Wi)xx. M*) - iU2, ß) - iWx, p)    for p G Ss.

We shall consider the following fully discrete analog of (3.11):

HD0UT, X) - iiU2T, Xx) + iUnx, Xxx) = (0, Xx)    for x S S*,
(5.18)

UX = UX,      U° = U0.

We note that (5.17) and (5.18) imply that iD0U)x = iWx)x; and therefore,
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IK/Wll, = ll^iíPo")1 -*x(*))||,

< \\iD0u)x - utik)\\x + \\wxik) - wxik)\\x < ck2.

Similarly, since (D+i/)° = Pxwxik/2), we also obtain

\\iD+V)%<ck2;

and therefore, there is a constant c, independent of k and h, such that

HA(JD+r/)°ll2,||A(Z?+T?)1||2<c/t2.

Note also that t?° = 0 and rj1 = Px {¡£wxis)ds - kwxik/2)}; and hence,

(-5-19) l|Aî}°||2,||An1|l2<cfc2.

Finally, we observe that, if 1 < s < r, then it follows in the same way as the corre-
sponding result proved in Theorem 4.3 that

10   if r = 2,
II0IL, < c{k2 + hs + q},    where q = \

(1    ifr>3.

Therefore, the following theorem follows by a simple modification of the proof of
Theorem 5.1.

Theorem 5.2. Let s be an integer such that 1 < s < r, and assume that
u0eHmaxis + 6'x0\  Furthermore, let Wx = APxwxik), U0 = Pxu0 and Ux =
Pxu0 + kPxwxik¡2).  Then there are positive constants c = c(||m0||í + 6) and h0 =
/i0(||«0||10) such that, if h < h0, the solution t/o/(5.18) satisfies

max   \\e"\\   <c{k2 +hs~P},       1 > p > max(-l, 2 - r).
0<n<N p '

Also, if Uq G Hs + 9, then there is a constant c = cí\\Uq\\s + 9) such that

max      ll(¿V)"L < c{k2 +hs'p},      1 >p > max(-l, 2 - r).
0<n<N-l H

Finally, we consider a modification of the method (5.1), where a new matrix
has to be inverted for each time step.  In this case, the error estimate for {e"} can be
obtained with the same regularity assumptions as in Theorem 4.1.  The reason for this
improved result is that the error estimate for {e"} can be proven directly without
using results for {(£>+e)"}.

We consider the following method:

(5.20)
HD0U)", x) - (jiU2)" + \U"U", x^ + iU"x, xxx) = 0    for x G S*,

Ux = Ux,       U° = U0,

where {U"}*=0 C Ss.  In the same way as above let e" = u" - U" and r\" = V" -U".
We then have the following convergence result.
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Theorem 5.3.   Let s be an integer such that 1 < s < r, and assume that
u0 GHs + e.   Then there is a positive constant c = c(||«0||s + 6) such that, if ||Ar?°||2,
HA77MI2 < 1 and k, h < c~x, the equation (5.20) has a unique solution such that

max   \\e"\\p<c{k2 + A*"" + ||At?% + IIAtjMU},      1 > p > max(-l, 2 -r).
0<n<N p i ¿

Proof.   As in the proof of Theorem 4.1, it is enough to show the estimate under
the assumption that

(5.21) max   |C/"L<e,
v        ' 0<n<N

where c is independent of k and h.   It is also easy to see that (5.21) implies that the
linear equations which define (5.20) have a unique solution for k sufficiently small.
By comparing (5.20) with Eq. (1.1), we now obtain the following difference equation
for {r/"}:

HD0v)n, x) + \iivn + v")v" + v"n", xx)

(f (n2)" + ^"rT", x,)  + iv"x, XXX) = ií", Xx),

for x G S*.  Here g" depends only on u and V.   As in the proof of Theorem 5.1, we
now obtain estimates for {rf1} by energy methods.  The only difference from the
proof of the estimate (5.4) is that the term

k Z (f O?2)" + ItfV. D0rT),      Km<N-l,
can be estimated without using results for {(D+t?)"}.  This follows since

m   /1 9
kZ[kv2r + ivnvn,iD0v)n

« = lw J

m
= \ Z iiv2)"vn + l + (t?2)" + V -iv2)"-lv" -iv2)"v"^, i)

71 = 1

= liiV2)mVm + 1+iV2)m+1Vm, l)-|((r/2)V +(t?2)1t?°, 1).

Therefore, we obtain from (5.21) that

* Z (jOz2)" + f^rT", (D0nr) <\(T + c{y° + a"1},

where c is independent of k, h, and m and where we have adopted the notation from
the proof of Theorem 5.1.  The desired result now follows by simple modifications of
the arguments given in that proof.  D

We note that if we take U0 = Pxu0 and Ux = Pxu0 + kPxwxik¡2), then it fol-
lows from (5.19) and Theorem 5.3 that

max   \\e"\\D<c{k2 +hs~p},      1 > p > max(-l, 2 - r).
0<n<N P
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6.  Finite Difference Methods.   In this section we shall briefly discuss some finite
difference methods for the equation (1.1), closely related to the method (5.1). Through-
out this section we shall consider (5.1) when 7 = 2 and when 5 is a uniform partition
of/; i.e., 5 = {Xj}fL0, where x} = jh and h = l/M.   In this case we let UJ1 = U"ijh),
where {t/"}^=0 is the solution of (5.1).  In analogy with the notation in Section 5,
we also let

Uf = l-iU?-x +i/; + 1)   and   £»0í/; = ¿(í/;" + 1 -up-1).

We observe that since U" is a piecewise linear function, U" is determined by the nodal
values Uf,j= 1,2, ...,M.

The method (5.1) can be shown to be equivalent to the following finite difference
scheme:

¿W« + ̂ ot7+i + Mw + ¿Wi
,   5  U"+iU?+i-U?Uf     lU?+2U?+i-U?U?-i
+ Ï2-h-+3-2k-

,   1 V?+2VT+2 -Uj-iUj-i   , ff+2-3^1+3^-671,
4 3A h3

where UJ, Uf,j= 1,2, ...,M, have to be specified and where U" is extended peri-
odically for/G {1, 2, ...,M}.

It now follows directly from Theorem 5.1, that the solution {UJ1} of (6.1)
satisfies the convergence estimate

/     M X1/2
(6.2) I h £ Iuijh, hk) - Up |2 < cik2 + h2),      0<nk<T,

if the initial approximations are sufficiently accurate in the sense of Theorem 5.1.
By a finite difference argument, it can also be shown that the estimate (6.2)

holds for the following slightly simpler difference scheme:

1                                     iu?+if - iUD2     U"     - 3(7" . + 3/7^ - U"
\iD0Up+x +D0U?) + K l + l\      jJ   +-^-i±i--L-ti.-A
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