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A Consistent Adjacency Spectral Embedding for
Stochastic Blockmodel Graphs

Daniel L. SUSSMAN, Minh TANG, Donniell E. FISHKIND, and Carey E. PRIEBE

We present a method to estimate block membership of nodes in a random graph generated by a stochastic blockmodel. We use an embedding
procedure motivated by the random dot product graph model, a particular example of the latent position model. The embedding associates
each node with a vector; these vectors are clustered via minimization of a square error criterion. We prove that this method is consistent
for assigning nodes to blocks, as only a negligible number of nodes will be misassigned. We prove consistency of the method for directed
and undirected graphs. The consistent block assignment makes possible consistent parameter estimation for a stochastic blockmodel. We
extend the result in the setting where the number of blocks grows slowly with the number of nodes. Our method is also computationally
feasible even for very large graphs. We compare our method with Laplacian spectral clustering through analysis of simulated data and a
graph derived from Wikipedia documents.

KEY WORDS: Graph; Latent position; Network; Random dot product.

1. BACKGROUND AND OVERVIEW

Network analysis is rapidly becoming a key tool in the anal-
ysis of modern datasets in fields ranging from neuroscience
to sociology to biochemistry. In each of these fields, there are
objects, such as neurons, people, or genes, and there are relation-
ships between objects, such as synapses, friendships, or protein
interactions. The formation of these relationships can depend on
attributes of the individual objects as well as higher-order prop-
erties of the network as a whole. Objects with similar attributes
can form communities with similar connective structure, while
unique properties of individuals can fine-tune the shape of these
relationships. Graphs encode the relationships between objects
as edges between nodes in the graph.

Clustering objects based on a graph enables identification of
communities and objects of interest as well as illumination of
overall network structure. Finding optimal clusters is difficult
and will depend on the particular setting and task. Even in mod-
erately sized graphs, the number of possible partitions of nodes
is enormous, so a tractable search strategy is necessary. Meth-
ods for finding clusters of nodes in graphs are many and varied,
with origins in physics, engineering, and statistics; Fortunato
(2010) and Fjallstrom (1998) provided comprehensive reviews
of clustering techniques. In addition to techniques motivated
by heuristics based on graph structure, others have attempted
to fit statistical models with inherent community structure to a
graph (Snijders and Nowicki 1997; Nowicki and Snijders 2001;
Handcock, Raftery, and Tantrum 2007; Airoldi et al. 2008).

These statistical models use random graphs to model relation-
ships between objects; Goldenberg (2009) provided a review of
statistical models for networks. A graph consists of a set of
nodes, representing the objects, and a set of edges, representing
relationships between the objects. The edges can be either di-
rected (ordered pairs of nodes) or undirected (unordered pairs of
nodes). In our setting, the node set is fixed and the set of edges
is random.

Daniel L. Sussman (E-mail: dsussma3@jhu.edu), Minh Tang (E-mail:
mtang10@jhu.edu), Donniell E. Fishkind (E-mail: def@jhu.edu), and Carey
E. Priebe (E-mail: cep@jhu.edu), Department of Applied Math and Statistics,
Johns Hopkins University, Baltimore, MD 21218-2682.

Hoff, Rafferty, and Handcock (2002) proposed what they
called a latent space model for random graphs. Under this model,
each node is associated with a latent random vector. There may
also be additional covariate information that we do not con-
sider in this work. The vectors are independent and identically
distributed, and the probability of an edge between two nodes
depends only on their latent vectors. Conditioned on the latent
vectors, the presence of each edge is an independent Bernoulli
trial.

One example of a latent space model is the random dot prod-
uct graph (RDPG) model (Young and Scheinerman 2007). Un-
der the RDPG model, the probability that an edge between two
nodes is present is given by the dot product of their respective
latent vectors. For example, in a social network with edges indi-
cating friendships, the components of the vector may be inter-
preted as the relative interest of the individual in various topics.
The magnitude of the vector can be interpreted as how talkative
the individual is, with more talkative individuals more likely to
form relationships. Talkative individuals interested in the same
topics are most likely to form relationships, while individuals
who do not share interests are unlikely to form relationships.

We present an embedding motivated by the RDPG model
that uses a decomposition of a low rank approximation of the
adjacency matrix. The decomposition gives an embedding of the
nodes as vectors in a low-dimensional space. This embedding
is similar to embeddings used in spectral clustering but operates
directly on the adjacency matrix rather than a Laplacian. We
discuss a relationship between spectral clustering and our work
in Section 7.

Our results are for graphs generated by a stochastic block-
model (Holland, Laskey, and Leinhardt 1983; Wang and Wong
1987). In this model, each node is assigned to a block, and the
probability of an edge between two nodes depends only on their
respective block memberships; in this manner, two nodes in the
same block are stochastically equivalent. In the context of the
latent space model, all nodes in the same block are assigned
the same latent vector. An advantage of this model is the clear
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and simple block structure, where block membership is deter-
mined solely by the latent vector.

Given a graph generated from a stochastic blockmodel, our
primary goal is to accurately assign all of the nodes to their cor-
rect blocks. Algorithm 1 gives the main steps of our procedure.
In summary, these steps involve computing the singular value
decomposition of the adjacency matrix, reducing the dimen-
sion, coordinate-scaling the singular vectors by the square root
of their singular value, and, finally, clustering via minimization
of a square error criterion. We note that Step 4 in the proce-
dure is a mathematically convenient stand-in for what might be
used in practice. Indeed, the standard K-means algorithm ap-
proximately minimizes the square error and we use K-means
for evaluating the procedure empirically. This article shows that
the node assignments returned by Algorithm 1 are consistent.

Consistency of node assignments means that the proportion of
misassigned nodes goes to zero (probabilistically) as the num-
ber of nodes goes to infinity. Others have already shown similar
consistency of node assignments. Snijders and Nowicki (1997)
provided an algorithm to consistently assign nodes to blocks un-
der the stochastic blockmodel for two blocks, and later Condon
and Karp (2001) provided a consistent method for equal-sized
blocks. Bickel and Chen (2009) showed that maximizing the
Newman–Girvan modularity (Newman and Girvan 2004) or the
likelihood modularity provides consistent estimation of block
membership. Choi, Wolfe, and Airoldi (2010) used likelihood
methods to show consistency with rapidly growing numbers of
blocks.

Maximizing modularities and likelihood methods are both
computationally difficult, but provide theoretical results for
rapidly growing numbers of blocks. Our method is related to
that of McSherry (2001), in that we consider a low rank ap-
proximation of the adjacency matrix, but their results do not
provide consistency of node assignments. Rohe, Chatterjee, and
Yu (2010) used spectral clustering to show consistent estimation
of block partitions with growing number of blocks; in this arti-
cle, we demonstrate that for both directed and undirected graphs,
our proposed embedding allows for accurate block assignment
in a stochastic blockmodel. These matrix decomposition meth-
ods are computationally feasible, even for graphs with a large
number of nodes.

Algorithm 1: The adjacency spectral clustering procedure for
directed graphs.

Input: A ∈ {0, 1}n×n
Parameters: d ∈ {1, 2, . . . , n}, K ∈ {2, 3, . . . , n}
Step 1: Compute the singular value decomposition, A =

Ũ′�̃′
Ṽ′T . Let �̃

′
have decreasing main diagonal.

Step 2: Let Ũ and Ṽ be the first d columns of Ũ′ and Ṽ′,
respectively, and let �̃ be the submatrix of �̃

′
given by the first

d rows and columns.
Step 3: Define Z̃ = [Ũ�̃

1/2|Ṽ�̃1/2
] ∈ Rn×2d to be the con-

catenation of the coordinate-scaled singular vector matrices.
Step 4: Let (ψ̂, τ̂ ) = argminψ ;τ

∑n
u=1 ‖Z̃u − ψτ (u)‖2

2 give the
centroids and block assignments, where Z̃u is the uth row of Z̃,
ψ̂ ∈ RK×d are the centroids and τ̂ is a function from [n] to [K].

return τ̂ , the block assignment function.

The remainder of the article is organized as follows. In
Section 2, we formally present the stochastic blockmodel, the
RDPG model, and our adjacency spectral embedding. In Sec-
tion 3, we state and prove our main theorem, and in Section 4,
we present some useful Corollaries. Sections 2–4 focus only on
directed random graphs; in Section 5, we present the model and
results for undirected graphs. In Section 6, we present simula-
tions and empirical analysis to illustrate the performance of the
algorithm. Finally, in Section 7, we discuss further extensions
to the theorem. In the Appendix, we prove some key technical
results to prove our main theorem.

2. MODEL AND EMBEDDING

First, we adopt the following conventions. For a matrix M ∈
Rn×m, entry i, j is denoted by Mij . Row i is denoted by MT

i ∈
R1×d , where Mi is a column vector. Column j is denoted as M·j
and occasionally we refer to row i as Mi·.

The node set is [n] = {1, 2, . . . , n}. For directed graphs edges
are ordered pairs of elements in [n]. For a random graph, the
node set is fixed and the edge set is random. The edges are en-
coded in an adjacency matrix A ∈ {0, 1}n×n. For directed graphs,
the entry Auv is 1 or 0 according as an edge from node u to node
v is present or absent in the graph. We consider graphs with no
loops, meaning Auu = 0 for all u ∈ [n].

2.1 Stochastic Blockmodel

Our results are for random graphs distributed according to a
stochastic blockmodel (Holland, Laskey, and Leinhardt 1983;
Wang and Wong 1987), where each node is a member of exactly
one block and the probability of an edge from node u to node v
is determined by the block memberships of nodes u and v for all
u, v ∈ [n]. The model is parameterized by P ∈ [0, 1]K×K , and
ρ ∈ (0, 1)K with

∑K
i=1 ρi = 1. K is the number of blocks, which

are labeled 1, 2, . . . , K . The block memberships of all nodes
are determined by the random block membership function τ :
[n] �→ [K]. For all nodes u ∈ [n] and blocks i ∈ [K], τ (u) = i

would mean node u is a member of block i; node memberships
are independent with P [τ (u) = i] = ρi .

The entry Pij gives the probability of an edge from a node
in block i to a node in block j for each i, j ∈ [K]. Conditioned
on τ , the entries of A are independent, and Auv is a Bernoulli
random variable with parameter Pτ (u),τ (v) for all u �= v ∈ [n].
This gives

P [A|τ ] =
∏
u �=v

P [Auv | τ (u), τ (v)]

=
∏
u �=v

(Pτ (u),τ (v))
Auv (1 − Pτ (u),τ (v))

1−Auv , (1)

with the product over all ordered pairs of nodes.
The row Pi· and column P·i determine the probabilities of the

presence of edges incident to a node in block i. In order that the
blocks be distinguishable, we require that different blocks have
distinct probabilities so that either Pi· �= Pj · or P·i �= P·j for all
i �= j ∈ [K].

Theorem 1 shows that using our embedding (Section 2.3) and
a mean square error clustering criterion (Section 2.4), we are
able to accurately assign nodes to blocks, for all but a negligible
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number of nodes, for graphs distributed according to a stochastic
blockmodel.

2.2 Random Dot Product Graphs

We present the RDPG model to motivate our embedding
technique (Section 2.3) and provide a second parameterization
for stochastic blockmodels (Section 2.5). Let X,Y ∈ Rn×d be
such that X = [X1,X2, . . . ,Xn]T and Y = [Y1,Y2, . . . ,Yn]T ,
where Xu,Yu ∈ Rd for all u ∈ [n]. The matrices X and Y are
random and satisfy P [〈Xu,Yv〉 ∈ [0, 1]] = 1 for all u, v ∈ [n].
Conditioned on X and Y, the entries of the adjacency matrix A
are independent and Auv is a Bernoulli random variable with
parameter 〈Xu,Yv〉 for all u �= v ∈ [n]. This gives

P [A | X,Y] =
∏
u �=v

P [Auv | Xu,Yv]

=
∏
u �=v

〈Xu,Yv〉Auv (1 − 〈Xu,Yv〉)1−Auv , (2)

where the product is over all ordered pairs of nodes.

2.3 Embedding

The RDPG model motivates the following embedding. By an
embedding of an adjacency matrix A, we mean

(X̃, Ỹ) = argmin
(X†,Y†)∈Rn×d×Rn×d

‖A − X†Y†T ‖F , (3)

where d, the target dimensionality of the embedding, is fixed
and known and ‖ · ‖F denotes the Frobenius norm. Though
X̃ỸT may be a poor approximation of A, Theorems 1 and 3
show that such an embedding provides a representation of the
nodes that enables clustering of the nodes, provided the random
graph is distributed according to a stochastic blockmodel. In
fact, if a graph is distributed according to an RDPG model, then
a solution to Equation (3) provides an estimate of the latent
vectors given by X and Y. We do not explore properties of this
estimate but instead focus on the stochastic blockmodel.

Eckart and Young (1936) provided the following solution to
Equation (3). Let A = Ũ′�̃′

Ṽ′T be the singular value decompo-
sition of A, where Ũ′, Ṽ′ ∈ Rn×n are orthogonal and �̃

′ ∈ Rn×n

is diagonal, with diagonals σ1(A) ≥ σ2(A) ≥ · · · ≥ σn(A) ≥ 0,
the singular values of A. Let Ũ ∈ Rn×d and Ṽ ∈ Rn×d be the
first d columns of Ũ′ and Ṽ′, respectively, and let �̃ ∈ Rd×d be
the diagonal matrix with diagonals σ1(A), . . . , σd (A). Equation
(3) is solved by X̃ = Ũ�̃

1/2
and Ỹ = Ṽ�̃

1/2
.

We refer to (X̃, Ỹ) as the “scaled adjacency spectral em-
bedding” of A. We refer to (Ũ, Ṽ) as the “unscaled adjacency
spectral embedding” of A. The adjacency spectral embedding
is similar to an embedding which is presented in Marchette,
Priebe, and Coppersmith (2011). It is also similar to spectral
clustering where the decomposition is on the normalized graph
Laplacian.

Theorem 1 uses a clustering of the unscaled adjacency spec-
tral embedding of A while Corollary 3 extends the result to
clustering on the scaled adjacency spectral embedding. Though
this embedding is proposed for embedding an adjacency matrix,
we use the same procedure to embed other matrices.

2.4 Clustering Criterion

We prove that for a graph distributed according to the stochas-
tic blockmodel, we can use the following clustering criterion on
the adjacency spectral embedding of A to accurately assign
nodes to blocks. Let Z ∈ Rn×m. We use the following mean
square error criterion for clustering the rows of Z into K blocks,

(ψ̂, τ̂ ) = argmin
ψ ;τ

n∑
u=1

‖Zu − ψτ (u)‖2
2, (4)

where ψ̂ ∈ RK×m, ψ̂ i ∈ Rm gives the centroid of block i and
τ̂ : [n] �→ [K] is the block assignment function.

Again, note that other computationally less expensive cri-
terion can also be quite effective. Indeed, in Section 6.1, we
achieve misclassification rates that are empirically better than
our theoretical bounds using the K-means clustering algorithm,
which only attempts to solve Equation (4). Additionally, other
clustering algorithms may prove useful in practice, though
presently we do not investigate these procedures.

2.5 Stochastic Blockmodel as RDPG Model

We present another parameterization of a stochastic block-
model corresponding to the RDPG model. Suppose we have
a stochastic blockmodel with rank(P) = d. Then there ex-
ist ν,µ ∈ RK×d such that P = νµT and by definition Pij =
〈νi ,µj 〉. Let τ : [n] �→ [K] be the random block membership
function.

Let X ∈ Rn×d and Y ∈ Rn×d have row u given by XT
u = νTτ (u)

and YT
u = µTτ (u), respectively, for all u. Then we have

P [Auv = 1] = Pτ (u),τ (v) = 〈ντ (u),µτ (v)〉 = 〈Xu,Yv〉. (5)

In this way, the stochastic blockmodel can be parameterized
by ν,µ ∈ RK×d and ρ provided that (νµT )ij ∈ [0, 1] for all
i, j ∈ [K]. This viewpoint proves valuable in the analysis and
clustering of the adjacency spectral embedding.

Importantly, the distinctness of rows or columns in P is equiv-
alent to the distinctness of the rows of ν or µ. (Indeed note
that for i �= j , Pi· − Pj · = 0 if and only if (νTi − νTj )µ = 0,
but rank(µ) = d so νTi = νTj . Similarly, P·i = P·j if and only if
µi = µj .) Also note, using the embedding of Section 2.3 on P
with target dimensionality rank(P) provides such a representa-
tion from any given P.

3. MAIN RESULTS

3.1 Notation

We use the following notation for the remainder of this article.
Let P ∈ [0, 1]K×K and ρ ∈ (0, 1)K be a vector with positive
entries summing to unity. Suppose rank(P) = d. Let νµT = P
with ν,µ ∈ RK×d . We now define the following constants not
depending on n:

1. α > 0 such that all eigenvalues of νT ν andµTµ are greater
than α,

2. β > 0 such that β < ‖νi − νj‖ or β < ‖µi − µj‖ for all
i �= j ,

3. γ > 0 such that γ < ρi for all i ∈ [K].
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We consider a sequence of random adjacency matrices A(n)

with node set [n] for n ∈ {1, 2, . . . }. The edges are distributed
according to a stochastic blockmodel with parameters P and ρ.
Let τ (n) : [n] �→ [K] be the random block membership function,
which induces the matrices X(n),Y(n) ∈ Rn×d as in Section 2.5.
Let ni = |{u : τ (u) = i}| be the size of block i.

Let XYT = U�V be the singular value of decomposition,
with U,V ∈ Rn×d and� ∈ Rd×d , so that (U,V) is the unscaled
spectral embedding of the XYT . Let (X̃, Ỹ) be the adjacency
spectral embedding of A and let (Ũ, Ṽ) be the unscaled adja-
cency spectral embedding of A. Finally, let W ∈ Rn×2d be the
concatenation [U|V] and similarly W̃ = [Ũ|Ṽ].

3.2 Main Theorem

The main contribution of this article is the following consis-
tency result in terms of the estimation of the block memberships
for each node based on the block assignment function τ̂ that as-
signs blocks based on W̃. In the following, an event occurs
“almost always” if with probability 1 the event occurs for all but
finitely many n ∈ {1, 2, . . . }.

Theorem 1. Under the conditions of Section 3.1, suppose that
the number of blocks K and the latent vector dimension d are
known. Let τ̂ (n) : V �→ [K] be the block assignment function
according to a clustering of the rows of W̃(n) satisfying Equation
(4). Let SK be the set of permutations on [K]. It almost always
holds that

min
π∈SK

|{u ∈ V : τ (u) �= π (τ̂ (u))}| ≤ 23326

α5β2γ 5
log n. (6)

To prove this theorem, we first provide a bound on the
Frobenius norm of AAT − (XYT )(XYT )T , following Rohe,
Chatterjee, and Yu (2010). Using this result and properties of
the stochastic blockmodel, we then find a lower bound for the
smallest nonzero singular value of XYT and the corresponding
singular value of A. This enables us to apply the Davis–Kahan
theorem (Davis and Kahan 1970) to show that the unscaled ad-
jacency spectral embedding of A is approximately a rotation of
the unscaled adjacency spectral embedding of XYT .

Finally, we lower bound the distances between the at most K
distinct rows of U and V. These gaps, together with the good
approximation by the embedding of A, are sufficient to prove
consistency of the mean square error clustering of the embedded
vectors. Most results, except the important Proposition 1 and the
main theorem, are proved in the Appendix.

Proposition 1. Let Q(n) ∈ [0, 1]n×n be a sequence of random
matrices and let A(n) ∈ {0, 1}n×n be a sequence of random adja-
cency matrices corresponding to a sequence of random graphs
on n nodes for n ∈ {1, 2, . . . }. Suppose the probability of an
edge from node u to node v is given by Q(n)

uv and that the pres-
ence of edges are conditionally independent given Q(n). Then
the following holds almost always:

‖A(n)A(n)T − Q(n)Q(n)T ‖F ≤
√

3n3/2
√

log n. (7)

Proof. Note that, conditioned on Q, Auw and Avw are inde-
pendent Bernoulli random variables for all w ∈ [n] provided
u �= v. For each w /∈ {u, v}, AuwAvw is a conditionally inde-

pendent Bernoulli with parameter QuwQvw. For u �= v, we have

AAT
uv − QQT

uv =
∑

w/∈{u,v}
(AuwAvw − QuwQvw)

− QuuQvu − QuvQvv. (8)

Thus, by Hoeffding’s inequality,

P
[(

AAT
uv−QQT

uv

)2 ≥ 2(n−2) log n+ 2n+ 4 | Qn

] ≤ 2n−4.

(9)

We can integrate over all choices of Qn so that Equation (9)
holds unconditionally.

For the diagonal entries, (AAT
uu − QQT

uu)2 ≤ n2 always. The
diagonal terms and the 2n+ 4 terms from Equation (9) all sum
to at most 3n3 + 4n2 ≤ n3 log n for n large enough. Combining
these inequalities, we get the inequality

P
[‖AAT − QQT ‖2

F ≥ 3n3 log n
] ≤ 2n−2. (10)

Applying the Borel–Cantelli Lemma gives the result. �

Taking Q = XYT gives the following immediate corollary.

Corollary 1. It almost always holds that

‖AAT − XYT (XYT )T ‖F ≤
√

3n3/2
√

log n (11)

and

‖ATA − (XYT )TXYT ‖F ≤
√

3n3/2
√

log n. (12)

The next two results provide bounds on the singular values
of XYT and A based on lower bounds for the eigenvalues of P
and the block membership probabilities.

Lemma 1. It almost always holds that αγn ≤ σd (XYT ) and
it always holds that σd+1(XYT ) = 0 and σ1(XYT ) ≤ n.

Corollary 2. It almost always holds that

αγn ≤ σd (A) and σd+1(A) ≤ 31/4n3/4 log1/4 n (13)

and it always holds that σ1(A) ≤ n.

We note that Corollary 2 immediately suggests a consistent
estimator of the rank of XYT given by d̂ = max{d ′ : σd ′ (A) >
31/4n3/4 log1/4 n}. Presently we do not investigate the use of this
estimator and assume that the d = rankP is known.

The following is the version of the Davis–Kahan theorem
(Davis and Kahan 1970) as stated in Rohe, Chatterjee, and Yu
(2010).

Theorem 2 (Davis and Kahan). Let H,H′ ∈ Rn×n be sym-
metric, suppose S ⊂ R is an interval, and suppose for some
positive integer d that W,W′ ∈ Rn×d are such that the columns
of W form an orthonormal basis for the sum of the eigenspaces
of H associated with the eigenvalues of H in S and that the
columns of W′ form an orthonormal basis for the sum of the
eigenspaces of H′ associated with the eigenvalues of H′ inS. Let
δ be the minimum distance between any eigenvalue of H in S
and any eigenvalue of H not inS. Then there exists an orthogonal
matrix R ∈ Rd×d such that ‖WR − W′‖F ≤

√
2
δ

‖H − H′‖F .

For completeness, we provide a brief discussion of this impor-
tant result in Section A.2 in the Appendix. Applying Theorem 2
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and Lemma 1 to AAT and XYT (XYT )T , we have the following
result.

Lemma 2. It almost always holds that there exists an orthogo-

nal matrix R ∈ R2d×2d such that ‖WR − W̃‖ ≤ √
2

√
6

α2γ 2

√
log n
n

.

Recall that XYT = U�VT . We now provide bounds for the
gaps between the at most K distinct rows of U and V.

Lemma 3. It almost always holds that, for all u, v such that
Xu �= Xv , ‖Uu − Uv‖ ≥ β

√
αγn−1/2. Similarly, for all Yu �=

Yv , ‖Vu − Vv‖ ≥ β
√
αγn−1/2. As a result, ‖Wu − Wv‖ ≥

β
√
αγn−1/2 for all u, v such that τ (u) �= τ (v).

We now have the necessary ingredients to show our main
result.

Proof of Theorem 1. Let ψ̂ and τ̂ satisfy the clustering crite-
rion for W̃ (where W̃ = [Ũ|Ṽ] takes the role of Z in Section 2.4).
Let C ∈ Rn×2d have row u given by Cu = ψ̂τ (u). Then Equation
(4) gives that ‖C − W̃‖F ≤ ‖WR − W̃‖F as W has at most K
distinct rows. Thus, Lemma 2 gives that

‖C − WR‖F ≤ ‖C − W̃‖F + ‖W̃ − WR‖F
≤ 23/2

√
6

α2γ 2

√
log n

n
. (14)

Let B1,B2, . . . ,BK be balls of radius r = β

3

√
αγn−1/2 each

centered around the K distinct rows of W. By Lemma 3, these
balls are almost always disjoint.

Now note that almost always the number of rows u such that
‖Cu − WuR‖ > r is at most 23326

α5β2γ 5 log n. If this were not so,
then infinitely often we would have

‖C − WR‖F > 23326

α5β2γ 5
log n

β

3
√
αγn−1/2

= 23/2

√
6

α2γ 2

√
log n

n
, (15)

in contradiction to Equation (14). Since ni > γn > 23326
α5β2γ 5 log n

almost always, each ball Bi can contain exactly one of the K
distinct rows of C. This gives the number of misclassifications
as 23326

α5β2γ 5 log n as desired. �
This gives that a clustering of the concatenation of the ma-

trices Ũ and Ṽ from the singular value decomposition gives an
accurate block assignment. One may also cluster the scaled sin-
gular vectors given by X̃ and Ỹ without a change in the order of
the number of misclassifications.

4. EXTENSIONS

Corollary 3. Under the conditions of Theorem 1, let τ̂ : V →
[K] be a clustering of Z̃ = [X̃|Ỹ]. Then it almost always holds
that

min
π∈SK

|{u ∈ V : π (τ̂ (u)) �= τ (u)}| ≤ 23326

α6β2γ 6
log n. (16)

The proof relies on the fact that the square roots of the singular
values are all of the same order and differ by a multiplicative
factor of at most

√
αγ .

We now present consistent estimators of the parameters P
and ρ for the stochastic blockmodel. Consider the following
estimates

n̂k = |{u : τ̂ (u) = k}|, ρ̂k = n̂k

n
(17)

and

P̂ij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

n̂i n̂j

∑
(u,v)∈τ̂−1(i)×τ̂−1(j )

Auv, if i �= j or,

1

n̂2
i − n̂i

∑
(u,v)∈τ̂−1(i)×τ̂−1(j )

Auv, if i = j.

(18)

This gives the following corollary.

Corollary 4. Under the conditions of Theorem 1,

min
π∈SK

|ρi − ρ̂π(i)| a.s.−→ 0 (19)

and

min
π∈SK

|P̂π(i)π(j ) − Pij | a.s.−→ 0 (20)

for all i, j ∈ [K] as n → ∞.

The proof is immediate from Theorem 1 and the law of large
numbers.

If we take (ν̂, µ̂) to be the adjacency spectral embedding of P̂,
then we also have that ν̂ and µ̂ provide consistent estimates for
(ν,µ), the adjacency spectral embedding of P, in the following
sense.

Corollary 5. Under the conditions of Theorem 1, with
probability 1, there exists a sequence of orthogonal matrices
R(n)

1 ,R(n)
2 ∈ Rd×d such that∥∥ν̂ − νR(n)

1

∥∥
F

→ 0 and
∥∥µ̂− µR(n)

2

∥∥
F

→ 0. (21)

The proof relies on applications of the Davis–Kahan theorem
in a similar way to Lemma 2.

5. UNDIRECTED VERSION

We now present the undirected version of the stochastic block-
model and state the main result. The setting and notation are
from Section 3.1.

For the undirected version of the stochastic blockmodel, the
matrix P is symmetric and Pij = Pji gives the probability of
an edge between a node in block i and a node in block j for
each i, j ∈ [K]. Conditioned on τ , Auv is a Bernoulli random
variable with parameter Pτ (u),τ (v) for all u �= v ∈ [n]. As A is
symmetric, all entries of A are not independent, but the entries
are independent provided two entries do not correspond to the
same undirected edge.

For the undirected version, a reparameterization of the
stochastic block model as a RDPG model as in Section 2.5
is not always possible. However, we can find ν,µ ∈ RK×d such
that νµT = P and ν and µ have equal columns up to a possible
change in sign in each column. This means that the rows of ν
and µ are distinct so it is not necessary to cluster on the con-
catenated embeddings. Instead, we consider clustering the rows
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Figure 1. Mean error for 100 Monte Carlo replicates using K-means on four different embedding procedures.

of Ũ or X̃, which improves the misclassification rate by a factor
of two.

Theorem 3. Under the undirected version of the stochastic
blockmodel, suppose that the number of blocks K and the latent
vector dimension d are known. Let τ̂ : V �→ [K] be a block
assignment function according to a clustering of the rows of Ũ
satisfying the criterion in Equation (4). It almost always holds
that

min
π∈SK

|{u ∈ V : τ (u) �= π (τ̂ (u))}| ≤ 22326

α5β2γ 5
log n. (22)

Corollary 3 holds when clustering on X̃, with the same factor
of 2 improvement in misclassification rate. Corollaries 10 and
11 also hold without change.

6. EMPIRICAL RESULTS

We evaluated this procedure and compared it to the spectral
clustering procedure of Rohe, Chatterjee, and Yu (2010) for both
simulated data (Section 6.1) and using a Wikipedia hyperlink
graph (Section 6.2).

6.1 Simulated Data

To illustrate the effectiveness of the adjacency spectral em-
bedding, we simulate random undirected graphs generated from
the following stochastic blockmodel:

P =
(

0.42 0.42

0.42 0.5

)
and ρ = (0.6, 0.4)T . (23)

For each n ∈ {500, 600, . . . , 2000}, we simulated 100 Monte
Carlo replicates from this model conditioned on the fact that
|{u ∈ [n] : τ (u) = i}| = ρin for each i ∈ {1, 2}. In this model,
we assume that d = 2 and K = 2 are known.

We evaluated four different embedding procedures, and for
each embedding, we used K-means clustering, which attempts
to iteratively find the solution to Equation (4), to generate the
node assignment function τ̂ . The four embedding procedures are
the scaled and unscaled adjacency spectral embedding as well
as the scaled and unscaled Laplacian spectral embedding. The

Laplacian spectral embedding uses the same spectral decompo-
sition but works with the normalized Laplacian [as defined in
Rohe, Chatterjee, and Yu (2010)] rather than the adjacency ma-
trix. The normalized Laplacian is given by L = D−1/2AD−1/2

where D ∈ Rn×n is diagonal with Dvv = deg(v), the degree of
node v.

We evaluated the performance of the node assignments by
computing the percentage of misassigned nodes, minπ∈S2 |{u ∈
[n] : τ (u) �= π (τ̂ (u))}|/n, as in Equation (6). Figure 1 demon-
strates that the performance of K-means on all four embeddings
improves with increasing number of nodes. It also demonstrates
(via a paired Wilcoxon test) that for these model parameters,
the adjacency embedding is superior to the Laplacian embed-
dings for large n. In fact, for n ≥ 1400, we observed that for
each simulated graph, the scaled adjacency embedding always
performed better than both Laplacian embeddings. We note that
these model parameters were specifically constructed to demon-
strate a case where the adjacency embedding is superior to the
Laplacian embedding.

Figure 2 shows an example of the scaled adjacency (left) and
the scaled Laplacian (right) spectral embeddings. The graph has
2000 nodes and the points are colored according to their block
membership. The dashed line shows the discriminant boundary
given by the K-means algorithm with K = 2.

6.2 Wikipedia Graph

For this data, each node in the graph corresponds to a
Wikipedia page and the edges correspond to the presence of a
hyperlink between two pages (in either direction). We consider
this as an undirected graph. Every article within two hyperlinks
of the article “Algebraic Geometry” was included as a node in
the graph. This resulted in n = 1382 nodes. Additionally, each
document, and hence each node, was manually labeled as one
of the following: Category, Person, Location, Date, and Math.

To illustrate the utility of this algorithm, we embedded this
graph using the scaled adjacency and Laplacian procedures.
Figure 3 shows the two embeddings for d = 2. The points are
colored according to their manually assigned labels. First we
note that on the whole, the two embeddings look moderately
different. In fact, for the adjacency embedding, one can see that
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Figure 2. Scatterplots of the scaled adjacency (left) and Laplacian (right) embeddings of a 2000 node graph.

the orange points are well separated from the remaining data.
On the other hand, with the Laplacian embedding, we can see
that the red points are somewhat separated from the remaining
data. The dashed lines show the result boundary as determined
by K-means with K = 2.

To evaluate the performance, we considered the five different
tasks of identifying one block and grouping the remaining blocks
together. For each of the five blocks, we compared each of the
one-versus-all block labels with the estimated labels from K-
means, with K = 2, on the two embeddings. Table 1 shows
the number of incorrectly assigned nodes, as in Equation (6),
as well as the adjusted Rand index (ARI) (Hubert and Arabie
1985). The ARI has the property that the optimal value is 1 and

a value of zero indicates the expected value if the labels were
assigned randomly.

We can see from this table that K-means on the adjacency
embedding identifies the separation of the Date block from the
other four, while on the Laplacian embedding, K-means identi-
fies the separation of the Math block from the other four. This
indicates that for this dataset (and indeed more generally), the
choice of embedding procedure will depend greatly on the de-
sired exploitation task.

We note that for both embeddings, the clusters generated us-
ing K-means, withK = 5, poorly reflect the manually assigned
block memberships. We have not investigated beyond the illus-
trative two-dimensional embeddings.
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Figure 3. Scatterplots for the Wikipedia graph. The left panel shows the scaled adjacency embedding, and the right panel shows the scaled
Laplacian embedding. Each point is colored according to the manually assigned labels. The dashed line represents the discriminant boundary
determined by K-means with K = 2.
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Table 1. One versus all comparison of each block against the estimated K-means block assignments with K = 2

Category (119) Person (372) Location (270) Date (191) Math (430)

Error ARI Error ARI Error ARI Error ARI Error ARI

A 242 −0.08 495 −0.07 341 0.01 130 0.47 543 0.06
L 299 −0.02 495 −0.02 476 −0.1 401 −0.10 350 0.19

NOTE: A, adjacency embedding; L, Laplacian embedding. Bold formatting indicates highest ARI, for each row (A versus L).

7. DISCUSSION

Our simulations demonstrate that for a particular example
of the stochastic blockmodel, the proportion of misassigned
nodes will rapidly become small. Though our bound shows
that the number of misassigned nodes will not grow faster than
O(log n), in some instances, this bound may be very loose. We
also demonstrate that using the adjacency embedding over the
Laplacian embedding can provide performance improvements
in some settings. It is also clear from Figure 2 that the use of other
unsupervised clustering techniques, such as Gaussian mixture
modeling, will likely lead to further performance improvements.

On the Wikipedia graph, the two-dimensional embedding
demonstrates that the adjacency embedding procedure provides
an alternative to the Laplacian embedding and the two may
have fundamentally different properties. Both the Date and the
Math block have some differentiating structure in the graph, but
these structures are illuminated more in one embedding than
the other. This analysis suggests that further investigations into
comparisons between the adjacency embedding and the Lapla-
cian embeddings will be fruitful.

Our empirical analysis indicates that while the adjacency
spectral embeddings and the Laplacian spectral embeddings are
strongly related, the two embeddings may emphasize differ-
ent aspects of the particular graph. Rohe, Chatterjee, and Yu
(2010) used similar techniques to show consistency of block
assignment on the Laplacian embedding and achieved the same
asymptotic rates of misclassification. Indeed, if one considers
the embedding given by D−1/2X̃, then this embedding will be
very close to the scaled Laplacian embedding and may provide
a link between the two procedures.

Note that consistent block assignments are possible using
either the singular vectors or the scaled version of the singu-
lar vectors. The singular vectors themselves are essentially a
whitened version of scaled singular vectors. Since the singular
vectors are orthogonal, the estimated covariance of rows of the
scaled vectors is proportional to the diagonal matrix given by the
singular values of A. This suggests that clustering using a cri-
terion invariant to coordinate-scalings and rotations will likely
have similar asymptotic properties.

Critical to the proof is the bound provided by Proposition 2.
Since this bound does not depend on the method for generating
Q, it suggests that extensions to this theorem are possible. One
such extension is to take the number of blocks K = Kn to go
slowly to infinity. For Kn growing, the parameters α, β, and
γ are no longer constant in n, so we must impose conditions
on these parameters. If we take d fixed and assume that these
parameters go to zero slowly, it is possible to allow Kn = nε

for ε sufficiently small. Under these conditions, it can be shown

that the number of incorrect block assignments is o(nγ ), which
is negligible to block sizes. Our proof technique breaks down
for Kn = �(n1/4), as Proposition 2 no longer implies a gap in
the singular values of A.

To avoid the model selection quagmire, we assumed in Theo-
rem 1 that the number of blocks K and the latent feature dimen-
sion d are known. However, the proof of this theorem suggests
that both K and d can be estimated consistently. Corollary 2
shows that all but d of the singular values of A are less than
31/4n3/4 log1/4 n for n large enough. As discussed earlier, this
shows that d̂ = max{i : σi(A) > 31/4n3/4 log1/4 n} will be a con-
sistent estimator for d. Though this estimator is consistent, the
required number of nodes for it to become accurate will depend
highly on the sparsity of the graph, which controls the magni-
tude of the largest singular values of A. Furthermore, our bounds
suggest that the number of nodes required for this estimate to
be accurate will increase exponentially as the expected graph
density decreases.

Estimating K is more complicated, and we do not present a
formal method to do so. We do note that the proof shows that
most of the embedded vectors are concentrated around K sep-
arated points. An appropriate covering of the points by slowly
vanishing balls would allow for a consistent estimate of K. More
work is needed to provide model selection criteria that are prac-
tical to the practitioner.

Note that some practitioners may have estimates or bounds
for the parameters P and æ, derived from some prior study. In
this case, provided bounds on α, β, and γ can be determined,
the proof can be used to derive high probability bounds on the
number of nodes that have been assigned to the incorrect block.
This may also enable the practitioner to choose n to optimize
some mis-assignment and cost criteria.

The proofs above would remain valid if the diagonals of the
adjacency matrix are modified provided that each modification is
bounded. In fact, modifying the diagonals may improve the em-
bedding to give lower numbers of mis-assignments. Marchette,
Priebe, and Coppersmith (2011) suggested replacing the diag-
onal element Auu with deg(u)/(n− 1) for each node u ∈ [n].
Scheinerman and Tucker (2010) provided an iterative algorithm
to impute the diagonal. An optimal choice of the diagonal is not
known for general stochastic blockmodels.

Another practical concern is the possibility of missing data
in the observed graph. One example may be that each edge
in the true graph is only observed with probability p in the
observed graph. Our theory will be unaffected by this type of
error since the observed graph is also distributed according to
a stochastic blockmodel with edge probabilities P′ = pP. As a
result, asymptotic consistency remains valid. We may also allow
p to decrease slowly with n and still achieve asymptotically
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negligible misassignments. However, typically the finite sample
performance will suffer if p is small.

Overall, the theory and results presented suggest that this
embedding procedure is worthy of further investigation. The
problems of estimating K and d, choosing between scaled and
unscaled embedding, and choosing between the adjacency and
the Laplacian will all be considered in future work. This work
is also being generalized to more other latent position models.

Finally, under the stochastic blockmodel, our method will be
less computationally demanding than ones that depend on maxi-
mizing likelihood or modularity criterion. Fast methods to com-
pute singular value decompositions are possible, especially for
sparse matrices. There are a plethora of methods for efficiently
clustering points in Euclidean space. Overall, this embedding
method may be valuable to the practitioner to provide a rapid
method to identify blocks in networks.

APPENDIX

A.1 Proofs of Technical Lemmas

In this appendix, we prove the technical results stated in Section 3.2.

Lemma 1. It almost always holds thatαγn ≤ σd (XYT ) and it always
holds that σd+1(XYT ) = 0 and σ1(XYT) ≤ n.

Proof. Since XYT ∈ [0, 1]n×n, the nonnegative matrix XYT (XYT )T

has entries bounded by n. The row sums are bounded by n2 giving that
σ 2

1 (XYT ) = λ1(XYT (XYT )T ) ≤ n2. Since X and Y are at most rank d,
we have σd+1(XY) = 0.

The nonzero eigenvalues of XYT (XYT )T = XYT YT X are the same
as the nonzero eigenvalues of YT YXT X. It almost always holds that
ni ≥ γ n for all i so that

XT X =
K∑
i=1

niνiν
T
i = γ nνT ν +

K∑
i=1

(ni − γ n)νiν
T
i (A.1)

is the sum of two positive semidefinite matrices, the first of which
has eigenvalues all greater than αγn. This gives λd (XT X) ≥ αγn and
similarly λd (YT Y) ≥ αγn. This gives that YT YXT X is the product
of positive definite matrices. We then use a bound on the smallest
eigenvalues of the product of two positive semidefinite matrices so
that λd (YT YXT X) ≥ λd (YT Y)λd (XT X) ≥ (αγn)2 (Zhang and Zhang
2006, corollary 11). This establishes σ 2

d (XYT ) ≥ (αγn)2. �

Corollary 2. It almost always holds thatαγn ≤ σd (A) andσd+1(A) ≤
31/4n3/4 log1/4 n and it always holds that σ1(A) ≤ n.

Proof. First, by the same arguments as in Lemma 1, we have
σ1(A) ≤ n. By Weyl’s inequality (Horn and Johnson 1985, sec. 6.3),
we have that

|σ 2
i (A) − σ 2

i (XYT )| = |λi(AAT ) − λi(XYT (XYT )T )|
≤ ‖AAT − XYT (XYT )T ‖F . (A.2)

Together with Corollary 1 this shows that σd+1(A) ≤ 31/4n3/4 log1/4 n

almost always. Since γ < ρi for each i, Lemma 1 can be strengthened
to show that there exists ε > 0, not dependent on n, such that (αγ +
ε)n < σd (XYT ). Thus, we have that (αγ + ε)2n2 < σ 2

d (XYT ) so that
(αγ )2n2 ≤ σ 2

d (A) since
√

3n3/2√log n < ε2n2 for n large enough. �

The singular value decomposition of XYT is given by U�VT . The
next result provides bounds for the gaps between the at most K distinct

rows of U and V. Recall that for a matrix M, row u is given MT
u

for all u.

Lemma 3. It almost always holds that, for allu, v such that Xu �= Xv ,
‖Uu − Uv‖ ≥ β

√
αγn−1/2. Similarly, for all Yu �= Yv , ‖Vu − Vv‖ ≥

β
√
αγn−1/2. As a result, ‖Wu − Wv‖ ≥ β

√
αγn−1/2 for all u, v such

that τ (u) �= τ (v).

Proof. Let YT Y = ED2ET for E ∈ Rd×d orthogonal, D ∈ Rd×d di-
agonal. Define G = XE, G′ = GD, and U′ = U�. Let u, v be such
that Xu �= Xv . From Lemma 1 and its proof, diagonals of D are almost
always at least

√
αγn and the diagonals of � are at most n.

Now,

G′G′T = GD2GT = XED2ET XT = XYT YXT

= U�VT V�UT = U�2UT = U′U′T . (A.3)

Let e ∈ Rn denote the vector with all zeros except 1 in the
uth coordinate and −1 in the vth coordinate. By the above, we
have ‖G′

u − G′
v‖2 = eT G′G′T e = eT U′U′T e = ‖U′

u − U′
v‖2. There-

fore we obtain that β ≤ ‖Xu − Xv‖ = ‖Gu − Gv‖ ≤ 1√
αγn

‖G′
u −

G′
v‖ = 1√

αγn
‖U′

u − U′
v‖ ≤ 1√

αγn
n‖Uu − Uv‖, as desired.

A symmetric argument holds for ‖Vu − Vv‖. For ‖Wu − Wv‖, note
that if τ (u) �= τ (v), then either Uu �= Uv or Vu �= Vv . �

Lemma 2. It almost always holds that there exists an orthogonal

matrix R ∈ R2d×2d such that ‖WR − W̃‖ ≤ √
2

√
6

α2γ 2

√
log n
n

.

Proof. Let S = ( 1
2α

2γ 2n2,∞). By Lemma 1 and Corollary 2, it al-
most always holds that exactly d eigenvalues of AAT and XYT (XYT )T

are in S. Additionally, Lemma 1 shows that the gap δ > α2γ 2n2. To-
gether with Corollary 1, we have that

√
2
‖AAT − XYT (XYT )T ‖F

δ
≤

√
2

√
3n3/2√log n

α2γ 2n2
. (A.4)

This shows that there exists an R1 ∈ Rd×d such that ‖UR1 − Ũ‖F ≤
√

6
α2γ 2

√
log n
n

.

Now note that all of the above could be repeated for AT A and

(XYT )T XYT , to find R2 ∈ Rd×d such that ‖VR2 − Ṽ‖F ≤
√

6
α2γ 2

√
log n
n

.
Taking R as the direct sum of R1 and R2 gives the result. �

A.2 Davis–Kahan Theorem

We now state and provide a brief discussion of the Davis–Kahan
theorem (Davis and Kahan 1970; Rohe, Chatterjee, and Yu 2010). First,
we consider some general results from the theory of Grassman spaces
(Qiu, Zhang, and Li 2005). Let Gd,n denote the set of d-dimensional
subspaces of Rn. Two important metrics on Gd,n are the gap metric
dg and the Hausdorff metric dh, which are defined as follows. For all
W,W ′ ∈ Gd,n,

dg(W,W ′) =
√√√√ d∑

i=1

sin2 θi(W,W ′)

and

dh(W,W ′) =
√√√√ d∑

i=1

(
2 sin

θi(W,W ′)
2

)2

, (A.5)

where θ1(W,W ′), θ2(W,W ′), . . . θd (W,W ′) denote the principal
angles between W and W ′. By simple trigonometry dh(W,W ′) ≤√

2 · dg(W,W ′). Suppose W,W′ ∈ Rn,d have columns that are or-
thonormal bases for W and W ′, respectively. It is well known that
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dh(W,W ′) = minR ‖WR − W′‖F where the minimum is over all or-
thogonal matrices R ∈ Rd×d .

The next theorem states the original form of the theorem from Davis
and Kahan (1970) followed by the version proved in Rohe, Chatterjee,
and Yu (2010).

Theorem 2 (Davis and Kahan). Let H,H′ ∈ Rn×n be symmetric,
suppose S ⊂ R is an interval, and suppose for some positive integer d
that W ∈ Gd,n is the sum of the eigenspaces of H associated with the
eigenvalues of H in S, and that W ′ ∈ Gd,n is the sum of the eigenspaces
of H′ associated with the eigenvalues of H′ in S. If δ is the minimum
distance between any eigenvalue of H in S and any eigenvalue of H
not in S, then δ · dg(W,W ′) ≤ ‖H − H′‖F .

Furthermore, suppose W,W′ ∈ Rn×d are such that the columns of
W form an orthonormal basis for W and that the columns W′ form
an orthonormal basis for W ′. Then there exists an orthogonal matrix
R ∈ Rd×d such that ‖WR − W′‖F ≤

√
2
δ

‖H − H′‖F .

From the preceding analysis, we see that the version from Rohe,
Chatterjee, and Yu (2010) follows from the original theorem; in-
deed, we have for some orthogonal R ∈ Rd×d that ‖WR − R′‖F =
dh(W,W ′) ≤ √

2dg(W,W ′) ≤
√

2
δ

‖H − H′‖F .

[Received September 2011. Revised April 2012.]
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