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A CONSISTENT CONDITIONAL MOMENT TEST OF FÜNCTIONAL FORM 

by Herman J. BIERENS 1 ) 

1. INTRODUCTION 

Conditional moment (CM) tests of functional form exploit the property that 

for correctly specified models the conditional expectation of certain 

functions of the observations should be almost surely equal to zero. A chi-

square misspecification test can then be based on weighted means of these 

functions. As has been shown by Newey (1985), most model misspecification 

tests are special forms of CM tests. 

The power of the CM test depends heavily on the choice of the weighting 

functions. In particular, the CM test is not consistent against all 

possible alternatives. Since the CM test imposes only finitely many moment 

conditions, it is always possible to construct alternative data generating 

processes for which these moment conditions hold while the null is false. 

To the best of our knowledge the only consistent model misspecifi

cation tests are those of Bierens (1982,1984,1987,1988) and Bierens and 

Hartog (1988). The tests of Bierens (1982,1984) are genuine consistent 

tests, but the null distribution of the test statistics involved is intrac-

table and had to be approximated using Chebishev's inequality for first 

moments. The tests of Bierens (1987, 1988) and Bierens and Hartog (1988) 

have tractable null distributions, but their consistency is due to random-

ization of test parameters. 

In the present paper it will be shown that any CM test of functional 

form of nonlinear regression models can be converted into a chi-square test 

that is consistent against all deviations from the null. The consistency of 

this test does not rely on randomization. 

The plan of the paper is as follows. In Section 2 we state the hypo

theses to be tested. In Sections 3 and 4 we show how to convert the CM test 

into a consistent test. In Section 5 we present and interprete the results 

of a limited Monte Carlo analysis. Finally, in Section 6 we show what kind 

of information about the true model the test provides if the null hypo

thesis is rejected. Appendix A contains formal statements of the 

assumptions maintained in our analysis. These assumptions are jointly 

referred to as "Assumption A". Appendix B contains the proofs of the 

lemmas. 
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2. THE HYPOTHESES TO BE TESTED 

In developing our consistent version of the CM test we confine our 

attention to a random sample {(yx,x1),..,(yn,3^)} from a distribution 

F(y,x) on RxRk for which Jy2dF(y,x) < ». lt seems possible to extend the 

results below to the heterogeneous and/or time series case, using the 

approach in Bierens (1981,01.3,1984,1987,1988), but incorporating these 

extensions in the present paper would diverge attention from the main 

theme. 

In parametric regression analysis it is assumed that the regression 

function g(x) - E(Yj IXJ"01) belongs to a parametric family of known real 

functions f(x,0) on Rkx6, where 6 c Rm is the parameter space. Denote by 

D(g) the set of all probability distribution functions F(y,x) on RxRk such 

that for a random drawing (y,x) from F, E[y2] < °° and P[E(y|x)=g(x)]=1. The 

null hypothesis to be tested is that the parametric specification involved 

is correct: 

(1) H0 : The distribution F belongs to the set U0-=U. D(£(. ,$)) . 

In other words, the data generating process characterized by F is such that 

P[E(yj|xj) - f(Xj,0o)] = 1 for some 80 e 6. The alternative hypothesis we 

wish to test is that the null is false, i.e., 

(2) E1: The distribution F belongs to the set Dx~(U&D(g))\D0 , 

where the union is over all Borel measurable real functions g on Rk. This 

is equivalent to the statement that F belongs to the class of distributions 

for which P[E(yj |XJ) - f(Xj,8)] < 1 for all 8 e 6. 

Given a significance level a and corresponding critical region CQ, the 

asymptotic power function p(F) - limn_*30P(W € Ca) of a test of H0 with test 

statistic W depends on the distribution F. Clearly, FeD0 implies p(F)=a. 

If p(F) - 1 for all FeDi , then the test involved is said to be consistent. 
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3. TOWARDS A CONSISTENT CONDITIONAL MOMENT TEST 

Newey's (1985) CM test of functional form of the nonlinear regression model 

under review imposes a finite number (say p) of moment conditions of the 

form 

(3) E[(y1-f(x1,e0))wi(x1,ö0)] - 0, i«l,2,..,p, 

where 

(4) 60 - argminöeeE{ty1-f(x1,fl)]
2} 

and the w±(x,ö) are weighting functions. Clearly, under H0 the moment 

conditions (3) always hold. The weighting functions wi(x,ö) are chosen such 

that under H2 at least one of the conditions (3) (likely) fails to hold. 

Obviously, the more weighting functions wi(x,6) we use, the more likely 

these moment conditions will be violated under E1. 

Under mild regularity conditions [cf. Jennrich (1969), White (1981, 
A 

1982) and appendix A] the nonlinear least squares estimator 8 is a 

consistent and asymptotically normally distributed estimator of 80 , even if 

the model is misspecified. A chi-square test can now be based on the sample 
A A 

moments (l/n)J%ml(yj-f(Xj ,8))v± (Xj,6), 1-1,2 p. 

Most model specification tests of functional form can be put in this 

framework. For example, Ramsey's (1969,1970) model specification tests are 

special cases of the CM test, and so is White's (1981) version of Hausman's 

(1978) test. See also Ruud (1984) for a review of Hausman-type tests and 

Newey (1985) for other examples of CM tests. 

As mentioned before, the power of the CM test depends heavily on the 

choice of the weighting functions. In particular, this test cannot be 

consistent against all possible alternatives, due to the fact that only 

finitely many moment conditions are imposed. This suggests the use of an 

infinite set of moment conditions as a possible solution of the inconsis-

tency problem. The following fundamental lemma indicates what kind of 

moment conditions are suitable. 
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LEMMA 1: Let v be a random variable or vector satisfying E'|v| < « 

and let x be a bounded random vector in Rk such that P[E(v|x)=0] < 1. Then 

the set S - {t e Rk: E[vexp(t'x) ] - 0} has Lebesgue measure zero. 

Assume that the model is misspecified. Then P{E[yx-f(xx,60)|xx]-0} < 1. 

Let $ be an arbitrary Borel measurable bounded one-to-one mapping from Rk 

into Rk. For example, we may choose 

(5) $(x) - $(x(1> ,..,x<k>) -(tan-1(x(1)),.-,tan-1(x(k)))'. 

Then conditioning on xx is equivalent to conditioning on the bounded random 

vector $(xx), for xx and $(xx) generate the same Borel field. Thus: 

(6) P.{E{y1-f(xlttf0)|«(x1)] - 0} < 1. 

It follows now from (6) and Lemma 1 that the set 

(7) S = {t€Rk: E[(y1-f(x1,e0))exp(f$(x1))] - 0} 

has Lebesgue measure zero. This suggests to use exp[t'$(x)] in place of the 

w1(x,fl), i.e., one may base a consistent CM test on the single sample 

moment 

(8) M(t) = (l/n)S5 = 1(yj-f(xjJ))exp(t'$(xj))) 

A 

for under Hx , plimn_K0M(t) ̂  0 for all t except in a set with Lebesgue 

measure zero. 

In the sequel we shall derive a consistent CM test based on (8) only. 

A more general consistent CM test can be based on the sample moments 

(9) MA(t) - (l/n)S5,1(yj-f(xj,ö))wi(xj,ö)exp(t'$(x;j))1 (i-1 p) . 

Despite the fact that the weighting functions yaL are irrelevant for con-

sistency, it may make sense to consider this case as well. The weighting 

functions wA determine a class of (implicit) alternative hypotheses against 

which the CM test has maximal power. Cf. Holly (1982). If these alternative 
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hypotheses are of special interest, one may wish to direct the power of the 

consistent test towards these alternatives. Moreover, since consistency is 

only an asymptotic property, the small sample power may be enhanced by 

using these weighting functions. By mimicking the logic of this paper, it 

is quite easy to derive these more general consistent CM tests. 

Observe that if the model contains a constant term then 0 € S, for by 

the first-order condition for (4), E(yx-f(xx,0O))-O. Moreover, since S is 

just the set of contours at zero level of a continuous function , it cannot 

be a dense subset of Rk. In other words, for every t0 £ S there exists an 

open neighborhood of t0 with no points in S. Summarizing: 

THEOREM 1: Let Assumption A hold. Under U-^ the set S defined in (7) 

has Lebesgue measure zero and is not dense in Rk. 

Let us assume that H0 is true. Denote 

(10) b(t) - E[(d/a0')f(x1)0o)exp(t'*(x1))]; 

(11) A - E{(d/d8')f(x1,60))i(d/d8)f(x1,e0)). 

It is a Standard exercise in asymptotic theory to verify [cf. the proof of 

Lemma 3 below] that under H0 and Assumption A, 

(12) 7nM(t) -• N[0,s2(t)] in distribution, 

pointwise in t, where 

(13) s2(t) - E{(y1-f(x1,ö0))
2[exp(t'$(x1))-b(t)'A-i(a/aö')f(x1,ö0)]

2). 

Note that s2 (0) - 0 if the model contains a constant term. The function 

s2(t) can be consistently estimated by 

(14) s2(t) - (l/n)^_1(yj-f(xj,e))
2[exp(t'$(xj))-b(t)»A-

1(a/ae')f(xj)e)]
2, 

where 
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(15) b(t) - (l/n)^.! t(8/a«')f(xj,«)exp(t'*(xJ))J, 

A A A 

(16) A - (i/n)S5=1{(a/ae')f(xj,ö)}{(a/aö)f(xj)ö)}. 

Now let 

(17) <T2(XJ) - E[(yj-f(xj,fi0))
2|xj] 

and assume: 

ASSUMPTION B: P[a2(x1) > 0] - 1. There exists a Borel measurable real 

function n on Rk such that the random vector K - (A*(XX ) , (d/88) f (xx , 60 )) ' 

has non-singular second moment matrix E[KK']. 

Then 

LEMMA 2: Under Assumption B the set S^ - {teRk:s2(t)=0) has Lebesgue 

measure zero and is not dense in Rk. 

This result holds under U1 as well. The importance of Lemma 2 is that the 

statistic 

A A A 

(18) W(t) - n[M(t)]2/s2(t) 

is well-defined, possibly except for t in the set SuS^ with Lebesgue 

measure zero. 

From Theorem 1 and Lemma 2 it now easily follows: 

THEOREM 2: Let Assumptions A-B hold. There exists a non-dense subset S 
A. 

of Rk with Lebesgue measure zero such that for every t € Rk\S, W(t) •* x\ 
A 

in distribution under H0 , vhereas under Hx, W(t)/n -* »?(t) a.s., where 

ij(t) > 0 . 

It should be noted that the set S in Theorem 2 depends on the distri

bution F of (y^.Xj). This implies that in general we cannot choose a fixed 

t for which the test is consistent. Nevertheless, the result of Theorem 2 
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is close to a genuine consistent test, as will be shown in Section 4. 

REMARK ON ASSUMPTION B: The first part of Assumption B is hardly a 

condition. The second part actually states that there exists a function 

/i(x) such that the parameters 8 and a of the augmented model 

y_j — f(Xj,0) + a-/i(Xj) + Uj are locally identifiable. If the model does not 

contain a constant term a possible choice for n may be /i(x)—1. In that case 

Assumption B is simply the local identification condition that is typically 

assumed in nonlinear least squares estimation for models with a constant 

term. Of course, if the model already contains a constant term the choice 

ji(x)=l will not work. The existence of a suitable function fi depends on the 

variation in xx. Consider for example the case where xx takes only as many 

values as the dimension m of 60 . Then any function of xx can be written as 

a linear combination of (d/86)f (xx , 60) , so that in this case it is 

impossible to f ind a \i for which Assumption B holds. 

REMARK ON LEMMA 1: Lemma 1 yields as byproduct the following general 

series expansion of conditional expectation functions: 

COROLLARY 1: Let v &e a ranóom variable satisfying E[v2] < « and let x 

be a random vector in Rk. For any Borel measurable bounded one-to-one 

mapping $ frotn Rk into Rk and any sequence (tj ) , j-1,2.., in Rk that is 

dense in a set T c Rk with positive Lebesgue measure there exist coeffi-

cients ySn _ ̂  , j=0,..,n, n=0,l,2 such that 

E(v|x) - 0OiO+ S^.il^.o +^.1i3nijexp(tj'$(x))] a.s. 

PROOF: Without loss of generality we may assume that x is bounded it-

self, so that we may choose $(x)«x. For n-1,2,..., let 

fn< x) - "n,0 + 25-l«nfJexp(tj'x) 

where a„ n - 1 and the other an j's are chosen such that 

E fn(x) - 0, E[fn(x)exp(tj'x)] - 0 if j < n. 

This is always possible. Now define the function V>n(
z) o n t n e range Z of x 

by ^n(z) - 1 for n - 0 and 
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^n(z) - fn(z)/[E(fn(x)
2)]ii if E[fn(x)

2] > O, tfn(z) - O if E[fn(x)
2] = O 

for n > 0, and let 7n - E[v\Jn(x)]. The nonzero functions \tn form an 

orthonormal system of the Hilbert space H of Borel measurable functions <p 

on Z satisfying E[<p(x)2] < «>, with inner product (i>,<p) - E[\Kx)<iP(x) ] • 

Moreover, the coefficients 7n are the Fourier coefficients of the function 

h € H defined by h(x) - E(v|x). According to Royden (1968, p.212) there 

exists an element g of H such that g(z) - 2^_07n^n (z), which can be 

rewritten as 

g(z) - /30j0 + I$mllPni0 + EJ.i^^expCtj'z)]. 

Since E(v-g(x) )exp(t^'x) - 0 for j-1,2,.., E(v-g(x))exp(t'x) is continuous 

in t and {tlft2,..} is dense in T, we have E(v-g(x))exp(t'x) = 0 for all t 

e T. Since T has positive Lebesgue measure, it follows from Lemma 1 that 

g(x) - E(v|x) a.s. Q.E.D. 

Note that if v is interpreted as a regression residual the test in 

Theorem 2 (and Theorems 3, 4 and 5 below) actually tests the null 

hypothesis that all the /3n ,'s are zero. Finally, note that this result is 

reminiscent of the Fourier expansion approach of Gallant. See Gallant 

(1981, 1982, 1984) and El Badawi, Gallant and Souza (1983). Also, it is 

related to projection pursuit regression. See Friedman and Stuetzle (1981) 

and Huber (1985). 
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4. THE CHOICE OF t AND $ 

The choice of t 

Since the power of the test in Theorem 2 depends heavily on t, we might 
A 

think of maximizing W(t) over some subset T of Rk and using the resulting 
A 

t instead of t. However, the resulting test statistic is not necessarily 

asymptotically Xi distributed under H0. On the other hand, it will be shown 
A 

that if T is a hypercube in Rk then sup „W(t) does converge in 

distribution under H0 , but its limiting distribution depends on the joint 

distribution of (yj.Xj). The latter implies that it is not possible to 

calculate critical values of the test sup W(t) that are generally 

applicable. This problem can be overcome by choosing between t and a fixed 
A 

t, where a penalty function is introduced on choosing t. Under H0 this 

penalty is effective, by which the test becomes asymptotically equivalent 
A 

to W(t) with fixed t. Under Hx the penalty is ineffective, leading 
A 

asymptotically to the choice of sup TW(t) as test statistic. 

In the sequel we shall choose T such that 
T - xï = i tTii >T2i ] > w i t h -m < Tii <T2i < °° a n d s2(t) > ° f o r t € T. 

Although Assumption B guarantees that the set {t€Rk:s2(t)>0} contains a 

compact subset T with positive Lebesgue measure, in practice we can only 

choose T freely if we assume that s2(t) > 0 for all t (except t=0 if the 

model contains a constant term). From the proof of Lemma 2 it is clear that 

this is very weak a condition. In generalizing Theorem 2 and the theorems 

below to other CM tests we have to make a similar assumption, namely that 

the asymptotic variance matrix of the vector of sample moments (9) times Jn 

is nonsingular for all t (or all t * 0). 

Before we proceed, let us first briefly review some terminology 

related to convergence of probability measures on metric spaces. For a full 

account, see Royden (1968) and Billingsley (1968). Let C(T) be the metric 

space of all continuous real functions on T, with metric p(z1,z2) -

sup -Jz, (t)-z2 (t) | . The Borel sets of C(T) are the members of the a-
tti A 

Algebra generated by the open sets in C(T). Since W(t) is a.s. continuous, 
A 

it is a stochastic element of C(T) , and so is sup _W(t) . Let (zn) be a 

sequence of stochastic elements of C(T). Each zn induces a probabilily 

measure Pn on C(T) by the correspondence Pn(B) - P[zn e B] , where B is an 
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arbitrary Borel set in C(T). We say that Pn converges weakly to P if 

lim Pn(B) - P(B) for each Borel set B in C(T) with boundary 3B satisfying 

P(8B) - 0. If P is the probability measure induced by a stochastic element 

z of C(T) then we also say that zn converges weakly to z. A neccesary 

condition for weak convergence is that Pn is tight, i. e. , for every e e 

(0,1) there exists a compact subset K of C(T) such that supnPn(K) > 1-e. We 

say that zn is tight if Pn is tight. A stochastic element z of C(T) is 

Gaussian with covariance function r(t1,t2) if for arbitrary q and tx,... , tq 

in T, (z(t1),..,z(tq))' is q-variate normally distributed with zero mean 

vector and variance matrix (IXt^tj)), i,j—l,..,q. Gaussian elements of 

C(T) are fully characterized by their covariance functions. 

A 

THEOREM 3: Let Assumptions A-B hold and let H0 be true. Then W conver

ges weakly to z2 , where z is a Gaussian element of C(T) with covariance 

function 

r(tt,t2) - E{(yi-f(Xl,60))
2[exp(t1'«(Xi))-b(tx)'A"

 1(8/86')f(xxJ0)] 

x [exp(t2'$(x1))-b(t2)'A-i(a/3ö')f(x1,e0)]}/{(ys
2(t1))(ys

2(t2))}. 

Woreover, W(t) with t=argmax _,W(t) converges in distribution to 
- .. t£1 A 

sup z(t)2 . Furthermore, under Assumptions A-B and Hx , W(t)/n -» »?(t) 

a.s. uniformly on T and consequently sup W(t)/n -• sup ij(t) a.s., 

where rj is defined in Theorem 2. 

PROOF: The result under E1 follows straightforwardly from the uniform 

law of large numbers of Jennrich (1969). The result under H0 is based on 

the following two lemmas. Let Uj = ŷ  - f(Xj,0o) and let 

zn(t) - (l/yn)S5 = 1uj[exp(t'$(xj))-b(t)'A-iO/ae')f(xj,e0)]}
2/ys2(t). 

A 

LEMMA 3: Under Assumptions A-B and H0, plim sup |W(t)-zn(t)
2| -0. 

LEMMA 4: Under Assumptions A-B and H0, zn is tight. 

It is easy to prove that for arbitrary ^....tq in T, (zn(t1),. . . ,zn (tq))' 
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is asymptotically distributed as (z(tx) z(tq))'. Together with Lemma 4 

this implies that zn converges weakly to z. Cf. Billingsley (1968, p.47). 

The argument in Billingsley (1968) actually concerns the case T - [0,1], 

but all the relevant resul ts carry over to hypercubes. Since (.)2 and 

sup _(.) are continuous mappings from C(T) into C(T), the conclusion of 

the theorem now follows from.Lemma 3 and Theorem 5.1 of Billingsley (1968). 

Q.E.D. 

Note that the covariance function r(t1,t2) depends on the distribution 

of (yj.Xj) and on the model, and so does the distribution of sup z(t)2. 

Thus this null distribution has to be calculated each time we conduct this 

test on a different data set or for a different model. Another problem is 

how to calculate the null distribution involved. Therefore we propose the 

following alternative for Theorem 3: 

THEOREM 4: Let Assumptions A-B hold. Choose independently of the data 

generating process real numbers 7 > 0, p e (0,1), and a point t0 e T. Let 
A A 

t - argmax TW(t) and let 

A A A A A A A 

t -= t0 if W(t) - W(t0) < -ynP; t - t if W(t) - W(t0) > 7n
P. 

A A 

Then under H0 , W(t) -> x\ ^n distribution, whereas under Hx , W(t)/n -* 

supteTr?(t) a.s. 

PR00F: The result under Hx follows easily from Theorem 3. Assume now 
A A A 

that H0 is true. Theorem 3 implies that W(t)-W(t0) is stochastically 
A A A 

bounded, hence for every 7 > 0, p > 0, P[W(t)-W(t0 )>yn ] -» 0 and con-
A 

sequently, limn_KOP[t=t0 ]-l. Since W(t0) -+ x^ ^
n distribution, conditional-

ly on t0, and t0 is independent of the data generating process, the result 

for H0 follows. Q.E.D. 
A 

In practice it may be quite laborious to determine t. The f ollowing 

quick-and-easy procedure may serve as an alternative, not only for Theorem 

4 but also for Theorem 3. The proof of this result is similar to the proof 

of Theorems 3 and 4. 
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THEOREM 5: Choose a sequence of positive integers K^ converging to 

infinity with n, and choose a sequence (t±) such that {ta,t2,t3 , . . .} is 
A A A 

dense in T. Replace t in Theorems 3 and 4 by t - argmax^ .̂  _ ,W(t) . 
teiti , . . . .tj^J 

Then Theorems 3 and 4 carry over. 

There are many different ways to choose t 1 , t 2 , . . . , given the compact set T. 

For example, let {t1 , t z , . . •} be the set of rational-valued vectors in T. 

Also, one may choose the t±'s (i-O, 1,2,..) randomly from a continuous 

distribution with density having support T. In the latter case it should be 

stressed that the random search procedure involved differs fundamentally 

from the randomization procedures in Bierens (1987, 1988) and Bierens and 

Hartog (1988), as Theorem 5 holds true if we condition on the sequence 

(t.i). In contrast, the aforementioned tests loose their consistency if one 

condition on the random test parameters. 

The choice of $ 

From an asymptotic point of view the choice of the bounded one-to-one 

mapping $ is no issue. However, in Bierens (1982,1984,1987) we have 

advocated letting $ depend on the scale of x,. For if we choose $ as in (5) 

and if the components xAj of x^ take only large positive values then 

tan"1(xij) ~ hit for i-l,..,k, hence exp[t'$(Xj)] ~ n^ = 1exp(47rti) . Clearly 

this will destroy the power of the test. A cure for this problem is to 

standardize the xij's before taking the transformation $. Thus, replace the 

weighting function exp(t'$(Xj)) by 

(19) w(Xj,t) - n5 = 1exp[ti<p((xij - x ^ / s ^ ] , 

where x£ and s± are the sample mean and the sample Standard error of the 

x A j, respectively, and xp is a bounded one-to-one mapping from R into R. If 

we choose for <p a continuously differentiable function with uniformly 

bounded first derivative, then it can be verified from the proofs of 

Theorems 3 and 4 that the resulting test has the asymptotic properties 

described in these theorems. 
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5. MONTE CARLO RESULTS 

Next we show by a limited Monte Carlo simulation how the test in Theorem 4 

in the form described in Theorem 5 performs in finite samples. To limit 

computation cost, we have chosen the integer Kj, in Theorem 5 relatively 

small, namely K^ - [n/10]-l, and only 500 replications were used. 

The data generating processes (DGP) we distinguish are the following. 

Let Zj , vXj , v2j and ê  be independent random drawings from the Standard 

normal distribution, and let the regressors be XJJ-Z^+VJ^J , x2j-Zj+v2j . The 

dependent variable is generated according to y^-l+xxj+x2j+u^, where either 

DGP 1: uj - vXjv2j + ej( or DGP 2: Uj - C/2)ej. 

In both cases we fit a linear regression model: 

H0: yj - 80 + 0lXlj + ö2x2j + Uj, Elujjxu ,x2j] - 0 a.s. 

Clearly, H0 is false for DGP 1 and H0 is true for DGP 2. Note that in both 

cases E[u,2] - 2, the theoretical coëfficiënt of determination equals 2/3 

and plimn_feo0 - (1,1,1)'. 

In conducting the test we have chosen T - [l,5]x[l,5] and the tL ' s 

(i-0,1,...) have been drawn randomly from the uniform distribution on T. We 

used the weighting function (19) with <p(x) - tan_1(x/2). The Monte Carlo 

simulations have been conducted for sample sizes 50, 100, 200 , 400 and 800 

and f our sets of values of the penalty parameters 7 and p. The results of 

500 replications of the DGP's involved are presented in Table 1. 

< Insert Table 1 about here > 

We see from Table 1 that the test seems rather insensitive to varia-

tions in the penalty 7n , except in the last case where the penalty becomes 

too low, which affects the actual size of the test too much. In the first 

three cases the penalty is hardly effective under Hx for n < 400 and in the 

first two cases also for n-800. This indicates that the function »?(t) is 

relatively flat. The finite sample power for n - 400 at the 5% significance 

level is still not equal to 1, although (as expected) the power increases 

with n. However, for n-800 the power gets close to 1. The variation in 

the actual size of the test (apart from the last case) may be due to the 

limited amount of Monte Carlo simulations. 
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< Insert Figure 1 about here > 

In order to understand better these results, we subsequently have cal-

culated the function »?(t) for DGP1. This was done partially analytically, 

partially by simulation. Figure 1 shows the shape of rj(t) for -5 < tx < 5, 

-5 < t2 <, 5, looking from above at an angle of about 60 degrees. Note that 

»7(t) is symmetrie about the diagonal (-5,-5)-(5,5). Moreover, tj(t) equals 

zero on the two axes tx-0 and t2«*0, as can easily be proved. Thus, these 

two axes form the set S in Theorem 2. Furthermore, the set S. in Lemma 2 

consists of the origin (0,0) only. The hight of the hills in the 

quadrants [-5,0]x[0,5] and [0,5]x[-5,0] is about .02. The flat hill in the 

quadrant [0,5]x[0,5] is just located in the area T we have chosen for the 

Monte Carlo simulations. lts hight is about .004, i.e, only 20 % of the 

maximum hight of the surf ace. The relative flatness of this hill is the 

very reason why in the first three cases in Table 1 the penalty remained 

effective under Hx , for (loosely speaking) t0 will prevail as long as 

sup »j(t)-»?(t0) < yn . Apparently we have accidently selected T in one 

of the worst areas. However, T should be chosen independently of the data 

generating process, i.e., it is not allowed to determine the best set T by 
A 

looking at the plot of W(t). 

In cross-section analysis we often work with much larger samples than 

in Table 1. For such samples the test will likely work according to the 

prediction of asymptotic theory. Presumably the small sample power of our 

test will be inferior to the small sample power of a test designed to test 

consistently H0 against a specific alternative model, as it likely trades 

away small sample power against any one alternative for consistency against 

all alternatives. Also, the performance of more general consistent CM tests 

may be better than the present one, as the additional weights may enhance 

the finite sample power. 

6. WHAT INFORMATION DOES THE TEST REVEAL IF H0 IS REJECTED ? 

If H0 is false, then the function »ï(t) contains information about the true 

model. But what kind of information ? To answer this query, denote 

for i-1,2, 

A A A A 

Uj -yj-f(xj,e), Wij - exp(ti'*(xJ))-b(ti)'A-i(a/a«')f(xd,«). 
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Then the test statistic W(t) in Theorems 3 and 5 is just the most signifi

cant squared t-value of the parameters A± in the linear regressions 

provided the t-values involved are calculated according to the approach of 

White (1980). Similarly, denoting 

w±j - exp(ti'$(xj))-b(ti)'A-
1(a/aö')f(xj,ö0), 

the test involved selects asymptotically the alternative model 

(20) yj - f(xj,ö0) - A±wia +v 1 J f i-1,2,.., 

for which the probability limit tz(ti) of the squared t-value of XL , divided 

by n, is maximal. In other words, if Hx is true the test augments the model 

with the most significant additionai regressor w^ . The test in Theorems 4 

and 5 does the same, except that now i-O,1,2,.. and that choosing vii for 

i > 0 is penalized, by which under H0 the test statistic is asymptotically 

equivalent to the squared t-value of A0 . Note that under E1 the augmented 

model (20) is not necessarily the true model. It is only closer to the true 

model, in terms of quadratic loss, than the original model. 

The above argument suggests a further elaboration of the test by 
A A A 

regressing û  on wXj , . . ,w ., where K^ is determined by some selection 

criterion for model dimension like the Akaike (1974) and Schwarz (1978) 

criteria. Under H0 we may then expect that T^ will converge to 1, so that 

similarly to Theorems 4 and 5 the null distribution of the Wald test of the 

joint significance of the K^ parameters involved is asymptotically x\ • 

However, this further elaboration is beyond the scope of the present paper. 

Department of Econometrics, Free University, 1081HV Amsterdam, The Vether-

lands. 

First draft: January 1987. Revision: September 1989 
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APPENDIX A: Maintained Assumptions 

The following assumptions are Standard for consistency and asymptotic nor-

mality of nonlinear least squares estimators. Cf. Jennrich (1969) and White 

(1980,1981,1982). 

(A.l) Let { (yx ,xx) (yn .XJJ) } be a sample from a probability distribution 

F(y,x) on RxRk . Moreover, E y^2 < <*>. 

(A.2) The parameter space 6 is a compact and convex subset of Rm and f(x,ö) 

is for each 6 e 6 a Borel measurable real function on Rk and for each k-

vector x a twice continuously differentiable real function on 6. Moreover, 

E[sup0gef(x,j .0)2] < °° and for ix , i2 - 1, . . ,m, 

E[supöee|{(a/ööii)f(x1,ö)}{(a/aöi2)f(x1,ö)}|] < «, 
E[suPöGe|(y1-f(x1,e))

2{(a/aöii)f(x1,ö)}{(a/aei2)f(x1,ö)}|] < «, 
E[supöee|(y1-f(x1,ö))(a/aeii)(a/aöi2)f(x1Iö)|] < ». 

(A.3) E[ (y1 -f (xx , 8))z ] takes a unique minimum on 6 at 80 . Under H0 the 

parameter vector 60 is an interior point of G. 

(A.4) The matrix A defined in (11) is non-singular. 

APPENDIX B: Proofs of the Lemmas 

PR00F OF LEMMA 1: First, let k-1. According to Theorem 2 of Bierens 

(1982) there exists a nonnegative integer m such that E[vx m] ** 0, hence 

(d/dt)«E[vet,X] - 2?,mtJ-
mE[v-xJ]/(j-m)! -» E[vx m] * 0 as t - 0. 

This implies tha t E[vexp( tx ) ] # 0 in a neighborhood of zero. Now l e t t0 be 

such tha t E [vexp( t 0 x) ] « 0. Since P{E[vexp(t0x) |x]>=0) = P{E(v|x)-0) < 1, 

i t follows from the above argument, with v replaced by v-exp( t 0 x) , tha t 

E[vexp( t 0 -x+t*x)] * 0 in a neighborhood of t - ' 0, hence E[vexp( t -x) ] # 0 

in a neighborhood of t - t0 . This implies inf | t - t 0 | > 0 i f t0 € S 
tcb,t^tn 

and hence that S is countable. Since a countable set has Lebesgue measure 

zero, the lemma follows for the case k - 1 . 

Next, consider the general case k > 1. Let x - (xx ,x2 , . . ,xk ) ' , t = 

(tx ,t2 , . . ,t k ) ' . Again it follows from Theorem 2 of Bierens (1982) that 

there exist nonnegative integers mx mk such that 

Efv.X! xx 2
 2 . . .xk

 k •* # 0 and similarly to the case k » 1 this implies that 

there exists a t* close to the origin of Rk such that E[v-exp(t*'x) ] * 0. 

Let v* - vexp(t* 'x). Since E v* ^ 0 we have P{E[v, |xx , . . ,X| ] - 0} < 1 for 
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Z - 1,..,k. Now suppose that for some & > 1 the set 

Sj - {(tj_ ,..,tf )' e R*: E[v.exp(t1x1 + ..+t,x,)] - 0} 

has Lebesgue measure zero. Then by the argument for the case k - 1 the set 

Sj + iCt-L,.. ,tj) - {t e R : E[(v*exp(t1x1 + ..+tlx,))exp(t-xI + 1)] - 0 } 

is countable if (tx t{) £ Sj, , whereas Sj*x (tj^, . . . ,t,) - R if (tx , . . ,t|) 

e Sj . Since now Sj*x is the union of two sets with Lebesgue measure zero, 

namely the sets {(tx,..,t1 + 1 ) : (tlt...,t|) £ Sj , tl + 1 e Sj*x(tx,...,tj)} 

and Sj x R, it has Lebesgue measure zero itself. By induction it follows 

that S£ has Lebesgue measure zero. Replacing t by t-t* the lemma follows. 

Q.E.D. 

PROOF OF LEMMA 2: Suppose that S^ has positive Lebesgue measure. For 

any teS^ we have o2 (xx ) [expCt'*^ ) ) -b(t) 'A'
1 (8/86 ' )f (xx , 80 ) ]

2 - 0 a.s . , 

hence by the first part of Assumption B, 

exp(t'$(x1))-b(t)'A'
1(3/3ö')f(x1,60) - 0 a.s. 

and consequently, using (10), 

E[A*(x1)exp(t'*(x1))] - E[M(x1)<a/3fl)f(x1,«0)]A-ib(t) 

- E[A'(3/3ö')f(x1,ö0)exp(t'$(x1))], 

where A-A" ̂ [^(Xj.) (.8/86' )f(xx ,80 )]. Since this result holds for all t in a 

set with positive Lebesgue measure, it follows from Lemma 1 that fi(x1) = 

X'(3/3ö')f(x1,60) a.s. , hence E[KK'] is singular. This contradicts with the 

second part of Assumption B. Q.E.D. 

PROOF OF LEMMA 3: Let H(6,t)-(l/n)Z^.1(yj-f(x^,fl))exp[t'$(xj)]. By the 

mean value theorem we have 

A A A A A 

(B.l) ynM(ö,t)-7nM(e0,t) -= [ (8/86' )M(?< * > (t) , t) ] 'M6-60 ) , 
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where ?(i)(t) is a mean value satisfying |?(i)(t)-0o| < |0-0O| a.s. Let 
A A A 

b(0,t) - -{d/dB' )M(0 ,t). From Assumption A, the consistency of 6 and the 

uniform law of large numbers of Jennrich (1969) it easily follows 

(B.2) plinitt4c()suptëI|b<?<i>(t),t) - Eb(*0,t)| - 0. 

A 

Observe that E b(0o,t) - b(t), hence it follows from (B.l) and (B.2), 

A A A A 

(B.3) plimn^oSuptgriynM^^.t) - 7nM(0o,t) +b(t)'7n(0 - 60)\ = 0. 

Furthermore, from Standard nonlinear least squares theory it follows 
A 

(B.4) plimn^co |7n(Ö - 60) - A ' 1 ( l / V n ) ^ , ^ (8/88' ) f (Xj ,B0 ) | = 0. 

where Uj - y^ - f ( X j , 0 o ) . S u b s t i t u t i n g (B.4) i n (B.3) y i e l d s 
A A 

(B.5) plimn^oSupteT|ynM(ö,t) - zn(t)7s
z(t)| - 0 

Observe that by the uniform law of Jennrich (1969) and Assumption A, 

A 

(B.6) plimnw:upteT|s
2(t) - s2(t)| - 0. 

Since by assumption, inftex
s2(t) > 0. t n e lemma follows from (B.5) and 

(B.6). Q.E.D. 

PROOF OF LEMMA 4: According to Theorem 8.2 of Billingsley (1968) it 

suffices to prove: 

(B.7) For each 5 > 0 and an arbitrary t0 G T there exists an e such that 

supnP(|zn(t0)| > £ ) < « ; 

(B.8) For each 6 > 0 and c > 0 there exists an £ > 0 such that 

suPnP[sup Jzn(ti)-zn(t2)| > e] < 6. 
I zi ~ zz I <€ 

Condition (B.7) follows from the fact that zn(t0) -» N(0,1) in distribution. 

For proving condition (B.8), assume for the moment that t is scalar. Then 

(B.8) follows from 
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(B.9) E{sup |(l/yn)25.1uJ[exp(t1*(xJ))-exp(ti»(xJ))]|} 
I t l " fc2 I < £ 

< y(E(uf))27,1[2e-supx|$(x)|]
i/i! - 7(E(Ul

2 )) {exp[2£-suPjc |$(x) | ]-1} 

and the fact that b(t) is continuous. The proof for the case that Xj and t 

are vectors goes along the same line, using the multinomial expansion of 

[t'SCXj)]1 in (B.9). Q.E.D. 
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Table 1: Monte Carlo Results (500 Repllcations) 

Test 
para
meters 
1,P 

n % Rejections of H0 

5% Signif. 

DGP il DGP 2 

10% Signif. 

DGP ilDGP 2 

Mean (S.E.) of the 
test statistic 

DGP 1 IDGP 2 

Number of 
times 
t-t„ 

DGP l|DGP 2 

50 8.4 1.4 21.4 6.0 
7-1.0 100 18.2 2.4 30.6 6.6 
p-0. 5 200 29.0 3.8 49.0 9.0 

400 64.2 3.8 76.2 7.2 
800 89.6 3.8 95.4 8.8 

640 
154 
065 
582 

9.807 

1.58) 
1.90) 
2.34) 
3.84) 
5.46) 

0.977 
0.933 
0.992 
0.932 
0.998 

0.98) 500 500 
1.11) 500 500 
1.19) 500 500 
1.25) 500 500 
1.22) 499 500 

50 8.4 2.6 19.0 6.8 
7-0.5 100 16.6 4.0 29.8 9.4 
p-0. 5 200 31.0 3.8 47.0 8.2 

400 63.0 3.4 79.0 9.8 
800 88.6 4.4 94.6 10.2 

1.597 
2.186 
'3.256 
5.860 
12.13 

52) 
89) 
85) 
05) 
97) 

0 . 9 6 0 
1.072 
1.002 
0 . 9 9 6 
0 . 9 8 4 

1.07) 495 499 
1.22) 498 498 
1.22) 489 500 
1.24) 481 500 
1.22) 429 500 

50 12.8 4.0 24.4 12.4 
7-0.25 100 25.2 6.0 35.4 10.0 
p-O. 5 200 46.2 5.6 57.6 12.0 

400 75.6 6.0 83.4 10.8 
800 94.8 4.4 97.6 10.6 

1.849 
2 .537 
4 . 2 0 6 
8 .288 
17 .22 

69) 
.45) 
43) 

,30) 
8 . 0 9 ) 

1.167 
1.149 
1 .155 
1 .080 
0 . 9 8 1 

1.22) 462 475 
1.40) 452 487 
1.41) 412 494 
1.53) 330 495 
1.29) 185 500 

50 12.8 5.2 27.4 10.2 
7-0.25 100 26.2 6.0 45.8 13.4 
p-0.25 200 59.0 9.0 72.6 20.0 

400 91.4 10.0 96.4 17.4 
800 100 8.2 100 16.2 

2 .028 
2 . 8 6 1 
5 .105 
9 .675 
1 8 . 7 1 

60) 
20) 
31) 
66) 
29) 

1 .225 
1 .300 
1 .580 
1 .465 
1.265 

27) 343 389 
31) 281 328 
65) 178 367 
77) 79 379 
51) 20 407 



Figure i 

(0,-5) 

(5,0) 



- 23 -

Footnotes: 

1) The helpful comments of Lars Peter Hansen and four referees, leading 

to substantial improvements over previous versions of this paper, are 

gratefully acknowledged. 

2) Throughout this paper we denote by |•| the absolute value if the argu

ment is a scalar and the Euclidean norm if the argument is a vector. 

3) Following Bierens (1982) one may also take JTW(t)dt as test statistic. 

Theorem 3 implies that under H0 this test statistic converges in 

distribution to JTz(t)
2dt. Note that the convergence in distribution of the 

corresponding test statistic in Bierens (1982) was not proved. 




