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Abstract Seismic monitoring of the Basel Enhanced Geothermal System has been running for more

than a decade. Yet the details of the long-term behavior of its induced seismicity remained unexplored

because a seismic event catalog with consistent detection sensitivity and magnitudes did not exist. This

knowledge is essential for developing guidelines and mitigation procedures on how to safely operate and

terminate injection activities. Only few observational data exist that cover all phases of such projects in a

consistent manner. Here we describe a method that overcomes these deficiencies based on sensitive

matched filter detection and a machine learning approach to remove false detections. With an emphasis on

consistency, we create a catalog that contains more than 280,000 events down toMw − 1.5. The much

higher temporal resolution allows us to analyze induced microearthquakes in great detail and to gain new

insights. We resolved temporal variations of seismicity parameters and, in the post-operational phase, a

preferential temporal clustering of events. We find a breakdown in the Gutenberg-Richter scaling during

reservoir stimulation, which may have physical reasons or could be caused by a method-independent

detection limit during high event rates. The scaling breakdown has implications for the design of Adaptive

Traffic Light Systems and may limit the potential of real-time mitigation strategies in future Enhanced

Geothermal System projects. Nevertheless, our catalog gives the opportunity to study the temporal

evolution of the sequence in unprecedented detail, which will help to better understand the physical

processes in a geothermal reservoir, potentially not only in the Basel case.

PlainLanguage Summary Fluid injections into the deep underground, such as performed in

geothermal projects, may cause earthquakes. These induced earthquakes provide important information

about the involved physical processes but can sometimes be stronger than acceptable and hinder a project

to continue. Avoiding unacceptable earthquakes requires a better understanding of the immediate and

long-term seismic response of the underground to such operations. However, inconsistencies of existing

earthquake catalogs and their generally low resolution restrict our ability to understand these processes.

Such catalog restrictions also affected the case of the Basel deep geothermal project. As a result, specifically,

the long-term behavior of its induced seismicity remained unexplored. To overcome these deficiencies,

a consistent catalog with high resolution is needed. We reinvestigate the induced seismicity in Basel in

detail over its whole life span (12 years). Using seismograms of known earthquakes, we search for similar

earthquakes and detect an abundance of smaller ones that were previously unknown. To ensure catalog

consistency, we further develop advanced techniques that provide robust magnitude estimates and

maintain a high detection sensitivity. Like increasing the resolution of an image with a spyglass, the new

catalog reveals previously unseen details of this particular sequence. In the injection period, for instance,

we find deviations from the expected behavior of earthquakes and their magnitude distribution. These

findings make it necessary to rethink earthquake mitigation strategies in geotechnical projects.

1. Introduction

Deep geothermal energy offers an attractive energy resource due to its huge energy potential but remains

essentially unexploited. One of the many technical challenges to exploit deep geothermal energy, for exam-

ple, with an enhanced geothermal system (EGS) is the high initial costs of exploration and drilling, as well

as the control of induced seismicity. The Basel Deep Heat Mining project pursued the goal of creating one
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Figure 1. Overview of the study region with the injection well (BS-1, green) and the borehole seismometer used in this
study for detecting events (OTER2, red triangle). (a) Map view with building locations and two more borehole stations
used for additional analysis in this study (MATTE, HALTI; orange triangles). (b) Zoomed map view with earthquake
locations (black dots) from the combined catalog (see text). (c) Depth section along the dashed line indicated in (b)
with all earthquakes projected onto that plane. The transition from sedimentary rocks to the granite basement is at
∼2.5-km depth (Häring et al., 2008; Bethmann et al., 2012). Boundary, building, and river data originate from the
OpenStreetMap project (www.openstreetmap.org).

of the first commercial EGS plants in the world and providing electrical and thermal energy directly within

the city of Basel (see Figure 1). To create an EGS reservoir at depth, fluids are pumped under high pressure

into the rockmass to cause hydroshearing, which eventually increases its permeability for subsequent water

circulation. In Basel, this stimulation process started on 2 December 2006 with an injection of 11,570m3 of

water from the near Rhine river over the course of 5 days at increasing flow rates (Häring et al., 2008). The

stimulation was accompanied by an increasing seismic activity, including a ML2.6 event, which prompted

the operator to stop the injection on 8 December. Only a few hours later, aML3.4 occurred, the largest event

in the sequence. It was felt by the population up to 20 km away (Edwards et al., 2015), caused minor non-

structural damage within the city, lead to increased awareness of the public, and attracted international

attention (e.g., Kraft et al., 2009; Giardini, 2009). In late 2009, a seismic risk assessment concluded an unac-

ceptable risk for a continued geothermal operation (Baisch et al., 2009, serianex risk study). The public

authorities suspended the project (Giardini, 2009), and the well was closed in April 2011.

Although the Basel geothermal project failed, the collected data of the induced seismicity improved our

understanding of EGS in several scientific studies that investigated the reservoir structure and the orien-

tation of fault planes (e. g., Asanuma et al., 2008; Dyer et al., 2008; Dyer et al., 2010; Deichmann et al.,

2014; Kraft & Deichmann, 2014), performed statistical analyses for earthquake forecasting purposes (e.g.,

Bachmann et al., 2011;Mena et al., 2013;Gischig&Wiemer, 2013; Király-Proag et al., 2018),modeled geome-

chanical properties (e.g., Goertz-Allmann et al., 2011; Goertz-Allmann & Wiemer, 2013; Bachmann et al.,

2012), studied the larger events in terms of their trigger mechanism (e.g., Mukuhira et al., 2013) and rupture

propagation (e.g., Folesky et al., 2015), analyzed groundmotion andmacroseismic intensities (e.g., Edwards

et al., 2015; Ripperger et al., 2009), and performed seismic risk analysis (e.g., Baisch et al., 2009; Mignan

et al., 2015). These studies benefited from the six-station borehole seismometer network (three stations used

in this study are shown in Figure 1) and a surface network with 30 stations in the area (Deichmann & Ernst,

2009). Previous work utilized an earthquake catalog with about 3,500 locatable events (Dyer et al., 2008;

Dyer et al., 2010) but was limited to these earthquakes only.

The hydraulic stimulation caused an abundance of microearthquakes, which reflect small shear ruptures

on preexisting and newly generated fractures that generate new flow paths in the rock mass. These earth-

quakes contribute to creating the EGS reservoir but are mostly too small to be detected on more than the

closest seismic station (OTER2, see Figure 1). The existing catalogs therefore reflect only a fraction of the

actually detectable earthquakes. The seismicity covered by these catalogs decayed until mid-2010, where-

upon no earthquake was reported by the operator of the borehole seismic network (Geothermal Explorers

Ltd. [GEL]). InMay 2012, the Swiss Seismological Service (SED) took over the responsibility of seismicmon-

HERRMANN ET AL. 2

www.openstreetmap.org


Journal of Geophysical Research: Solid Earth 10.1029/2019JB017468

itoring and kept two borehole stations in operation (MATTE and OTER2, see Figure 1). In the same month,

a ML1.2 occurred (Diehl et al., 2013; Deichmann et al., 2014). Since then, the SED registered an increase

in seismicity, with magnitudes up to ML1.9 (October 2016; Diehl et al., 2018). Due to the change in seis-

mic monitoring from 2012 onward, the currently existing catalogs do not cover the life span of the induced

sequence consistently in terms of detection sensitivity, magnitudes, and locations. To provide a more con-

sistent understanding of the evolution of the sequence, we aimed to generate a new catalog that covers the

complete life span of the EGS reservoir (November 2006–2018) with amuch higher detection sensitivity and

homogeneous magnitude estimates.

The processes behind injection-induced seismicity are not yet understood well enough to make reliable

forecasts of the likely seismic response of the underground to hydraulic stimulation. The poor understanding

underlines the need for more data and better data quality. Recording and analyzing the seismic response in

much higher detail, in a consistent way, and over longer time periods may allow us to

1. resolve seismogenic processes that were undetected before,

2. permit more detailed seismic and statistical analyses,

3. study the long-term behavior of these processes and induced seismicity in general,

4. provide timely detections of changes in the seismogenic behavior of geothermal reservoirs, and

5. improve seismicity forecasts and short-term hazard assessments.

Here we harness the potential of matched filter analysis and machine learning techniques to retrieve small

previously missed microearthquakes that are hidden in the seismic records of the most sensitive seismome-

ter station (OTER2). We explore the potential of our proposed procedure to improve our understanding of

the governing processes behind injection-induced seismicity. We also discuss the advantages and pitfalls

that may arise should such a procedure serve as an integral part in an Adaptive Traffic Light System (ATLS),

which ultimately aims to reduce the induced seismic risk in future EGS projects (e.g., Douglas & Aochi,

2014; Gischig et al., 2014; Grigoli et al., 2017; Mignan et al., 2017; Trutnevyte & Wiemer, 2017; Wiemer &

Trutnevyte, 2017).

2. Data

The starting point of our matched filter analysis was a catalog of known earthquakes whose recorded

waveforms were used as templates. We compiled such a catalog from several sources:

1. the catalog of the project operator GeoPower Basel AG based on the seismic network operated by GEL

(“GEL”; Dyer et al., 2008; Dyer et al., 2010); borehole station network; 3,664 events; covering November

2006 to June 2010;Mw0.15–3.00;

2. the catalog of N. Deichmann from the SED (“SED”; Deichmann et al., 2014), which received regular

updates (N. Deichmann, personal communication, 2014–2018); surface station network; 226 events; cov-

ering November 2006 to December 2017; ML0.5–3.4 (of N. Deichmann); Mw0.94–2.95 (of F. Bethmann,

personal communication, 2011); and

3. a catalog from a separate manual analysis performed in this study (“SED-�An”); 31 events; coveringMay

2012 onward;ML-0.04–0.82 (≈ Mw0.83–1.21)

The GEL catalog is based on detections of a six-station borehole network and contains only events

that could be located (Dyer et al., 2008; Dyer et al., 2010). Events were initially detected with an

amplitude-threshold-based trigger at station OTER2 (Figure 1). During the injection period, 13,500 poten-

tial events were obtained in this manner (Dyer et al., 2008). For 3,555 events, moment magnitudes, Mw,

were calculated by GEL in 2008 (T. Spillmann, personal communication, 2015) using the spectral method

of Abercrombie (1995). Additional 109 events without such a magnitude were detected after 2008 or were

added in a later revision by Dyer et al. (2010). For 979 events, the pick and source times in the GEL catalog

had errors of up to a minute (Kraft & Deichmann, 2014) due to a software bug in the operator's system. We

assessed and corrected these timing errors with the procedure outlined in supporting information Text S1.

During the review of the GEL events, we identified five duplicates and two events that were not originat-

ing from the reservoir; these were excluded from further analysis. Kraft and Deichmann (2014) performed

a relocation analysis of this catalog, providing relative locations for 1,982 events.

The SED catalog is based on detections of the national surface network of the SED and the borehole station

OTER1, which is located about 2.2 km above OTER2. Until 2012, the SED catalog has 196 events in com-
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Figure 2. Example 1,000-Hz waveforms (black, unfiltered, units in counts) recorded at the borehole station OTER2
and the 5- to 80-Hz band-passed waveforms (blue) as used for matched filter analysis. (a) Template waveform (Mw0.9);
the vertical dotted lines indicate the 0.6-s duration used for matched filter analysis. (b) Waveform of a detected event
(Mwx − 0.6) using the template waveform in (a). The CC-based similarity is indicated in the figure for each component.
(c) One-minute time window during the highest rate of fluid injection (early morning of 8 December 2006) illustrating
the high event rate; in this time window, 45 templates detected 50 events (highlighted by 10 different colors) ranging
fromMwx − 0.88 to 0.05. Smaller-amplitude signals that were not detected were either reservoir-unrelated (transient
noise) or reservoir-related but below the magnitude of completeness,Mc, at that time (∼ Mwx − 0.5, see Figure 9c).
(Mwx is our moment magnitude estimate for detected events.)

mon with the GEL catalog; the remaining 30 events occurred from 2012 onward. Locations are based on
master-event relocation provided by N. Deichmann (personal communication, 2018). Moment magnitudes
were obtained by F. Bethmann (personal communication, 2011) as presented in Bethmann et al. (2011)
for 195 events (until end of 2007); for the remaining 31 events, we converted local magnitudes, ML—as
obtained by N. Deichmann (personal communication, 2018) using the median value of four station magni-
tudes (Deichmann & Ernst, 2009; Deichmann et al., 2014)—intoMw using the scaling relation of Bethmann
et al., 2011 (Mw = 0.633 ·ML + 0.766).

The SED-�An catalog contains additional events that were not detected automatically by the SED network
but that could be located manually. They were found by an early template matching analysis using only
four templates. The absolute locations of these events have larger uncertainties than usually expected for
the SED catalog due to uncertainties in the arrival times.

To compile a combined catalog of event waveforms, we appended to the GEL catalog all SED and SED-�An
events that occurred after 2010. For events before 2012, we preferred the locations of Kraft and Deichmann
(2014), if available; otherwise, we took the original GEL locations (Dyer et al., 2008; Dyer et al., 2010). For
events from 2012 onward, we could only use the locations of the SED catalog (Deichmann et al., 2014, and
N. Deichmann, personal communication, 2018); locations of the SED-�An catalog were ignored. Because
themagnitudes of the catalogs were inconsistent, we revised themagnitudes in our study (see section 3.3.3).
In total, the combined catalog (provided in supporting information Data Set S2) contains 3,723 events with
associated waveforms at OTER2.

The deepest borehole station, OTER2 (a 4.5-Hz velocity sensor), is located at a depth of 2.74 km with a
distance of 2.24 km from the injection point (Figure 1). As OTER2 is situated in the crystalline basement
(Figure 1), it features a low attenuation of high-frequency signals (see Figure 3a and Bethmann et al., 2012).
The 12-year-long recordings contained several data gaps lasting up to a month. These gaps were comple-
mented with waveform data from another—yet less sensitive—borehole station, MATTE (Figure 1), located
at 0.55-km depth with a distance of 5.94 km from the injection point. Both stations were recording at a
sampling rate of 1,000Hz from November 2006 until May 2012. In May 2012, when the SED took over the
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Figure 3. Event spectra and waveforms for five detected earthquakes of distinct magnitude:Mwx − 1.0, −0.5, 0.0, 0.5,
and 1.0, which all belong to the same template family. (a) Acceleration power spectral densities (PSDa) of the S-phase
spectra overlayed on the probabilistic power spectral density (PPSD, similar to McNamara & Buland, 2004) at station
OTER2 (GH2 channel) for the period 2006–2012. For reference, the two dotted lines indicate the Peterson (1993) new
high- and low-noise model (NHNM, NLNM). Two frequency bands indicate the passbands for matched filter detection
(blue) and amplitude extraction (red). (b) Waveforms of the five events filtered in the two frequency bands with the
colors corresponding to (a) the black waveforms are unfiltered. The blue and red waveforms were filtered in the
frequency domain, thus having zero-phase lag (noncausal). (c) A zoom (0.1 s) into the S phase with normalized
waveform amplitudes.

seismic monitoring and replaced the recording hardware, the sampling rate was changed to 500Hz (Diehl

et al., 2013). Unfortunately, the new digitizer could not be isolated well from electromagnetic noise at 50 and

150Hz, which coupled stronger into the system and increased the noise level by a factor of ∼2 compared

to conditions before May 2012. The data availability over the whole study period (November 2006–2018)

amounts to 96.5% for OTER2, 98.4% for MATTE, and 99.3% for both combined.

The vertical component of OTER2 failed in June 2010, which is particularly unfortunate as it contains most

of the P wave energy of the reservoir events (channel GHZ; see Figures 2a and 2b). The S wave energy,

instead, is visible on all components and very impulsive on the horizontal ones. We accepted that deficiency

and did not switch to an alternative station because OTER2 has a much higher signal-to-noise ratio than

all other stations. As our goal was to create a homogeneous and consistent catalog, we only used the two

horizontal components for the analysis of the whole study period.

3. Methods
3.1. Matched Filter Detection

Matched filter detection, or templatematching, is an earthquake detectionmethod based onwaveform cross

correlation, which proved to lower the detection threshold by about one magnitude unit compared to con-

ventional methods (e.g., like the energy-based short-term average/long-term average technique) and can

often recover ≳ 10 times more events (Gibbons & Ringdal, 2006; Peng & Zhao, 2009; Schaff & Waldhauser,

2010). Matched-filter-based detection has previously been applied in various seismological contexts to

improve existing seismic catalogs, for example, of deep geothermal projects (e.g., Plenkers et al., 2013; Vaster-

ling et al., 2017), hydraulic fracturing operations (e.g., Holland, 2013; Caffagni et al., 2016), mining-induced

seismicity (e.g., Chambers et al., 2015), waste-water injections (e.g., Goebel et al., 2016), earthquake swarms

(e.g., Shelly et al., 2016), aftershock sequences (e.g., Peng & Zhao, 2009; Schaff & Waldhauser, 2010), non-

volcanic tremors (e.g., Shelly et al., 2007), and for nuclear explosion monitoring (e.g., Carmichael, 2016).

Despite of recent advances in seismic event detection (e.g., Carmichael, 2016; Hammer et al., 2012; Perol

et al., 2018), we adhere to the more basic approach of matched filter detection, which we consider the bet-

ter choice for the Basel case: Our multitemplate matched filter detector can be made very sensitive to the

already known 3,723 reservoir earthquakes, which densely delineate the extent of the geothermal reservoir

(Asanuma et al., 2008; Dyer et al., 2010; Kraft & Deichmann, 2014).

Matched filter detection has the potential to detect events with signal amplitudes even below the noise level

(Gibbons & Ringdal, 2006; Schaff, 2008) and at times of high event rates when waveforms overlap (Peng
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& Zhao, 2009; Schaff & Waldhauser, 2010). The method takes advantage of the high waveform similarity

observed within seismic sequences (Geller & Mueller, 1980): seismic waves that originate from a similar

source region caused by a similar source mechanism travel a similar path in themedium and will have simi-

lar waveform shapes at a receiver. Hence, with a waveform of a known event, one can search formore events

that have a similar, or the same, source. To find them, a matched filter continuously measures the similarity

between the waveform of a known event and the available continuous data. It provides a cross-correlation

(CC) trace that spans the extent of the available data (for details, see Text S2). A peak in the CC trace that

exceeds a defined threshold triggers a new detection. A very high CC value indicates a repeating source, but

the value degrades (i.e., the waveforms decorrelate) with growing separation distance (Menke, 1999; Baisch

et al., 2008; Castellanos & van der Baan, 2015; Hakso & Zoback, 2017), increasing noise level (Gibbons &

Ringdal, 2006; Schaff, 2008; Carmichael, 2016), increasing frequency bandwidth of the signal Baisch et al.

(2008), differingmagnitude, and due to deviations in the focalmechanism and source-time function (Harris,

2006; Schaff & Waldhauser, 2010).

3.1.1. Configuration

Weperformed a single-station detection procedure at OTER2. The common frequency range of events above

the noise level of OTER2 is in the range of 20–400Hz (see Figure 3a). But the signals need to be band-limited

to a range where the similarity between a template and the unknown events is high, that is, below the

corner frequencies of their source spectra (Harris, 2006; Schaff & Waldhauser, 2010). On the one hand, the

bandwidth should be large to reduce false detections (Arrowsmith&Eisner, 2006;Harris, 2006).On the other

hand, an increasing upper band limit degrades thewaveform similarity of closely spaced hypocenters Baisch

et al. (2008), which makes a template waveform less tolerant to small variations at the source. We assessed

the influence of different passbands on the number of detected reservoir events (during 1 day of reservoir

stimulation, on 3 December) and false detections (during 1 day prior to the stimulation, on 1 December) and

found a 5- to 80-Hz filter (fourth-order Butterworth, blue frequency band in Figure 3a, see also Figure S1)

to maximize the sensitivity to (small) reservoir events and resulting in no false detections. The 1,000-Hz

waveform data were resampled to the highest common sampling rate used over the whole study period

(500Hz).

Due to the absence of the discriminative vertical component, we implemented a strict trigger condition: The

CC threshold had to be exceeded at both components at the same time. The minimum of both CC values

was then taken as the similarity measure of a detection to its template.

A statistical threshold based on the “median absolute deviation” (“MAD”; e.g., Shelly et al., 2007) may gen-

erally lessen the variation of the detection limit but not in our case: During the injection, the high event rate

caused closely spaced maxima and, therefore, an elevated CC trace; as a result, the MAD threshold is more

than twice as high (compared to before the injection), which would have impaired the event detection. To

avoid this added inconsistency, we considered a fixed CC threshold the better choice.

To complement potentially missing events at times when OTER2 experienced data outages, we per-

formed a separate matched filter analysis at station MATTE, however, with a less sophisticated setup and

post-processing than outlined above for OTER2 (for details, see Text S3).
3.1.2. Algorithmic Implementation

We developed a Python-based framework which can perform the workflow presented in this study

(e.g., template selection, waveform preprocessing, matched filter detection, post-processing, and result plot-

ting). It was particularly designed for the single-station approach, because our interest was to use only the

most sensitive station for earthquake detection. For waveform management and processing, we made use

of obspy (Beyreuther et al., 2010) but replaced some of its routines for performance considerations (e.g.,

filtering and resampling in the frequency domain; see Text S4).

For performing event detection with thousands of templates over ∼12 years of data in manageable time, we

parallelized our matched filter routine to enable high-performance computing involving hundreds of pro-

cessors. We made use of MPI (Message Passing Interface Forum, 1997) and implemented a master/slave

configuration, where one master process controls as many slave processes as processors are available. Each

slave process either (1) reads waveform data from an archive and preprocesses it or (2) performs a match

filter detection on preprocessed waveform data with one template. To avoid idle slave processes, the mas-

ter process optimizes resource sharing and balances the computational load. The performance scales with

the number of processors because the processing of the chunk-template pairs are independent from each
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other. See Text S5 and Lewis (1995) for further performance considerations concerning the algorithmic

implementation of the matched filter operation.
3.1.3. Preprocessing the 50-Hz Noise Signal

The 50-Hz noise signal intensified after the digitizer replacement in 2012 and caused a generally higher

noise level and a reduced detection threshold. Band stopping this noise with a time domain filter would

have removed too much frequency information from the signal and also would have altered the waveforms

too much (e.g., “ringing” artifacts; see Figure S2). Instead, we applied a narrow notch filter in the frequency

domain (see Text S4 and Figure S1) that cancels out only the undesired mono-frequent 50-Hz noise in the

time domain signal.

3.2. Template Selection

The strength of template matching is simultaneously also its disadvantage: the selective sensitivity to the

template waveform. In our case, we needed a large number of templates to adapt to the diverse set of event

waveforms that were recorded at OTER2. One reason for this diversity was the proximity of OTER2 to the

reservoir, recording event waveforms that were only weakly attenuated and varied in inclination angles (see

Figure 1c). Another reason was the complexity of the reactivated fault system in the Basel reservoir, which

was characterized by fault planes of various orientations (Deichmann et al., 2014). Many of the identified

fault segments deviate significantly from the overall orientation of the seismic cloud, causing a substantial

variation of the seismic radiation patterns observed at OTER2.

To create a template set from all known reservoir events while excluding event waveforms that are similar

to each other, we performed a waveform cluster analysis (e.g., Aster & Scott, 1993; Maurer & Deichmann,

1995). As input, we used 0.6-s-long waveforms aligned by their P wave onsets and applied the same 5- to

80-Hz band-pass filter used for matched filter detection. The short duration of 0.6 s preserved enough S

wave coda energy (see Figure 2a), while it minimized the number of events that had to be excluded due

to overlapping other events. Yet we had to exclude 257 event waveforms with bad signal quality (i.e., low

signal-to-noise ratio or several events happening and overlapping within the 0.6 s) and 19 events withMw >

2.0 (i.e., larger events, which do not share much waveform similarity with the small events that we wanted

to detect; Deichmann, 2017).

As a pair-wise similarity measure, we took the smaller of the two CC values measured at the sample, nx,

where the summed CC traces of the two horizontal components have their maximum:

S�k = min
i={1, 2}

{
CCi

�k
(nx)

}
with nx = argmax

n

{
2∑

i=1

CCi
�k
(n)

}
. (1)

In equation (1), i is the channel index and CCi
�k
(n) the running CC coefficient between two events j, k. (Tak-

ing the smaller of both CC values is consistent with the similaritymeasure used formatched filter detection.)

Instead of taking the maximum or the average CC value at nx, our choice makes the cluster forming more

sensitive to the dissimilar component between two events and better separates truly dissimilar waveforms.

To organize the similarity matrix Sjk into clusters, we employed agglomerative hierarchical clustering with

the average linkage method (Sokal & Michener, 1958). The cluster cutoff was set at a rather strict similar-

ity threshold of 0.9—a value typically used to group events that originate from the same source region and

share the same source mechanism, that is, multiplets (Arrowsmith & Eisner, 2006; Deichmann et al., 2014;

Castellanos & van der Baan, 2015; Hakso & Zoback, 2017). This threshold guaranteed an adequate coverage

of the seismic cloud with a high detection sensitivity. The clustering led to 2,274 clusters, of which 620 had

more than one member (i. e. nonsingleton clusters).

However, the impulsive S phases of the events were dominating the cluster forming, resulting in incorrect

cluster associations with varying S-to-P traveltime differences of the cluster members (see Figure 4a). To

counteract this effect, we employed a processing step to scale down the amplitude of the S phase relatively

to the whole waveform. We call this procedure “waveform equalizing” as it redistributes the waveform's

energy more equally in the whole time window (see Figure 4b). A waveform is equalized by multiplying the

following window:

e = 1 −min

{
6
Kurt(x)

N
, 0.75

} |xa|
max |xa|

, (2)
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Figure 4. Example illustrating the effect of “waveform equalizing” on the clustering of waveforms (clustering
threshold: 0.9) for six example waveforms. Waveforms are aligned by their barely visible P onset (indicated by vertical
gray dashes) and were processed with a fourth-order, 5- to 80-Hz Butterworth band-pass filter. (a) Using original
waveforms yields two clusters (colored blue and red). (b) Applying waveform equalizing on the same waveforms yields
four redefined clusters (colors: blue, orange, green, and red) with better cluster-internal agreement of the overall
waveform shapes.

in which |xa| is the envelop of x, Kurt(x) is the kurtosis of x, a measure of extreme values (outliers), and N
is the sample length of the waveform. The window e can be interpreted as flipped normalized envelop of

the signal scaled proportionally to Kurt(x) but not more than 75% of the S wave amplitude to never notch

away the S phase completely. The kurtosis is multiplied by 6 and normalized by N to obtain a measure of

extremity of the S phase that ranged between 0 and slightly over 1 in our case.

Waveform equalizing reduced theweight of the S phase in the similarity analysis and producedmore consis-

tent clusters (see Figure 4b). The intrinsicwaveform characteristics are capturedmuch better afterwaveform

equalizing because clustering ismademore sensitive to thewholewaveform shape andnot only to the impul-

sive S phase. A sole increase of the clustering threshold (e.g., to 0.95) without waveform equalizing would

have resulted in more cluster splitting only. A total of 2,508 clusters was produced; 560 were nonsingleton

and the largest had 16 members. Each cluster contributed one event to the template set; for nonsingleton

clusters, the member with the highest average similarity to all other cluster members was selected as tem-

Figure 5. Locations of template events in map view (left) and in a North-South depth section (right) colored by year of
occurrence. Symbol size is proportional to their magnitude (see legend). Locations until 2012 were provided by Dyer
et al. (2008, 2010) and replaced with locations of Kraft and Deichmann (2014), if available. Locations for ≥2012 are
based on the Swiss Seismological Service (SED) catalog (Deichmann et al. (2014) and N. Deichmann (personal
communication, 2018). Locations have different uncertainties depending on their origin. Template events from the
SED-�An catalog are not shown due to their high uncertainties. No template event occurred in the year 2011.
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Figure 6. Filtered waveforms (5–80Hz with 50-Hz noise removal) of example detections (black) as found by the
overlayed template waveform (blue). All detections have CC-based similarity (indicated in each subfigure) of around
0.75 for the 0.6-s-long template waveform (within the dashed lines) but are of completely different nature: (a)
reservoir-related event; (b) impulsive noise; (c) distant earthquake with its P phase about 0.8 s before the detection time.

plate. Most of the template events were associated with a location, and their spatial distribution depicts the

extension of the seismic cloud (see Figure 5).

3.3. Post-Processing (of Detections)

After combining the detections of multiple templates, our detection catalog may refer multiple times to the

same events. Therefore, we considered detections that were separated by less than 0.2 s as such duplicates

and only kept the detection with the highest CC value (i.e., of the best-matching template) in that time

interval. The separation tolerance of 0.2 s was chosen based on the observation that the time of the S wave

peak varied by 0.15 s among all templates relative to the start of the templates. As this impulsive S wave is

the main detection characteristic, the chosen value should guarantee the merging of duplicates while still

allowing to detect overlapping events with a time difference of ≥ 0.2 s.
3.3.1. Removing False DetectionsWith aMachine Learning Approach

Due to the impulsive character of the S waves and the lack of P wave energy in the template waveforms,

we detected not only events originating from the Basel reservoir but also many unrelated signals that were

impulsive as well, such as transient noise pulses, data artifacts (e. g., jumps, spikes, or gaps), or the P and

S phases of nonreservoir events. Such false detections had rather high CC values to our templates (see

Figures 6b and 6c) because the impulsive signals were mainly transformed to the impulse response of the

applied filter.

Setting a fairly high similarity threshold to minimize the false detection rate would have excluded many

reservoir events with lower similarities to our templates. Such low-similarity detections could either have

a low signal-to-noise ratio (Gibbons & Ringdal, 2006) or represent events that happen on fault patches

for which no suitable templates existed in the combined catalog. A high similarity threshold would have

therefore caused a higher incompleteness in our detection catalog. Alternatively, a multistation detection

approach could have reduced the false detection rate (Slinkard et al., 2014; Gibbons & Ringdal, 2006) yet

with the cost of considerably lowering the overall detection sensitivity.

The discrepancy illustrated in Figure (i.e., that also false detections have high CC values) implies that the

CC-based similarity measure in a limited frequency band, which we used for template matching, is not a

good metric for characterizing the nature of the detections. Specifically, too much high-frequency informa-

tion is filtered out for a robust false detection removal. The situation is further complicated by the fact that

we can only use two of three components.

To overcome these difficulties, we initially set a low-similarity threshold of 0.45 and then specifically tar-

geted the removal of false detections above that limit with a signal classification scheme. The threshold of

0.45 was found by visual inspection of the detected waveforms; below that value, a disproportionately high

number of detections had low signal-to-noise ratios, andwe could not assess if theywere reservoir-related. To

classify the signals and separate false detections from the desired reservoir events, we employed a machine

learning approach driven by waveform features (see Figure 7). Waveform features are characteristic func-

tions that extract specific information from the complete seismic signal (Falsaperla et al., 1996; Beyreuther &

Wassermann, 2008; Hammer et al., 2012), for example, by exploiting their spectral content. Machine learn-

ing techniques for the automatic classification of predetected events in seismic recordings have been applied

numerously before (e.g., Del Pezzo et al., 2003; Falsaperla et al., 1996; Giacco et al., 2009; Masotti et al.,
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Figure 7. Flow chart of our machine learning approach to classify detections. The classification of detections was used to remove false (nonreservoir)
detections. input: A subset of the detections (4,006) were manually classified to create a labeled training set. feature extraction: Many different waveform
features were generated for the training set and the remaining detections at five defined points in time, t1−5 (small gray squares).machine learning / training:
During the four processing steps (see Text S6 for detailed descriptions), five classification models were trained and optimized using different machine learning
techniques: Support Vector Machine (SVM), Random Forest (RF), Logistic Regression (LR), Gradient Tree Boosting (GB), and Multilayer Perceptron (MLP). In
the last step, the models were combined with different weights to a more robust classifier ensemble. classification: Once trained, the classifier ensemble
estimated class-related probabilities for all detections based on their associated feature values. The detections were assigned to the class with the highest
probability. performance: The confusion matrix visualizes the classification accuracy of our classifier ensemble when reevaluating the training set via
cross-validation (see supporting information Text S6); it compares the predicted class against the true class, revealing correctly classified (diagonal elements)
and misclassified training detections (nondiagonal elements) for each class. Correct predictions of reservoir detections are considered as true positives (green)
and correct predictions of all nonreservoir events (e. g., “outside” predicted as “noise”) as true negatives (blue). False positives (type-I error) are in the upper
right row (red frame); false negatives (type-II error) are in the lower left column (orange frame). The upper value in each cell is normalized by the class element
size; the lower value is the absolute amount.

2006; Mousavi et al., 2016; Provost et al., 2017). These approaches consist of a training stage, where a model

is fit to a manually labeled training set, and a classification stage, where the model estimates the classes of

unknown detections based on what it inferred from the training set.

For creating the training set, we visually inspected detected waveforms and classified them into four

categories: reservoir earthquakes (reservoir), transient noise pulses and data artifacts (noise), reservoir

events detected by the wrong phase arrival, that is, S detects P or S detects a coda wave (time-err), and

reservoir-unrelated earthquakes (outside). A total of 4,006 waveforms were classified from different time

periods, with about one half reservoir (2,070) and one half nonreservoir (1,936) detections. For feature

extraction, we selected a subset of the features collected by Beyreuther and Wassermann (2008) and Ham-

mer et al. (2012), all of which are implemented in the Python framework obspy (Beyreuther et al., 2010):

normalized envelop, centroid time, signal bandwidth, central frequency, dominant frequency, instantaneous

bandwidth, instantaneous frequency, three cepstrum coefficients, and eight half-octave bands (Figure 7;

for details, see Text S6). Additionally, we incorporated the maximum signal amplitude as a feature. To
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account for their time dependence, each feature was computed at five points in time (“states”), with

overlapping time windows of 256 samples (0.512 s). The states were chosen to cover different parts of

the detection waveform: with focus on pre-S time window (t1, Figure 7), S-phase (t3), coda (t5), and two

intermediate states t2 and t4 (see Figure S3). In total, the time windows covered 1.4 s of data of each

detection, including some data outside the 0.6 s template duration. To accentuate the relative changes

between the states t1 − t5 of a feature, we added the differences between each consecutive state as

additional features. In total, each detection waveform was represented by a 342-element feature vector

(19 waveform features × [5 states + 4 differential states] × 2 channels). To assure that the feature vectors of

the training set are in a comparable value range, they were jointly standardized to have zero mean and unit

standard deviation James et al. (2013).

We trained five established machine learning models for our multiclass discrimination task (see Figure 7):

Logistic Regression (Cox, 1958),Multilayer Perceptron (Hornik et al., 1989), Support Vector Machine (Vapnik,

1995), Random Forest (Breiman, 2001), and Gradient Tree Boosting (Friedman, 2001). In Text S6, we present

a short description of each algorithm and their use in literature for classifying seismic events. All of them are

implemented in the Python framework scikit-learn (Pedregosa et al., 2011) and, after training them without

further tuning, showed a classification performance of > 97% accuracy.

To maximize the classification performance, we employed four training steps (see Figure 7 and a detailed

description of each step in Text S6). In each step, the best settings were found by evaluating the models in

terms of their prediction performance with a tenfold cross-validation: The training data are randomly split

into 10 subsets of equal size, and the evaluation procedure—using nine splits for training and one split for

testing—is performed for each fold and then averaged (James et al., 2013). These splits were created with

stratified sampling, that is, each fold approximately preserves the relative class frequencies of the whole

training set. To optimize the classification performance for the “reservoir” class, we quantified the prediction

error in terms of the precision and recall score (James et al., 2013) of the reservoir label and ignored the

performances for the other classes (true negatives). The precision score is the fraction of correctly predicted

reservoir labels (true positives) to all reservoir predictions (accounting for false positives), while the recall

score is the fraction of true positives to all reservoir events (accounting for false negatives). Both scores

were combined into a single measure using their harmonic average, the F1 score, which guided the model

evaluation in the different training steps (see Text S6). The training steps ultimately led to a combination

of all classifier models into a classifier ensemble, which improved the robustness over a single model and

compensated their individual deficiencies by adding diversity (Polikar, 2006; Kuncheva, 2014).

The confusion matrix (also known as contingency table) in Figure 7 (description in caption) reports the

classification performance of the classifier ensemble with respect to the individual classes. The evaluation

was based on cross-validated probability estimates obtained for each training element (out-of-fold estimates,

see Text S6), which were averaged over 10 random tenfold cross-validations. Regarding the reservoir class,

the classifier ensemble produced more false positives (type-I error, red in Figure 7) than false negatives

(type-II error, orange in Figure 7). Hence, the recall score was slightly higher (0.993) than the precision

score (0.987).

Once trained on the full training set, the classifier ensemble learned the meaning of the waveform features

to discriminate classes. The ensemble was then applied to the extracted feature vectors of all our detections

and estimated their classmemberships probabilistically (see Figure 7, classification). These probabilities can

be interpreted as class-related confidence values (Kuncheva, 2014; Polikar, 2006) and inform about themost

likely class a detection belongs to.
3.3.2. Reassociating Templates and DetectionsWith EqualizedWaveforms

As the large weight of the S phase dominates the waveform similarity, detections are associated with a

template mainly based on the shape of their S phase. Consequently, remaining waveform parts (especially

information in the coda wave, see Figure 4) have aminor influence, although they carry important informa-

tion about the travel path and, therefore, the source location. Our previously presented waveform equalizing

procedure can counteract this effect. But because the window e (equation (2)) is unique at every waveform

sample, the equalized template waveforms could not be used for template matching itself. Therefore, we

reemploy waveform equalizing as follows to improve the template-detection associations: After equalizing

all template and detection waveforms, we cross correlate each detection with every template and reassoci-

ate it with the template that produces the highest CC value. For very small events that approach the noise
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level, the window ewill lose its effect: With increasing noise level, Kurt(x) tends to zero leaving the original
waveform unaltered. The recalculated CC values are generally smaller than the original ones because this
procedure enhances the waveforms' heterogeneity. To remove detections with low CC values but account
for the similarity change, a new threshold of 0.40 was applied, which includes the average similarity change
(−0.05) among all detections.

3.3.3. Magnitude Estimation

For any statistical analysis of seismicity, it is essential to have an earthquake catalogwith uniformand consis-
tentmagnitudes. To calculate suchmagnitudes for our detection catalog, we followed the procedure detailed
below.

First, we consistently recalculated moment magnitudes for all the events in the combined catalog (3,723
events) using the spectral fitting method proposed by Abercrombie (1995). We performed this procedure
with event recordings of the borehole stations that were operated over a longer time (OTER2, MATTE,
and HALTI; see Figure 1). After correcting the recorded signals for the instrument response, we estimated
the far-field displacement spectra of S waves with an adaptive multitaper method (Prieto et al., 2009;
Krischer, 2016). Then, we fit these observed spectra with theoretical far-field source spectra using a non-
linear least-squares optimization with boundary constraints (implemented in the scipy python package,
Jones et al., 2001). As proposed by Abercrombie (1995), we chose the source model of Boatwright (1980)
instead of a “�-squaremodel” (Aki, 1967; Brune, 1970, 1971) to obtain a better fit to the sharp corners caused
by the close hypocentral distances in our study. Deichmann (2017) observed that the shear wave attenua-
tion of induced earthquakes in the Basel reservoir recorded at OTER2 can bemodeled using a quality factor,
Qs, between 100 and 200 and suggested to use Qs, base = 140 for the basement and Qs, sedi = 80 for the sed-
imentary layers. Hence, we use a Qs of 140 for OTER2 and the mean of Qs, base and Qs, sedi (Qs of 110) for
both HALTI andMATTE. The high-frequency falloff exponent, n, was allowed to vary between 1 and 6. The
remaining free fitting parameters were the low-frequency plateau, �0, and the corner frequency, fc, of the
displacement spectra. �0 is related to the seismic moment, Mo (e.g., Chapter 10 of Aki & Richards, 2002),
and can be subsequently converted into a moment magnitude,Mw (Hanks & Kanamori, 1979). For the con-
version between�0 andMo, we replicated the physical parameters used by GEL (density � = 2, 650 kg/m3, S
velocity � = 3, 450 km/s, and average radiation pattern of SwavesFS = 0.63; T. Spillmann, personal commu-
nication, 2015). OurMw estimates were averaged over all three borehole stations and compare well to GEL's
Mw estimates (3,552 events, Figure S4a) and to theMw estimates calculated by Bethmann et al. (2011) for a
subset of the SED catalog (195 events, Figure S4c). For the sake of completeness, we document here that the
Mw estimates of GEL and Bethmann et al. (2011) are also in good agreement with each other (Figure S4d).

Unfortunately, themajority of our detected earthquakes was too small to estimate theirmomentmagnitudes
robustly. Yet the maximum amplitude of the S phase observed at OTER2, A, could be determined reliably
even for the tiniest events whenmost of the signal was already hidden in noise (see Figure 3). In a next step,
we therefore established individual template-family-based relations between logA and our newly calculated
Mw, which we used to estimate moment magnitudes, Mwx, for all earthquakes in our catalog. To do so, we
made use of the results of Deichmann (2017), who showed that for earthquakes with source-spectral corner
frequencies fc>fmax→logA∝logMo and therefore

Mw =
2
3
logA + C. (3)

Here fmax is the high-frequency band limitation of the radiated seismic wave field introduced by seismic
attenuation (Hanks, 1982), andC is a constant. Deichmann (2017) found that induced earthquakes recorded
at the shallow borehole station MATTE have fmax ≈ 20Hz and comply with fc > fmax if Mw ≤ 2.1. Con-
sequently, colocated earthquakes in this magnitude range have identical source-pulse widths and identical
normalized waveforms independent of their magnitude (Deichmann, 2017). This fact implies that wave-
forms of these events are amplitude-scaled copies of each other and scale proportional to their seismic
moment.

At station OTER2, fmax is much higher than at MATTE (fmax(OTER2) > 100Hz; see Kraft & Deichmann,
2014, Figure 3), and consequently, equation (3) holds for much smaller earthquakes than at MATTE. To
use equation (3) for as many earthquakes in our catalog as possible, we apply a fourth-order Butterworth
low-pass filter with a corner frequency fLP = 30Hz to the event recordings at OTER2. (fc was larger than
30Hz for the vast majority of the analyzed earthquakes, see Figure S6.) Hence, fLP at OTER2 mimics the
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Figure 8. Reduced magnitude versus amplitude plot showing 20 of more than 500 example clusters (i.e., template
families) with more than one member. Corresponding regression lines for each family have a fixed 1: 2

3
scaling between

Mw and logA. The y axis corresponds to the intercept C in equation (3), which is determined for each family separately
via regression analysis. The family memberships (represented by different colors) were determined with waveform
cluster analysis using all catalog events. The families in this figure were selectively chosen to show the full amplitude
range, full magnitude range, the largest cluster, and also clusters with larger in-cluster deviation.

effect of the smaller fmax at MATTE. Consequently, all colocated earthquakes with fc > fLP have identical

normalized waveforms and obey equation (3). Even though Deichmann (2017) proofs equation (3) for dis-

placement amplitudes, it is also valid for velocity or acceleration amplitudes in the case of event families

with identical normalized waveforms (see proof in Text S7).

Before measuring A, we additionally applied a 10-Hz Butterworth high-pass filter (fourth order) to remove

low-frequency signals, which would otherwise mask the S phase of smaller events. The resulting 10- to

30-Hz passband is indicated in red in Figure 3a. Although it appears that very small events contain no energy

above the noise level in this frequency range (represented by the probabilistic power spectral density [PPSD]

calculation over 6 years), the red waveforms in Figure 3c show that the S phase peak can still be perceived.

Based on these band-pass filtered velocity seismograms, we measure A as the maximum of the quadratic

mean of OTER2's two horizontal components in the 0.6-s event window: A = max
√
x21 + x22.

The large number of catalog events had allowed us to form many template families in the earlier waveform

cluster analysis. For these, we established individual template-family-based relations between logA and

our newly calculatedMw with linear regression analysis. We fit equation (3) with respect to the intercept C

(Figure 8)while also accounting for the uncertainties in ourMw estimates. If a template family is represented

bymore than onemember, these logA-Mw relations accountmore robustly for the remaining aleatory scatter

(Deichmann, 2017) of ourMw estimates.

Although many of the 2,508 template families were singletons (65%), the 560 nonsingleton families (20

of them shown in Figure 8) showed generally little in-cluster deviation from the 1:23 scaling (mean

1	: 0.011; max. 1	: 0.069). This small scattering implied that (1) the slope of 2

3
is appropriate to con-

strain the amplitude-magnitude regressions and (2) the intercept C is representative for the individual

template-family-based relations. We postulate that the generally small error in C also applies to the remain-

ing template singletons. The different offsets in C represent amplitude differences at OTER2 that are caused

by different hypocentral distances aswell as different radiation patterns of individual events (seeDeichmann

et al., 2014). Hence, the individual regressions account for both effects because our previous waveform clus-

tering ensures that cluster members represent closely spaced events with similar focal mechanisms (e.g.,

Geller & Mueller, 1980).

Finally, we used the template-family-based logA-Mw relations to estimate Mw for our detected events

template-family-wise from the measured logA. For events withMwx ≥ 2.0, fc is generally smaller than fLP
at OTER2, and equation (3) is not valid anymore. For these larger events, we replaced Mwx with our Mw

estimates obtained from spectral fitting. Additionally and for the same reason, magnitude-dependent dif-

ferences in the waveform shapes of these larger events begin to dominate, and their template association

becomes less reliable (see drop in similarities in Figure S11).
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Figure 9. Time history for the period November/December 2006. (a) Histogram (blue) and cumulative rate (gray
curve) of detected events illustrating the enormous activity during the injection period. (b) Time versus magnitude;
coloring of events as in Figure 5, which indicates to which template an event is most similar. Existing catalog events are
highlighted with a gray (Swiss Seismological Service [SED]) and green ring (Geothermal Explorers Ltd. [GEL]); white
dots represent template events. (c) A zoom into the lower magnitude range (Mwx − 0.2 to −1.5) showing the varying
noise level of the borehole station OTER2 (green curve) and magnitude of completeness (Mc, red curve).Mc was
estimated for varying window sizes (see text) and plotted at the center of each window rather than at its end to align
better with the noise level. Bootstrap resampling provided aMc distribution shown by its arithmetic mean (solid red
curve) and standard deviation (1	, red shading). A correlation betweenMc and the noise level is shown in Figure S7.
The indicated data gap (gray bar) on 25 December (both at OTER2 and MATTE) reaches up to the detection limit of the
surface network (Mwx0.9). The “Sa Su” labels on the time axis indicate the weekends.

As a side note, the spectral fitting also allowed us to estimate the corner frequencies of the catalog events

and eventually their Brune stress drops, 
	. We determined a mean 
	 of ∼15MPa (see Figure S6) using

the same assumptions as Goertz-Allmann et al. (2011), that is, the relations for a circular rupture (Eshelby,

1957), a shear-velocity of 3,450m/s, and a corner frequency parameter for S waves of 0.375 (Brune, 1970).

In comparison, Goertz-Allmann et al. (2011) obtained a median 
	 of 2.3MPa using a subset of the events.

4. Results
4.1. The New Catalog: Induced Seismicity in Basel in High Resolution

The new catalog consists of 280,941 events with magnitudes down to Mwx − 1.5 (≈ ML − 3.4). Of these,

42 events were added by the separate scan at MATTE to complement OTER2 data gaps (detection limit at

MATTE ≈ Mwx0.1=̂ML − 1.0). Not all data gaps could be complemented by MATTE, as 46% of the data gaps

overlapped at both stations. At these times, the detection limit of the SED catalog applied (≈ Mwx0.9=̂ML0.5).

The total number of events in our catalog increased 80-fold compared to the GEL catalog and 1,200-fold to

the SED catalog. The total seismic moment release covered by the new catalog amounts to 4.96 × 1014Nm

(≈ Mw3.73). In comparison, the GEL catalog covers 3.01 × 1014Nm (≈ Mw3.59) and the SED catalog 1.86 ×

1014Nm (≈ Mw3.45). This comparison shows that the many newly detected events account for a significant

proportion (39%) of the detectable total seismic moment release in the reservoir.

4.1.1. The First Weeks During and After Stimulation

For the low-rate injection test conducted on 25/26November, prior to themain reservoir stimulation (Häring

et al., 2008), we detected 147 events betweenMwx−1.2 andMwx0.42 (Figure 9), which corresponds toML−2.9

andML−0.6. The operators detected a similar number of events (146, the GEL catalog contains four of them)

due to their initially very low trigger level. Their event list is based on a subsequent manual inspection to
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Figure 10. Time history of earthquake detections for the whole study period. The coloring is the same as in
Figures 5, 9, and 11. Gray bars (data gaps of OTER2) indicate two alternative detection limits (by their height):
Mwx0.1, when MATTE was operational, andMwx0.9—the detection limit of the surface network—when also MATTE
had an outage. Only data gaps larger than 1 hr are shown. SED = Swiss Seismological Service; GEL = Geothermal
Explorers Ltd.

remove false detections. (In themain stimulation, the operator increased this threshold dramatically to cope

with the manual analysis of detected seismic events.)

The main stimulation started on the evening of 2 December at 18:14 UTC, and the first detected event

(Mwx − 1.1=̂ML − 2.6) occurred at 20:55, 2.5 hr after injection start. Up to that time, 2m3 of water had been

injected, and the well-head pressure was at 7.4MPa (the downhole pressure was not recorded at that time).

The first event in theGEL catalog (Mwx0.40=̂ML−0.6) occurred 70min later at 22:05 (3.7m
3 ofwater injected

andwell-head pressure at 8.6 bar).Within the next 2 hr (6 hr after the start of the injection), the catalog spans

over 2.5 orders of magnitude as the sequence reached event magnitudes of up to Mwx1.1 (=̂ML0.4). Over

the course of the following 5 days, the seismicity increased steadily both in rate (Figure 9a) and magnitude

(Figure 9b) in response to the rising pressure and flow rate. When the seismic activity reached an unexpect-

edly strong level (Mwx2.4=̂ML2.6 on 8 December, at 03:06), the injection was reduced 1 hr later and halted

8 hr later at 11:33 with the well being closed (shut-in; Häring et al., 2008). As a consequence, the event rate

dropped but was still at a high level (Mwx > 2.0=̂ML > 2.0), including the widely feltMwx3.1=̂ML3.4 event

(8 December, at 16:48). Shortly after this largest event, the well was reopened (bleed-off) at 18:46, and the

event rate dropped further.

Despite a decaying seismicity, our catalog reveals that the reservoir was continuously seismically active.

When considering GEL events only (green circled in Figure 9b), the seismicity appears muchmore sporadic

with magnitudes mainly above ≈ Mwx0.3=̂ML − 0.8. Compared to the GEL catalog, our catalog adds events

that are almost two magnitude units smaller and that were previously missed. For whole December 2006, it

now containsmore than 260,000 events and resolves event rates that are as high as 2,800 events per hour (see

Figure 9a), that is, on average almost one detectable event per second. At such high rates, events overlapped

(see Figure 2c) but could often be detected thanks to the high sensitivity of the matched filter approach.

4.1.2. Time-Varying Noise Level

Our new catalog also reveals a daily variation of the lower detection limit, especially during injection. At

night, smaller events could be detected than during the day. At weekends, this lower detection limit lasted

longer than during the week. These patterns suggest that the time-varying noise level in the city affects

the capability of the matched filter to detect the smallest events. The varying noise level can also be seen

in the PPSD (similar to McNamara & Buland, 2004) in Figure 3a. To estimate a noise-dependent lower

magnitude limit over time, we (1) extracted the noise amplitude via a PPSD analysis (5% percentile to focus

on noise rather than event signals) in the same frequency band in which we determined event amplitudes

(10–30Hz, red in Figure 3a), (2) converted this acceleration amplitude into a root mean square velocity

amplitude (Bormann, 1998), and (3) subsequently into magnitude units using the template-family-based

logA-Mw relation with the smallest intercept (Figure 8). The retrieved “noise magnitude,”Mwn (green curve

in Figure 9c), follows the lowest detectable magnitudes very closely over time and shows the daily and

weekly variation of the noise level—even highlighting the Christmas holidays (25/26 December).
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Figure 11. Time history for a zoom into January 2007 to illustrate the higher resolution of temporal event clusters.
(a, b) Comparison of the resolved event rate by the GEL catalog (a) and our catalog (b); the gray curves represent the
cumulative number of detected events. (c) The detected events (time versus magnitude) are colored as in Figures 5 and
9. Data gaps (gray bars) on 25 January indicate two different detection limits as explained in the caption of Figure 10.
SED = Swiss Seismological Service; GEL = Geothermal Explorers Ltd.

We investigated whether also the magnitude of completeness,Mc, was subject to these variations. We deter-

mined Mc for varying event window sizes (initially 147 events to capture the prestimulation as separate

bin, then 3,000 until 10 December 18:00, 1,000 until 13 December 00:00, and 500 afterward) with the maxi-

mum curvature method (Wiemer &Wyss, 2000) including an additional correction of+0.2magnitude units

(Wössner & Wiemer, 2005). The red curve in Figure 9c shows that theMc level also exhibited these tempo-

ral variations. The strong correlation betweenMwn andMc can especially be resolved during the stimulation

(Pearson's R of 0.80, see Figure S7). The template set shows the same temporal patterns during the stimu-

lation (white dots in Figure 9b) since also the GEL catalog was subjected to a daily variation of its smallest

magnitudes.

4.1.3. Long-TermDecay and Renewed Increase of Seismicity

In the followingmonths and years, seismicity continued to decay until 2012 (Figure 10). Compared to previ-

ously existing catalogs, our new catalog reveals that larger events are accompanied by a (temporal) clustering

behavior of seismicity, for example, on 6, 12, and 15/16 of January (Figure 11). Generally, many events occur

in clusters, for example, on 5, 8, 14, 17/18, 22, 25, and 28 of January, throughout 2007 (not shown), as well

as in April 2008, July 2009, and April/June 2010 (Figure 10). Between 2008 and mid-2010, the previously

existing catalogs showed only infrequent seismic activity (mean interevent time: 28 days), which is now

resolved as an almost permanent activity in our catalog (mean interevent time: 1.1 days). For the period

frommid-2010 to mid-2012, no events were previously reported, but our results show that the sequence was

indeed still active at a very low level (on average ∼11 events per month). In 2012, however, almost 6 years

after the injection, seismicity suddenly increased againwithmagnitudes up toMwx2.1=̂ML1.9 (Wiemer et al.,

2017; Diehl et al., 2018) and continued to occur preferentially in episodic sequences until 2018.

Template associations change gradually over the years (see color coding in Figure 10) from dark blue (early

templates) over yellow to red (later templates). Assuming a close spatial proximity of the detections to their

templates, this transition corresponds to an expansion of the seismic cloud, which was already observed in

previous studies (e.g., Dyer et al., 2008; Dyer et al., 2010; Deichmann&Ernst, 2009; Deichmann et al., 2014).

Especially clusters that occur after 2012 are predominantly associated with templates from the same year

indicating that seismicity in these years occurs on faults that had not been active before. But the general
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Figure 12. Cumulative histograms of all detections (black) and separated event classes (green, gray, and red; see
legend) after applying our machine learning approach. The lower plot is a vertical zoom to show the constant event
rate of the “outside” earthquake class (red) for 2007 onward.

presence of associations with early templates throughout the study period indicates that the central part of

the reservoir remained active.

4.2. Details on the Event Classification

From inspecting the classification results, we found the target detections (i.e., the reservoir class) to be

well-separated from the nontarget (i.e., false) detections. Only during the high-rate injection period in

December 2006 we noticed an overproportional number of nontarget events per time unit (∼7,400 “out-

side” events and ∼4000 “time-err” detections). Most of them were very small events and misclassified due

to the extremely high event rate that caused events to overlap and waveform features to not represent a sin-

gle event anymore. In such cases, the trained classifier had problems to discriminate event classes properly

and was overconfident toward nonreservoir classes. To correct for this overconfidence, we took advantage

of the probabilistic classification estimates (see Figure 7) and reclassified nonreservoir detections as reser-

voir events if their associated reservoir class probability exceeded a certain threshold (see Text S6). In this

way, nontarget detections only kept their class if they had a very low confidence level of belonging to the

reservoir class. This adjustment recovered ∼9,200 reservoir events.

For the whole study period, 280,899 of the total 388,614 detections were identified as reservoir events.

The majority of these events occurred in December 2006 during the injection period (∼90%, green curve

in Figure 12). The time-err detections correlated strongly with the occurrence of reservoir events as they

represented wrong phase detections but at a much lower rate (∼3,000 in total, blue curve in Figure 12).

“Noise” class detections were omnipresent but preferentially occurred in swarms from 2012 onward for

some unknown reason (gray curve in Figure 12). Outside events instead occur at an almost constant rate

(red curve in Figure 12), suggesting that they relate to a constant background seismicity in the vicinity of

the reservoir (∼ 185 events per year).

4.3. First Statistical Insights
4.3.1. Event Size Distributions

Figure 13 compares our catalog with the existing catalogs in three different periods in terms of their

frequency-magnitude distribution (FMD). To characterize the FMDs quantitatively, we assumed a distribu-

tion according to the Gutenberg-Richter (GR) relation (Gutenberg & Richter, 1949) and estimated their b

values (the slope of the cumulative FMD expressing the ratio of small to large earthquakes) and a values

(the intercept at M = 0.0) based on the formulas of Tinti and Mulargia (1987) and Marzocchi and Sandri

(2003). For calculating the completeness magnitude,Mc, we mainly used the Median-Based Analysis of the

Segment Slopemethod (MBASS; Amorèse, 2007), which ismore suited for gradually curved FMDs belowMc

(A. Mignan, personal communication, 2018), with a conservative correction of +2	, hereinafter referred to

asMMBASS
c (+2	). For a reference, we also considered two alternative estimationmethods: (1) maximum cur-

vature (MAXC;Wiemer &Wyss, 2000) including an additional correction of+0.2magnitude units (Wössner

&Wiemer, 2005), hereinafter referred to asMMAXC
c (+0.2); and (2) b-value stability (Cao&Gao, 2002; referred

to as “MBS” by Wössner & Wiemer, 2005; Mignan, 2012). MAXC and MBS estimates are indicated in

Figure 14 for the different periods but not further interpreted. Parameter estimates for 10,000 bootstrap
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Figure 13. Frequency-magnitude distributions (FMDs) for different time periods. (a, c, d) Comparison of FMDs of our
detection catalog (blue), the Geothermal Explorers Ltd. (GEL) borehole-network catalog (green), and the Swiss
Seismological Service (SED) catalog (red) for three time periods indicated by the headline in each plot. The FMDs are
given in terms of a discrete (bars) and cumulative (dots) distribution. (b) Comparison of cumulative FMDs for
individual subintervals (see legend) of the November/December 2006 time period based on our catalog; note the
normalized y axis to a daily rate. The number of contributing events is given in the top left of each FMD. (a–d) For each
FMD, we determined the magnitude of completeness withMMBASS

c (+2	) and fit the Gutenberg-Richter relation (a and
b values, see legend).

samples of each catalog provided a distribution for each parameter given as arithmetic mean and 1	 uncer-

tainty. For estimating MMBASS
c (+2	) and associated distributions for the a and b values, we performed two

rounds of bootstrapping: first to obtain MMBASS
c (+2	) itself and a second time for the arithmetic mean and

1	 uncertainty for the a and b values.

For the first period (November/December 2006, Figure 13a), the FMD shows an overall nonlinear distribu-

tion of magnitudes, including an apparent break at ∼ Mwx1.0. The b value as function of Mco (Cao & Gao,

2002; Mignan &Woessner, 2012) increased continuously until this point (∼ Mwx0.96, see Figure 14a), where

the b value of 1.68±0.05 for our catalog approximately agrees with the b value at the apparent breaking point

of the GEL catalog (1.62± 0.05 atMw0.90). (Note that aboveMw0.85, ourMw estimates have a shift of +0.07

magnitude units compared to the GEL catalog; see Figure S4b.) The SED catalog did not contain enough

events above its MMBASS
c (+2	) to determine GR parameter values; however, with MMAXC

c (+0.2) = 1.45,

we determined a b value of 1.56 ± 0.18 for this time period. For our catalog, all methods estimate Mc in

the nonlinear part, below the apparent break at ∼ Mwx0.96 (see Figure 14a). As a result, the estimate of

MMBASS
c (+2	) = −0.15, for instance, causes the GR fit to overestimate the occurrence of larger magnitudes

(see Figure 13a). The scaling break could not be previously seen, because it appears just above theMc of the

GEL catalog (MMBASS
c (+2	) = Mw0.85). The strong deviation from the GR relation above ∼ Mwx0.96 is only

observed in this high-rate seismicity period. We present possible explanations in section 5.

To inspect when the nonlinearity including the scaling break occurs, we additionally determined FMDs for

six subintervals (one for the prestimulation, three during the main stimulation, and two for the post-shut-in

phase, see Figure 13b). See Figure 14b for corresponding b-value sensitivity analyses. Apparently, the FMD

becomes more nonlinear at higher event rates during the stimulation (blue curves in Figures 13b and

14b). After the shut-in (orange and gold curve), the nonlinearity starts to disappear, also visible as a less

pronounced increase of the b value as function of Mco (Figure 14b). For most intervals in this period, the
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Figure 14. b-value sensitivity analyses for the time periods indicated by the headline in the top right of each plot
(corresponding to Figure 13 with the same color scheme). The b-value was estimated as a function of cutoff magnitude,
Mco, with the bias-free maximum likelihood method of Tinti and Mulargia (1987; 1	 uncertainty depicted as shading).
Vertical dotted lines indicate estimates ofMc based on three methods (see text): MBASS for every catalog (blue, green,
and red), MAXC (orange, only for our catalog), and MBS (gray, only for our catalog). The gray dashed curve is the
arithmetic mean, bave, from b values of successive cutoff magnitudesMco in half a magnitude range (dM = 0.5) and
used for the estimation ofMMBS

c . MAXC = maximum curvature; MBASS = Median-Based Analysis of the Segment
Slope; MBS = b-value stability.
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Figure 15. Time history of statistical seismicity parameters of our catalog for the period November/December 2006:
time-varying magnitude of completenessMMAXC

c (+2	) (orange) and corresponding Gutenberg-Richter a and b values
(dark blue and green, respectively). The purple curves relate to a comparative analysis using a fixedMc = 0.96, which
is the apparent scaling break in the overall frequency-magnitude distribution for this period (see Fig. 13a). For
comparison, the top plot shows hydraulic data measured at the wellhead: pressure (brown) and flow rate (cyan). For
the continuous analysis, we adjusted the event window lengths to the activity rate (see text). Their time spans are
indicated in the lower plot for the two separate analyses. MAXC = maximum curvature.

FMD breaks in scale betweenMw0.5 and 1.0 (see Figure 13b), which is noticeable by a more rapid increase

of the b value as function ofMco in Figure 14b. Only in the interval after 15 December (gold curve), this scal-

ing break disappears, and the more linear FMD agrees better with the GR relation. The b value decreased

from 05/06 December onward until the end of this period.

In the post-stimulation period (2007–2011, Figure 13c), the FMD of our catalog is linear over 3 orders of

magnitude down to MMBASS
c (+2	) = −0.53. The improvement in Mc compared to the existing catalogs is

larger than in the previous period: 1.5 orders of magnitude relative to GEL (MMBASS
c (+2	) = 1.00) and more

than 2 orders relative to the SED catalog (estimate only withMMAXC
c (+0.2) = 1.70 due to the few events). The

obtained b-value estimate of 1.12± 0.02 is much higher than for the GEL catalog (0.91± 0.12). The reason is

a breaking point in the FMD of the GEL catalog atMw0.95, which is coincidentally close to itsM
MBASS
c (+2	)

used for the GR fit. This breaking point is not visible in our catalog and indicates missing events in the

GEL catalog specifically betweenMw0.8 and 1.4. The SED catalog did not contain enough events also in this

period to reliably estimate GR parameter values.

In the latest period (2012–2018, Figure 13d), the FMD of our catalog showed linearity only over 2 orders

of magnitude, because of a much more gradual curvature at low magnitudes and a tapering toward higher

magnitudes. The estimatedMMBASS
c (+2	) = −0.27 is slightly higher than in the previous period due to the

stronger gradual curvature in the lower magnitudes.

4.3.2. Temporal Variation of Seismicity Parameters

To demonstrate the high resolution of our catalog, we illustrate the temporal variation of seismicity parame-

ters in the period of November/December 2006 using short event windows. Surprisingly, the FMDs in most

windows were more angular-shaped (see Mignan, 2012) and less gradually curved than the overall FMD for

theNovember/December 2006 period (seeMovie S1 of short-termFMDs and correspondingGR fits). Hence,
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estimatingMc with the MAXCmethod is a reasonable choice (M
MAXC
c (+0.2), see orange curve in Figure 15).

We choose windows of varying lengths that move through the catalog: initially 147 events to capture the

prestimulation as separate bin, then 3,000 until 10 December 18:00, 1,000 until 13 December 00:00, and 500

afterward. The event windows were moved in steps of ∼ 1

30
of their lengths. We performed a separate con-

tinuous analysis using a fixed completeness magnitude MFIX
c = 0.96 and a smaller window length of 250

events (purple curves in Figure 15) to only consider events above the apparent scaling break in the over-

all FMD (see Figure 13a). The b value is estimated again using Tinti and Mulargia (1987), which provides

bias-free estimates also for small data sets (Marzocchi & Sandri, 2003). To reduce fluctuations of the param-

eter estimates and assess their uncertainties, we performed the analysis for 1,000 bootstrap samples in each

window. In Figure 15, the bootstrap distributions are shown as the arithmetic mean (solid curves) and the

standard deviation (shadings; 1	 uncertainty). All parameter estimates are plotted at the end of each time

window to maintain causality and base the estimates only on past processes.

As already noted and shown in Figure 9c, MMAXC
c (+0.2) shows a daily and weekly oscillation. The daily a

value (see Figure 15), however, does not show this oscillation as it corresponds to the activity level, that is,

the intercept of the GR fit at M0.0. With ongoing injection, the a value increased, and progressively larger

events occurred. After injection stop and immediate shut-in, the a value declined in a similar fashion as

the well-head pressure, even though large events still occurred. The a value correlates very well with the

wellhead pressure (Pearson's R 0.92). For comparison, the flow rate correlates with the wellhead pressure

with a slightly lower Pearson's R of 0.87.

The time-varying b-value estimates (green curve in Figure 15) based on the time-varyingMMAXC
c (+0.2) show

a distinct change during the stimulation period: They initially increased from the start of the main stimu-

lation and then decreased to the initial level, while the injection was still continuing and intensifying. The

decrease could also be resolved using only the events above MFIX
c = 0.96 (violet curve in Figure 15) but

with a delay due to fewer available events and with a more sudden change, that is, not until ∼24 hr before

the eventual shut-in. The b value estimates for MMAXC
c (+0.2) are consistently lower than for MFIX

c due to

the scaling break atMw0.96. After the stimulation, theM
MAXC
c (+0.2)-based b value remained at a low level

for 2 weeks followed by another increase and subsequent decrease between 23 and 26 December. Note the

higher uncertainties due to the decreased event window length from 10 December 18:00 onward.

The time-varying analysis recovers much more events for statistical analysis to a total of 129,480 detected

events (50% of the 260,959 events) above the time-varying MMAXC
c (+0.2), while the overall a- and b-value

estimates for November/December 2006 (Figure 13a) are based only on 15% of the events. This difference

is because the overallMc depends on the period with the highest incompleteness. Even if the time-varying

analysis is based on MMBASS
c (+2	) estimates (not shown), 45% of the 260,959 events are still above the

time-varying completeness.

4.4. Template Statistics

The large number of templates allows us to analyze the systematic change of the magnitude range of the

detected events as a function of templatemagnitude. Figure 16a shows that this range increases slightlywith

template magnitude. While the largest detectable magnitudes (red) show some correlation with template

magnitude (Pearson's R = 0.71), the smallest magnitudes (blue) show almost no correlation (R = 0.25).

We speculate that the former are influenced by the differences in the source-spectral corner frequencies

(between the template and the detection), while the latter are dominated by the noise level or the upper

band-pass limit. However, we did not find a satisfactory explanation yet.

In supporting information Text S8, we detail an additional analysis to investigate retrospectively the

detection capability of the template set as a function of its size (see Figures S9 and S10).

5. Discussion
5.1. Characteristics of the New Catalog
5.1.1. Detection Limit

As expected for any seismicity detector, the detection sensitivity of our detector depended on the noise

level of the scanned station. The enhanced visibility of the phenomenon during, and shortly after, the main

hydraulic stimulation can be explained by the strongly elevated event rates as follows: Although generally

only a fraction of the events belowMc are detectable, the event rates in this period were so high that there

is a much greater chance of detecting events below Mc. These events populate the magnitude range down
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Figure 16. “Capture range” of templates: indicating the magnitude range of detection magnitudes (red: largest, blue:
smallest) as function of template magnitude. Note that the analysis is based on the detectability of all events with
respect to each template (and not just the best-matching template association like in the catalog). The smaller circles,
connected vertically by a thin gray line, represent the detected magnitude range (maximum and minimum) for each
individual template. The distributions of the largest and smallest detection magnitudes were binned to 0.1Mw intervals
and the 90% and 10% percentiles were taken, respectively (bigger circles). The gray crosses resemble a 1:1 slope and
indicate when the detection magnitude equals the template magnitude.

to the detection level and, due to their abundance, eventually illuminate the diurnal variation of the noise

level. At later times, the seismicity rate declined dramatically, and not enough small events were detected to

highlight the day-night variation. The day-to-night difference in detection sensitivity andMc up to 0.3Mwx

units is remarkable, considering that OTER2 is installed at 2.7-km depth below the anthropocentric noise

sources of the city. Bachmann et al. (2011) already noticed a temporal variation ofMc in the GEL catalog but

did not quantitatively attribute it to the diurnal variation of the noise level.

5.1.2. Attempts to Explain the Nonlinearity and Scaling Break in the FMD

For the December 2006 period, we observed an overall nonlinear FMD already in the early phase of the

study with a small template set (Figure S8). This unexpected behavior was the main motivation to use many

more and shorter template waveforms, because we initially suspected completeness, detection, or magni-

tude problems. As the nonlinearity remained also after processing 2,508 templates, applying sophisticated

post-processing and improving magnitude determination, we are confident that the nonlinearity is a pecu-

liarity of the Basel sequence. Despite the nonlinearity in the FMD, which is particularly evident during the

injection period (see Figures 13a and 13b), the FMDs of short time intervals of the catalog (1–5 hr) often

show more linearity for small events below the scaling break at Mwx0.5–1.0 (see Movie S1). It is the occa-

sional nonlinearity of the FMDs in some short time intervals that eventually causes nonlinearity in the

overall FMD of the injection period (Figure 13a) or of longer subintervals (1.5–4 days, see Figure 13b).

The overall nonlinearity in the FMD might result from a limited detection capability at high seismicity

rates when event waveforms are more likely to overlap. In particular, small events are then more difficult
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to detect, as they are hidden in the coda of larger events. Consequently, from all events that cluster around
the same time, only the largest ones can be detected. Note that also small events, for example,Mwx0.0, can
mask even smaller events. Especially at higher rates, events will therefore be hidden overproportionally with
decreasingmagnitude. Note that this limitation would apply to any other detectionmethod. Applying a very
strict criteria on FMD linearity,Mc would be much larger for the injection period than we determined here
with some established methods.

An alternative explanation for a nonlinear FMD can be given based on currently proposed models of earth-
quake nucleation. From rate-and-state friction (Dieterich, 1979) and elastic crack models (Das & Scholz,
1981), it is expected that rupture starts as slow, aseismic slip, which has to overcome a critical slip patch
size before it can accelerate to seismogenic speeds. Only the latter part of this process can be detected seis-
mologically. The critical patch size, which depends on material properties and may vary along the fault
plane, would then correspond to a minimum magnitude, Mmin, below which no microearthquakes can
occur. Consequently, the FMD would be depleted around and below Mmin and exhibit a nonlinear shape
at small magnitudes. Ellsworth and Imanishi (2012) have argued in this way to explain nonlinear FMDs of
microearthquakes in the creeping section of the San Andreas Fault near Parkfield.

The dominant scaling break betweenMwx0.5 and 1.0 could be caused by the limited size of the stimulated
reservoir volume. Shapiro et al. (2011) proposed a model where only faults with a sufficiently large segment
inside this volume can be seismically activated by the hydraulic stimulation. Consequently, this geometric
effect would reduce the probability of large earthquakes and cause a tapered FMD toward higher magni-
tudes. The scaling breakmay also be caused by sampling a too short time period. Howell (1985) subdivided a
catalog that obeys the GR relation and found that its subsets have FMDs predominately of the tapered type.
From these perspectives, not the smaller but the larger events break in scale due to their underrepresenta-
tion in the FMD. Without further, more detailed analyses, it remains unclear which mechanism or effect
causes the nonlinearity and scaling break in the FMD in the injection period. We want to point out that a
nonlinearity as observed here has serious consequences for the design of ATLSs (see section 6).

Systematic errors in the post-processing (e.g., magnitude estimation) can be excluded as a cause for the
nonlinearity and scaling break, as these effects disappear at later times after the stimulation. The smoother
gradual curvature in the period 2012–2018 (Figure 13d) below Mc (∼ Mwx − 1.3) is possibly caused by the
extension of the seismic cloud (i.e., the influence of the varying hypocentral distance by about 1 km when
the seismic cloud reached its maximum extension). This smoothing effect is in addition to the influence of
the diurnal change of the noise level on the FMD, which is present in all periods. An additional explanation
for the smooth gradual curvaturemight be that smaller events tend to have lower similarities to the templates
(see Figure S11). These events might then be associated with the wrong template family, resulting in less
accurate magnitude estimates, which causes a stretching of the curvature.
5.1.3. Change of the b Value During the Stimulation

The initially increasing and later decreasing b value during the injection might be related to the
pore-pressure perturbations caused by the hydraulic operations. Close to the injection point, where seismic-
ity occurred during hydraulic stimulation, pore pressure is high. According to the effective stress law (e.g.,
Hubbert & Rubey, 1959), high pore pressures can reactivate faults with lower differential stress, whereas
in low pore-pressure regions, only favorably oriented faults, with tendentiously higher differential stress,
can be triggered. If the b value relates inversely to the differential stress—as proposed, for example, by
Scholz (2015)—high-pore-pressure regions would promote higher b values than low-pore-pressure regions
(Goertz-Allmann & Wiemer, 2013). The growth of the seismic cloud from high to low pore-pressure areas
would then explain the b value drop over time. The b-value drop could also be explained by a distinct change
in the geometry of the seismic cloud as it expanded. In the early phase of the injection, the seismic cloud
grew in a nearly spherical manner from the injection point. Eventually, the seismicity started to migrate
preferentially along a planar fault zone (see Figure 5 and also Asanuma et al., 2008; Häring et al., 2008; Dyer
et al., 2010; Deichmann et al., 2014), and the b value decreased to a more typical tectonic value closer to 1.0.
We found that the linear expansion started on 5 December, corresponding with the ending of the b-value
increase and the start of its subsequent drop (see Figure 15). Such behavior would be expected if the b value
depended on the fractal dimension of the seismic cloud (e.g., Turcotte, 1997).
5.1.4. Long-Term Behavior

We demonstrated that our approach can overcome catalog heterogeneity, which is one of the major limita-
tions for analyzing the long-termbehavior of seismicity. Inconsistencies in decade-long routine catalogs arise
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from changes in network geometry, analysis methods, analyst experience, and diligence, or when catalogs

are combined from different agency contributions. In our case, we eliminated these inconsistencies with a

single-station approach formost of the 12-year-long study periodwhenOTER2was operational. Some longer

outages of station OTER2 after 2012 were unfortunate, but they do not disturb the overall interpretability

of the seismicity at the site. With more available stations, the remaining catalog inconsistencies in some

subperiods can be reduced and quantified, as demonstrated in our case with borehole station MATTE. The

backup scan at MATTE complemented data gaps down to its detection level of Mwx0.1 and completeness

levelMc of ∼ Mwx0.6, so that we may have missed only small events. When also MATTE was not functional,

the completeness level increased to ∼ Mwx1.6. However, the duration of gaps is small compared to the long

operating time of the borehole stations (3.5% no OTER2 data and 0.7% neither OTER2 nor MATTE data),

and we expect that they do not significantly influence the statistical interpretation of the catalog. With this

approach, we enabled a detailed analysis of the renewed seismicity increase that began 6 years after the

hydraulic stimulation and could develop mitigation measures for the operator (Wiemer et al., 2019).

The temporal seismicity clustering uncovered by our catalog occurred around larger events in

aftershock-like fashion, which could indicate that earthquake-earthquake interactions played an important

role in this injection-induced sequence. This behavior was already postulated by Catalli et al. (2016) based

on Coulomb stress analysis of the catalog of Kraft and Deichmann (2014). But we observed also swarm-like

seismicity bursts without distinct mainshocks, which may be related to episodic fluid movements in the

basement rock as postulated by Goertz-Allmann et al. (2017).

Template associations indicate that the inner part of the seismic cloud remained active throughout the

12-year study period, which suggests the existence of a loading mechanism in the Basel reservoir that com-

pensates partly for the Kaiser effect (i.e., stress memory). Yet this observation might be biased by the fact

that 85% of the templates occurred in 2006 which together have a higher chance of being selected as the

best-matching template.

5.2. Creating ConsistencyWithMachine Learning

For manually labeling the detections above the threshold of 0.45, we could not base our judgment solely on

thewaveform shape itself. Due to their often low similarities with our templates, we considered detections as

reservoir-related when they had similar S-to-P arrival time differences and similar frequency content as the

known catalog events, as well as when they temporally coincidedwith reservoir-related activities and events

such as (1) during the high-rate seismicity of the main stimulation or shortly afterward, (2) within larger

temporal clusters that contain known reservoir events, or (3) within moderate-sized temporal clusters that

contain detections with high similarities to our template events. Yet, for a number of events in our catalog,

we could not substantiate a reservoir-related origin with definite certainty. Still, the probability that such

events originated from the reservoir is quite high as it was by far the most active volume intersected by the

spherical shell of possible event locations around OTER2 for the observed S-to-P arrival time differences.

The machine-learning-based classification could discriminate the different event classes exceptionally well

and added consistency to the high detection sensitivity of our detector. This two-step approach essen-

tially uses the matched filter detector for pretriggering and the machine learning to clean up the detection

catalog—similar to how the energy-based detector has been used in numerous studies before as a pretrigger

(e.g., Plenkers et al., 2013).

An interesting result of the event classification was found for the event class outside, whose larger S-to-P

traveltime differences (e.g., Figure 6c) hint to an origin in the wider vicinity of the Basel reservoir. These

events can be interpreted as part of the background seismicity in the Basel area. Although their spatial

completeness is not known, the fact that their cumulative rate increased rather constantly over the past

12 years allowed us to estimate a lower bound for the background seismicity (185 events per year). About 50

of the ∼2,300 outside events had shorter S-to-P traveltime differences than the reservoir events, indicating

that a different source volume, closer to OTER2 than to the reservoir, repeatedly ruptured.

Regarding the origin of the noise detections, which showed a particular temporal occurrence pattern, we

could only speculate. The majority of noise detections had low amplitudes and were preferentially detected

at night (see Figure S12, gray line), which suggests a noise-level-dependent detection of signals from a per-

manently active nearby noise source. A possible location of this noise source might be the industrial harbor
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area above the Basel reservoir. The noise class also included detections of recording errors (e.g., data spikes

and other artifacts), but their amount was much lower than the transient noise detections.

6. Conclusions

We produced a catalog that spans 12 years of induced seismicity in Basel and contains more than 280,000

events (provided in supporting information Data Set S1). It features a consistent detection threshold and
reliably estimated magnitudes. We improved upon the detection limit of the GEL catalog by 1.5 moment

magnitude units down toMwx−1.5 (≈ ML−3.4; ∼2.5ML units improvement) and now cover seismicity over
more than 4 orders of magnitude (in terms of ML units almost 7 orders). To our knowledge, such a large

magnitude span has not been previously achieved for induced seismicity studies of geothermal reservoir
stimulations. In thisway, our catalog also contributes to complementing the observational scarcity of seismic

processes between laboratory-scale experiments and tectonic seismicity studies. Matched filter detection
proved to be a powerful technique to detect new events down to the anthropocentric seismic noise level,
even though its application was rather challenging in our case. We faced three main difficulties:

1. the complex and extended fault geometry forced us to use a large template set (2,508 events) to reduce

the chance of missing events;
2. the impulsive waveform shape and the failing vertical component led to many reservoir-unrelated

detections which we removed with a machine-learning-based classification approach; and
3. to obtain meaningful magnitudes for detections recorded at a single seismometer, we employed

template-family-based amplitude-magnitude relations, which implicitly account for the hypocentral
distance and radiation pattern.

These advanced techniques made it possible to create a consistent high-resolution catalog. Our approach

might prove useful also in other cases with similar obstacles and preconditions. We could significantly
reduce the magnitude of completenessMc down toMw−0.15 (≈ ML−1.57) and perform seismicity analysis
in unprecedented detail. We discovered new patterns that have not been identified before:

1. a preferential clustering of seismicity observed throughout the sequence,

2. a daily variation of the detection and completeness level during the stimulation phase, and
3. a b-value decrease while the injection was still ongoing and increasing, which we explained with a change

in the expansion of the seismic cloud.

We also observed a nonlinear event size distribution during the hydraulic stimulation, which deviated from
theGR relation. This deviation could not be seen in previous catalogs due to their higherMc.We showed that

established methods to determine Mc result in an underestimate of the b value and consequently an over-
estimate of the occurrence probability of larger events. ATLSs in future geothermal projects will guide the

hydraulic reservoir stimulation using seismic hazard forecasts that are based on the observed induced seis-
micity. Hence, ATLS must carefully consider potential scaling breaks or nonlinearities in the FMD during
high-rate seismicity periods related to hydraulic stimulation. Otherwise, they may respond unnecessarily

conservative and prevent a successful hydraulic stimulation.

This last conclusion does however not imply that advanced detection methods, like the one discussed here,
are of no use in the successful implementation of an ATLS to mitigate unacceptable induced seismicity.

The improved consistency and sensitivity of our detection algorithm allowed us to identify rapid changes
in seismicity rate, earthquake size distribution, andmigration. Such changes could indicate potentially haz-

ardous modifications in the seismogenic behavior of a reservoir, may it be under stimulation, production,
or after a shutdown. To understand how these seismicity variations can be used to mitigate unacceptable

induced seismicity, advanced detection methods need to be applied routinely in these geotechnical oper-
ations. We demonstrated that our approach can also overcome catalog heterogeneity, which makes such
methods essential to study and interpret the long-term behavior of induced seismicity.
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