
NASA Technical Memorandum 107607

///s ¢

F,//

A CONSISTENT-MODE INDICATOR FOR THE
EIGENSYSTEM REALIZATION ALGORITHM

Richard S. Pappa, Kenny B. Elliott, and Axel Schenk

April 1992

N/_A
National Aeronautics and

Space Administration

Langley Research Center
Hampton, Virginia 23665

(tqAS A-TM- 107607) A CONSISTENT-MODE

INDICATOR FOR THE EIGENSYSTEM REALIZATION

ALGORITHM (_ASA) 11 p CSCL 20K

G3/39

N92-24707

Unclas

0088786





A CONSISTENT-MODE INDICATOR FOR

THE EIGENSYSTEM REALIZATION ALGORITHM

R. S. Pappa and K. B. Elliott
NASA Langley Research Center

Hampton, Virginia

A. Schenk

German Aerospace Research Establishment (DLR)
GOttingen, Germany

Abstract

A new method is described for assessing the consistency of
structural modal parameters identified with the
Eigensystem Realization Algorithm. Identification results
show varying consistency in practice due to many sources
including high modal density, nonlinearity, and inadequate
excitation. Consistency is considered to be a reliable
indicator of accuracy. The new method is the culmination
of many years of experience in developing a practical
implementation of the Eigensystem Realization
Algorithm. The effectiveness of the method is illustrated
using data from NASA Langley's Controls-Structures-
Interaction Evolutionary Model.

Introduction

The dynamic behavior of most aerospace structures is
adequately described using modal parameters (natural
frequencies, mode shapes, damping factors, and modal
masses). The objective of structural modal identification is
to obtain a valid modal representation over a specified
frequency range for all spatial degrees-of-freedom. This
objective is considerably different than identifying an
input-output map only at particular degrees-of-freedom
where control actuators and sensors are located. 1 A full

spatial modal representation permits several tasks to be
performed which cannot be performed using an input-
output map derived for control purposes. These tasks
include validation of structural modeling procedures and
assumptions, prediction of system dynamics using modal

parameters of individual components, investigation of
more-effective actuator and sensor locations for control

purposes, and improved characterization of disturbances
occurring at unexpected locations on a spacecraft during
operation.

It is relatively straightforward to estimate structural modal

parameters experimentally using a variety of available
approaches.2, 3 However, it is generally much more
difficult to establish reliable confidence values for each
result. Confidence criteria based on noise characteristics are

available 4 but are of limited usefulness in practical

applications. In modal-survey tests, identification

difficulties arise primarily from high modal density,
nonlinearity, weakly excited modes, local modes,
nonstationarities, rattling, etc., not from instrumentation
noise. The simultaneous effects of these conditions are in

general impossible to include explicitly in confidence
calculations.

The Consistent-Mode Indicator (CMI) described in this
paper provides a reliable, relative measure of accuracy for
structural modal parameters identified with the
Eigensystem Realization Algorithm (ERA). 5"7 A single

value ranging from 0 to 100 percent is obtained for each
identified mode. Furthermore, the results can be

decomposed into constituent components associated with
each input (initial condition) and output (response
measurement), or input-output pair. Both temporal and
spatial consistency calculations are included in the

formulation. Modes with CMI values greater than
approximately 80 percent are identified with high
confidence. Modes with values ranging from 80 to 1
percent display moderate to large uncertainty. Fictitious
"computational modes" have CMI values of zero.

The first part of this paper contains a brief summary of
ERA followed by a complete description of CMI. The
second part illustrates the concepts using recent laboratory
data from NASA Langley's Controls-Structures-Interaction
(CSI) Evolutionary Model (CEM). 8 The CEM is a large

flexible research structure being used to experimentally
assess the level of confidence with which CSI technolegy
can be applied to future spacecraft.

The Eigensystem Realization Algorithm

A finite-dimensional, linear, time-invariant dynamic

system can be represented by the state-variable equations:

i(t) = Acx(t) + Bu(t)

y(t) = Cx(t)

where x is an n-dimensional state vector, u is a p-
dimensional excitation vector, and y is a q-dimensional

response vector. A special solution to these equations is
the impulse response function:



Y(t)= CcA'tB

for t _0. The ith column of Y(t) contains the free

response of the system, with x(O) = O, to a unit-impulse

excitation applied at the ith input location at t = O.

With sampled data, this soludon can be expressed as

Y(k) = CAk B

for k > 0. A = c A'At is the state-transition matrix and At

is the data sampling interval.

The problem of system realization is as follows: Given a

sequence of experimentally measured matrices Y(k), for

k=0,1,2 ..... construct a triplet [A,B,C] such that the

above relationship is satisfied as closely as possible. Note

[hat [A,B,C] is not unique since the set

[T-IAT, T-IB,CT]., for any nonsingular, matrix T, also
satisfies the state-variable equatmns.

The ERA solution to the system realization problem uses

singular value decomposition of the generalized Hankcl
matrix:

H(0) = U z v r

Matrix H(O) consists of time-shifted Y(k) submatriccs. In

practice, every block row and block column of H(O)

normally contains data shifted in time by one sample from

data in the previous block row or block column. The only

exceptions are the final block row and column which are

shifted by a larger number of time samples (by default, I0

samples) in order to calculate EMAC, discussed later in the

paper. Also, in large modal surveys involving hundreds of

response measurements, a fraction of the rows of H(0)

below row q (q = no. of measurements) may generally be

deleted without loss of accuracy due to the large redundancy
of information.

Retaining the n largest singular values, an nth-ordcr

realization is computed as follows:

A = Z.-I/2U.TH(1)V.Z.-t/2

B = Znl/2VnTEp

C = EqTUn_n I12

where H(1) is a matrix of the same form as H(0) but

whose data are shifted in time by one additional sample.

Ep and Eq are pth.<zdcx and qth-order selector matrices.

This realization is transformed to modal coordinates using

the eigenv',dues Z and eigenvector matrix W of A:

A'= W-I AtF = Z (diagonal)

B'= _P-IB

C" = C_P

The modal damping rates tr i and damped natural
frequencies to i are the real and imaginary parts of the

eigenvalues after transformation back to the continuous
domain:

Si -----G i +joJi = ln(zi)/At

Modal participation factors and mode shapes are the

corresponding rows of B" and columns of C" ,

respectively.

In practice, some modal parameters obtained using this

approach are inaccurate due to high modal density,
nonlinearity, etc. CMI is used to assess the relative

accuracy of the various results.

Consistent-Mode Indicator

The Consistent-Mode Indicator, CMI, is computed

for mode i as the product of two other parameters, EMAC
and MPC:

CMI i = EMAC i • MPC i (x 100%)

The Extended Modal Amplitude Coherence,

EMAC, quantifies the temporal consistency of the

identification results. The Modal Phase Coilinearity,

MPC, quantifies the spatial consistency of the

identification results. Practical experience has shown that

both conditions must be satisfied simultaneously to ensure

accurate results. These two parameters are described

separately in the following sections.

Extended Modal Amplitude Coherence

The Extended Modal Amplitude Coherence, EMAC, is.

computed using the identified modal parameters. Mode

shape components for data at t = 0 are compared with

corresponding components for data at a time instant t = To

(for outputs) or t = T ! (for inputs) stored in the final block

row and final block column, respectively, of the ERA

generalized Hankel matrices. An EMAC value is computed

for each of the p inputs (initial conditions) and q outputs

(response measurements), for every mode.



Let (¢ij)o be the identified mode shape component for
mode i and response measurement j at t = 0 and (¢,j)To be
the corresponding identified component at t = To. The
identified eigenvalue for mode i is si . Compute a

predicted value of (¢'ij)To as follows:

(_ij)T o = (_lij)O" e''l°

Temporal consistency is quantified by comparing

(¢ij)To and (_ij)To- The actual and predicted magnitudes are
compared using the ratio of the magnitudes:

otherwise.

The actual and predicted phase angles are also compared.

Letting Pij--Arg((_ij)To/(_,j)ro), -Ir-<P0 _<_r, a
weighting factor is determined as fi)llows:

=0.0 otherwise

An Output EMAC for mode i and response
measurement j is then computed as:

EMAC°ij = Rij .Wij (x100%)

An Input EMAC for mode i and initial condition k,
EMACIik, is similarly computed using the identified
modal participation factors.

Using these results, an EMAC value is associated with
every j-k'th input-output pair as follows:

EMACi_ = EMAC°Ij •EMAClik (x 100 %).

Finally, to condense all EMAC results for mode i into a

single value, a weighted average of the individual results is
computed:

q P 2

z z
--...----_--M/_.Ci = i=l k=l

j=l k=l

P I

j=i k=l

q 2zI ,,I
j=l k=l

where ¢ij and _, are mode shape and modal particip,2tion
components, respectively. A weighting factor of l¢[ is
used to achieve an energy-type emphasis.

In the original formulation of ERA 5, a parameter known

as the Modal Amplitude Coherence (y) was introduced.
EMAC is a much-improved version of this formulation.

Under certain common conditions, "t'values can be high
(even 100 percen0 for all eigenvalues. This insensitivity is
avoided with EMAC. The term "extended" in the new

name refers to the extension of the primary data analysis
window for the final block row and column of the

generalized Hankel matrix. EMAC quantifies the
consistency of the identified modal parameters by
measuring the predictability of the results in this extended
time interval. As discussed in the Introduction, this test is

much more difficult to fulfill than testing only the
predictability of the results in the primary analysis
window, which is what y does. EMAC also involves

many fewer calculations than y. Most importantly,
however, it provides a more-sensitive, more-reliable

approach with proven usefulness based on many successful
applications.

Modal Phase Collinearity

Modal Phase Coilinearity, MPC, quantifies the spatial
consistency of the identification results. For classical
normal modes, all locations on the structure vibrate

exactly in-phase or out-of-phase with one another; i.e., _e
corresponding mode shape is a real or "monophase" vector.

With monophasc behavior, the variance-covarianee matrix

of the real and imaginary parts of the mode shape vectors
has only one nonzero eigenvalue. If the identified mode-
shape phase angles are uncorrelated, on the other hand, the
two eigenvalues of this matrix will be approximately
equal. MPC quantifies the degree of monophase behavior
by comparing the relative size of the largest and smallest
eigenvalues of the variance-covariance matrix.

Let _ and _" be the real and imaginary parts,
respectively, of the identified mode shape for mode i.
Calculate the variance and covariance of the real and

imaginary parts:

sxl = _ T_

S. = _,T_,

s. = _ r_ 7



Letting
S_, - S..

p = _ + s_(S,_)_ 2 + !

the cigenvalues of the variance-c_arisnce matrix are:

;t z= Six + S,_(2 _(u + l sin2)
1)

P

A 2=S_ - Sz_(2(_2 + l)sin2 r-l)
P

for mode i is then defined as follows:

2]V_ i =I2-(_ 1_-_2 - 0.5) (X |00_)

MPC t values range from 0 for a mode with completely
uncorrelated phase angles to 100 percent for a monophase
result.

The formulation discussed above is based on the original

definition of Modal Phase Collinearity _)5, except

normalized to generate values ranging from 0 to 100
percent. The smallest possible value of Ix was
inadvertendy limited to 25 percent. Also, the following
two iwactical extensions of the MPC concept are presented
for the first time:

Unwei_hted MPC

The definition of MPC described above provides a natural

weighting based on the magnitude of the individual mode-
shape components. This is desirable because phase angle
results for small experimentally determined mode shape

components are often inaccurate due to measurement
limitations. However, it is also useful to repeat the
calculations without this natural weighting imposed; i.e.,

by normalizing each mode shape component to unit
magnitude before calculating the variance and covariance
values. For global modes, this so-called unweighted
MPC will be approximately equal to the standard
weighted MPC discussed above. However, for local
modes, the unweighted value will be substantially smaller
than the weighted value. The magnitude of the difference
provides a quick and effective indicator of global versus
local response behavior.

Phase Rotation for Free.Decay Data

When ERA is applied to (displacement/force or
acceleration/force) impulse response functions, the

identified mode shapes display the classical characteristic"of
large imaginary parts and small real parts. With free-decay
dam corresponding to arbiwary initial conditions, however,
the identified mode shapes have arbitrary mean phase
angle. Before these shapes can be plotted as geometric
deformations or used in certain subsequent calculations
such as the Phase Resonance Criterion 9, they must be

rotated to align best with +90 °. The necessary rotation

angle ot is determined during the MPC calculation:

a=x+_/2

Application Example

Test Article and Modal Survey

Fig. 1 shows the Controls-Structures-Interaction (CSI)
Evolutionary Model (CEM) 8 located at the NASA Langley
Research Center. The structure is part of a testbed used to
develop CSI ground test methods. It has been designed to
possess the dynamic properties of a typical future large
spacecraft. These properties include low frequency
structural modes, modal clusters, local appendage

dynamics, and both high and low levels of damping.

Fig. 1 CSI Evolutionary Model

The CEM consists of a 55 foot long truss with several
appendages which possess varying degrees of flexibility.
The truss is constructed of aluminum tubes assembled into

10 inch cubical bays. The sffucture is suspended by two
cables attached to the laboratory ceiling through isolation

springs. By using soft springs in series with long
suspension cables, the six "pseudo-rigid body" modes have

4



frequencies below 1 Hz. The first flexible mode occurs at

1.5 Hz with approximately 30 modes occurring below 10

Hz. For modal identification experiments, the CEM was
instrumented with 195 piezo-film accelerometers and 18

servo accelerometers. Excitation was supplied through 16

on-board cold-gas thrusters operating in pairs at 8

locations. The thrusters produce up to 2.2 Ibs of force over

a bandwidth of approximately 45 Hz.

A modal test was performed using all 213 accelerometers

and 8 thruster pairs in a multi-lnput, multi-output

(MIMO) test configuration. Uncorrelated shaped random

noise signals were applied simultaneously to all exciters.

A total of 1704 (8 x 213) frequency response functions

(FRFs) with 2048 lines of resolution from 0 to 50 Hz

were generated. The FRFs were computed using a

commercial MIMO FRF calculation procedure 10 with 100

averages to minimize noise effects. Frequency lines from 0
to 6.25 Hz were extracted and inverse Fourier Iransformed

to obtain impulse respon_ functions for the ERA analyses
discugsed below.

Before performing the ERA analysis, it is useful to

calculate the average power spectrum (APS) and mode

indicator function (MIF) i 1 directly from the FRF data.

These functions are defined as h, llows:

N 2

Y.lll,(f)i
APS(f)-- i--;

N

MIF(f) = r I-
1.0- ,--z,I"'(f)12 ]

I000

where H i (f) and IHi(f_ are the real part and magnitude,

respectively, of the ith FRF. N is the total number of
FRFs included in the calculation. Both of these functions

display peaks at each natural frequency. Additionally, the

APS shows the relative magnitude of each modal response.

The MIF provides no information concerning modal

response magnitudes; however, the re_lution of individual

modes is much higher.

The APS and MIF calculated using all 1704 FRFs are

shown in Fig. 2. It can be stated with certainty based on
these results that at least 16 modes occur between 0 and

6.25 Hz. However, because of the complexity of the

structure and indicated by NASTRAN analytical

predictions 8, some of the observed peaks probably

represent more than one mode. As an example, two

pseudo-rigid body modes are known to occur between 0.7

and 0.8 Hz "although this fact cannot be deduced from either

function. Also note the wide variation of modal response

magnitudes indicated by APS peaks ranging from I00 to

less than 1. Modes with low response magnitudes such as
those near 0.2 and 3.4 Hz are much more difficult to

identify accurately than modes with high response

magnitudes.

100_

[] 1 2 3 4 5 G

FREQUEBCY, HZ

6. 600 -

400

200
g

0 j,
[] t 2 3 4 5 G .

FREQUENCY, HZ

Fig. 2 Average Power Spectrum and
Mode Indicator Function

Identification Results

Previous experience has shown that significant changes

can occur in ERA analyses as a function of the assumed

number of modes. In particular, optimum accuracy for

different modes typically occurs at different numbers of

assumed modes. Also, weakly excited modes often require

relatively high numbers of assumed modes to be properly
identified. For these reasons, the assumed number of

modes is incremented over a wide range of values in most

applications. Based on the estimated number of modes

from Fig. 2, the assumed number of modes is incremented

for the CEM data analysis from 2 up to 60 (in steps of 2).

The identified natural frequencies as a function of the

assumed number of modes are plotted in Fig. 3. These

results were generated using all 1704 FRFs

simultaneously in an 8 x 213 MIMO analysis. Each row

of results corresponds to a separate ERA analysis with a

specified number of assumed modes. Each detected mode is
represented by a vertical dash at the associated frequency.

The confidcnce in each result is expressed by the length of

the vertical dash which is proportional to CMI. The

highest confidence (CMI = 100%) is attained if the distance
between minor tic marks on the vertical axis is filled.

Eigenvalues with low CMI (less than 5 percent) are

excluded from the figure.



A wide spread of CMI values is indicated by the presence
of both solid and dashed or dotted lines. Several modes

with low CMI values occur in the frequency interval from
2.6 to 3.3 Hz. These modes are known to be associated

primarily with the flexible reflector and are known to occur
in clusters. No thrusters are located directly on the reflector

surface so that these modes cannot in general be excited

individually. The result is a reduction of controllability and

a corresponding decrease in both temporal and spatial

consistency. Although engineering judgement is required
to determine the exact cause of low CMI values, low

values reliably indicate those results which should not be

accepted verbatim as accurate modal parameters. As
illustrated later in this paper, results for particular modes

can often be improved without performing additional tests
once this initial CMI information is available. Of course,

additional tests can also be performed once certain areas of

difficulty are known.
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Fig. 3 Identified Natural Frequencies

(Lengths of Vertical Dashes Proportional to CMI)

Fig. 4 shows an expanded view of the results in a narrow

frequency interval near 0.9 Hz. Corresponding damping,

EMAC, and MPC results are also shown. This example

illustrates a typical degree of accuracy variation which
occurs as a function of the assumed number of modes.

Although damping estimates range from 0.5 to 2.5

percent, the highest confidence is associated with values

between 0.5 and 1.0 percent due to the corresponding high
EMAC values. MPC values for this mode show only

small variations indicating stable mode-shape

identification.
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Fig. 5 Identification Results at 4.1 Hz

A more complicated situation is shown in Fig. 5 for the

mode (or modes) near 4.1 Hz. The highest EMAC and
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MPC values occur near 30 assumed modes. At higher
numbers of assumed modes two additional eigenvalues are
identified. These additional results may be weakly excited
and/orweakly observed local modes such as the vibration

of the rubber air-supply hoses for the thrusters. The
important thing to note is that their presence causes
significant perturbations in both EMAC and MPC for
what is believed to be a single structural mode in this
frequency interval. Again, the EMAC and MPC results
(and their product, CMI) reliably indicate those results
with highestconfidence based on both temporal and spatial
consistency calculations.

Fig: 6 shows a comparison of measured and reconstructed
impulse response functions. The ERA analysis used the
first 4.5 seconds of measured data. There is only slight
difference between the two functions in this interval.

Beyond the 4.5-see data analysis interval, however, the
differences between the two functions become considerably

larger. Although it is difficult to known the exact reason
for the discrepancy between measured and reconstructed
responses beyond the data analysis interval, EMAC values
in this situation would decrease, highlighting the

inconsistency. EMAC quantifies the temporal consistency
of each mode beyond the primary data analysis interval on
aft input-by-input and measurement-by-measurement basis.

Based on CMI (the product of EMAC and MPC), the best
results for the 4.1 Hz mode (Fig. 5) occurred using 30
assumed modes. The corresponding mode shape is shown
in Fig. 7(a). This result is highly believable based on
the smoothness and uniformity of motion over the large
set of 213 response measurements. Furthermore, this

shape and the corresponding frequency are well predicted by
a NASTRAN finite element analysis. 8 Although CMI for

this mode is high indicating a reliable result based on
consistency calculations, it is also always important to
examine the physical deformation pattern of the mode to
achieve complete confidence.
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a- (a) Mode Shape
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BB.

(a)Measured _e. _
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Fig. 6 Comparison of Measured and Reconstructed
Responses
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(b) Distribution of Magnitude and Phase Values

Fig. 7 Identified Mode at 4.1 Hz Using
30 Assumed Modes

To illustrate the rationale for using the standard weighted
MP in the CMI calculation rather than the alternative

unweighted MPC described earlier, Figure 7(b) shows
the distribution of magnitude and phase results for this 4.1
Hz mode. The values are arranged in ascending order of
magnitude. Overall, the identified phase angles cluster near
the ideal values of ±90 ° and MPC is accordingly high.

7



However, a trend of increasing phase angle scatter from
+90 ° at smaller magnitudes is seen. These relatively large
phase angle errors at small magnitudes are attributed to
finite measurement resolution. The overall mode shape is

clearly accurate, however, including accurate identification
of small magnitudes at appropriate locations (based on
Fig. 7a). If unweighted MPC values are used instead of
weighted values in the CMI computation, the CIVIlvalue
would be unnecessarily lowered.

It is important to realize that MPC decreases from the ideal
value of 100 percent for many reasons other than low
response magnitude. For example, significant phase-angle
errors can occur for closely spaced modes which are

" inadequately uncoupled by excitation. For structures with
large numbers of closely spaced modes, such as Mini-Mast
which had 108 modes between 14 and 22 Hz due to the

bending of individual truss members 7, it may be
impractical to apply a sufficient number of exciters.
Another cause of lower MPC values is the occurrence of

true "complex modes" whose eigenvectors are, in fact,
significantly non-monophase (i.e., complex) due to a
nonproportional damping distribution. Although such
situations can occur in practice, low MPC values in most

applications are more often the result of identification
difficulties, many of which can be eliminated once they are
de_ectedand understood.

tmorovement of Results

With complex structures such as CEM, many modes
involve significant motion at only a fraction of the total
number of measurement locations. In such circumstances,

identifk',ation accuracy can be improved by de-emphasizing
data with low consistency. Both input and output EMAC
values are examined to determine optimum excitation and
measurement locations for particular modes based on the
results of an initial ERA analysis.

In this application, weighted EMAC values (i.e., EMAC

• multiplied by the square of the corresponding mode-shape
coefficient) are used to select optimum excitation and
measurement locations. The analyses use data only for the
selected exciters. All response measurements are included

in the analysis, however, so that complete mode shape
information is obtained. Additional emphasis is achieved
for the target mode by retaining only the selected response
locations in all block rows of the generalized Hankel
matrix below the first q rows, where q is the total number
of response measurements. The theoretical basis for

permitting the deletion of rows (or columns) of data in the
ERA Hankel matrices without affecting the rank of the

matrix is well established. 5,12 The approach discussed

here is the authors' practical implementation of the theory.

An example of the improvement achieved using this

approach is shown in Fig. $. These results for the 0.9 Hz
mode extend only up to 20 rather than to 60 assumed
modes as before (a higher number of assumed modes was
unnecessary). Comparing Fig. 8 with Fig. 4 over the
range of 2 to 20 assumed modes, significant improvement
is observed. EMAC values are appreciably higher and more
stable. Corresponding frequency and damping results also
show improved stability. Although MPC fluctuates much
less than in Fig. 4, the average value of 95 percent is still
obtained. This lack of improvement of MPC was

unexpected. Normally, such stability is not obtained at
MPC values less than 99 percent. The explanation is
attributed to the use of piezo-film accelerometers in the
experiment. These sensors have considerable phase shift at
0.9 Hz which is near the lower limit of their operating
range. Although all 195 piezo-film sensors were of the
same model, appreciable differences in phase response
occurred at 0.9 Hz among the individual units. This

anomaly did not occur at higher frequencies.
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Conclusions

The concepts discussed in this paper have been developed

over the course of several years in conjunction with many

applications of the Eigensystem Realization Algorithm.

The lesult of these efforts is a single parameter known as

the Consistent-Mode Indicator which reliably indicates the
relative confidence of each identified mode on the basis of

both temporal and spatial consistency calculations. In

practice, modes with indicator values greater than

approximately 80 percent can generally be accepted

verbatim. Modes with lower values, however, require

additional attention. By examining both the Extended

Modal Amplitude Coherence, which measures temporal

consistency, and the Modal Phase Collinearity, which

measures spatial consistency, an explanation for low

indicator values can often be developed. Once an

explanation is obtained, additional tests and/or data

analyses can be performed to improve these results. One

approach for improving results of selected modes by de-

emphasizing data with low consistency was illustrated.
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