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A CONSISTENT NONPARAMETRIC MULTIVARIATE DENSITY
ESTIMATOR BASED ON STATISTICALLY EQUIVALENT BLOCKS!

By M. P. GESSAMAN

Ithaca College

1. Introduction and summary. Let x,, x,,* ", x,, be a random sample from a
p-dimensional random variable X = (X, X,, -, X,) with probability distribution
P. It is assumed that P is absolutely continuous with respect to Lebesgue measure,
and that the corresponding probability density function is denoted by f. If z =
(21, 22, **, z,) is a point at which f'is both continuous and positive, an estimator
for f(z) based on statistically equivalent blocks is suggested and its consistency is
shown.

This estimator grew out of work on the nonparametric discrimination problem.
Fix and Hodges [2] showed how density estimation could be used in this problem
and demonstrated a consistent estimator at points such as z. Loftsgaarden and
Quesenberry [4] proposed another estimator which is consistent at points such as z;
their estimator was based on statistically equivalent blocks. Although this estimator
is easier to use in practice than that suggested by Fix and Hodges, it does require
separate calculations if the sample is to be used to estimate the density at two or
more points, and gives complex regions on which the estimate is constant if it is
desired to estimate f on some subset of the entire space. The estimator suggested in
this paper is consistent at all points at which the two above estimators are consistent
and allows the investigator to estimate the density at every point of p-dimensional
Euclidean space from one construction, as well as providing rectangular regions
on which the estimate is constant.

2. A consistent density estimator based on statistically equivalent blocks. For the
purpose of this discussion, it is assumed that p = 2; the extension or restriction to
any p-dimensional Euclidean space is immediate. The details of the theory of
statistically equivalent blocks and coverages can be found in Wilks [5], Fraser [3],
and Anderson [1]. Let A,(x), A,(x), "+, h,(x) be m real-valued functions of X such
that the distribution of 4(x), j = 1, 2, -, m, is continuous when X has probability
distribution P; and let (j,,j,, ", j,,) be a permutation of (1,2,:--, m). Use the
function 4; (x) to order the x;, i = 1,2, **, m, and define x" as the j;th value in
this ordering. Then the cut 4;,(x) = h;,(xY") defines two blocks

Bj|+1 ceemt+1 & {X;hjl(x) > h“(x(jl))}.

Proceeding in the obvious fashion, the functions 4;,(x), i =2,---, m, and the
sample values can be used to partition the plane into m+1 unit blocks. The
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density f(x) will be estimated uniformly on rectangles which are unions of these
unit blocks.
Let k,, be any sequence of positive integers such that

2.1 lim,,_ .k, =0 and lim,.k,/m=0.

Partition the space into ‘““horizontal” blocks by [(m/k,)*]—1 cuts made as evenly
spaced as possible on the first coordinate X. There are [(m/k,,)*] such blocks, each
the union of at least (mk,)? unit blocks. In turn, partition each of these into
[(m/k,)*] ““vertical” blocks by cuts on the second coordinate X, ; these blocks are
each unions of k,, or k,,+ 1 unit blocks. The estimate of f(x) will be made uniformly
on each of the resulting m/k,, rectangular blocks. A numerical example will illustrate
the method of construction.

ExaMpLE. Let m = 75,000. If k,, is the greatest integer less than or equal to
m?*, then k,, = 42. Make the cuts on the first coordinate so that 12 blocks contain
1785 observations and 30 blocks contain 1786 observations, e.g. let j, = 1786,
J2 =3572, j3 = 5357, -, js = 10,715, j; = 12,500, - -, juy = 73,215, jur = 1, juz =
2, ,j1s5,000 = 75,000 and 4;,(x) = X, fori = 1,---, 41, and 4;,(x) = X, otherwise.
By this method, the plane is partitioned first into 42 blocks, each of which is a
union of 1785 or 1786 unit blocks. Using unions of consecutively ranked unit blocks,
each of the first k,, blocks can be partitioned into k,, rectangular blocks such that
each is a union of k,, or k,,+ 1 unit blocks. The density is then estimated uniformly
on each of the resulting (k,,)? = 1764 blocks.

In the above construction {[(m/k,,)*]—2}* of the blocks are bounded. On the
unbounded blocks estimate the value of f(z) at zero. If z is contained in a bounded
block, let B,™ denote this block and let 4,™ denote the area of B,™. Then an estimator
of f(z) is given by

* km
2.2) Su(2) = MDA
It should be noted that the upper and right boundaries of the blocks, when they
exist, belong to the block; the estimate of the density on these boundaries is then
that pertaining to the appropriate block. Hence the density is estimated at every
point in the plane.

THEOREM. If z is a point at which f is continuous and positive, then the estimator
Ju¥(2) given by (2.2) is consistent for f(z).

ProOOF. With arbitrarily high probabilitil the point z is interior to a bounded
rectangle if m is large enough; in the following discussion it is assumed that m is
large enough that this condition is satisfied.

Let S = {R; R is a bounded rectangle and z is an interior point of R}; for each
ReS, let A(R) and ||e(R)|| denote the area of R and the longer side of R, respec-
tively. Since fis continuous at z, for each ¢ > 0 there corresponds a ¢ > 0 such that

(2.3) if |le(R)|| <o for ReS, then |[P(R)/AR)]-f(2)|<e.
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The initial cuts on X, produced a block B,™! which is a union of at least (mk,,)*
unit blocks. The probability of B,™! under P is a beta random variable with
parameters (approximately) (mk,)* and m—(mk,)*+1. Since the sequence
{(mk,,)*} satisfies the conditions of (2.1), it is obvious that P(B,™') - ,0. But, under
the assumptions on z, P(B,™') —,0 only if the length of B,”' on X, converges in
probability to zero. With arbitrarily high probability the length of B,™! on X (the
length of the X side on B,™) s less than o for m sufficiently large.

Given the original cuts on X; which produced B,™!, the cuts made later on this
block are based on X, only. The probability of B,”, a union of k,, or k,,+ 1 unit
blocks, converges in probability to zero. As in the case of B,™!, above, this can
occur only if the length on X, of B,™ converges to zero. Therefore, for m sufficiently
large, the length of B,™ on both X, and X, is less than o with arbitrarily high
probability, i.e. if ||e(B,™)|| denotes the longer side of B,”, then

24) |leBM)]| = 50-

From (2.3) and (2.4) P(B,")/4," =, f(z) or

(2:5) [{tm+DPB. )} kn]/[{(m+ DA} k,] =, £(2).
Ifit is shown that

(2.6) {(m+1)PB. ")}k, -, 1,

then the denominator

@) {om+ DAY Ky~ 1Uf ).

But, (2.7) is equivalent to showing that f,,*(z) is consistent for f(z). Recall that
P(B,™) is a beta random variable with parameters k,, and m—k,,+1 (or k,,+1 and
m—k,). By a simple application of Chebyshev’s Inequality, (2.6) follows and the
proofis complete.
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