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A Consolidated Perspective on Multi-Microphone

Speech Enhancement and Source Separation
Sharon Gannot, Emmanuel Vincent, Shmulik Markovich-Golan, and Alexey Ozerov

Abstract—Speech enhancement and separation are core prob-
lems in audio signal processing, with commercial applications
in devices as diverse as mobile phones, conference call systems,
hands-free systems, or hearing aids. In addition, they are cru-
cial pre-processing steps for noise-robust automatic speech and
speaker recognition. Many devices now have two to eight mi-
crophones. The enhancement and separation capabilities offered
by these multichannel interfaces are usually greater than those
of single-channel interfaces. Research in speech enhancement
and separation has followed two convergent paths, starting
with microphone array processing and blind source separation,
respectively. These communities are now strongly interrelated
and routinely borrow ideas from each other. Yet, a comprehensive
overview of the common foundations and the differences between
these approaches is lacking at present. In this article, we propose
to fill this gap by analyzing a large number of established
and recent techniques according to four transverse axes: a)
the acoustic impulse response model, b) the spatial filter design
criterion, c) the parameter estimation algorithm, and d) optional
postfiltering. We conclude this overview paper by providing a list
of software and data resources and by discussing perspectives and
future trends in the field.

Index Terms—Multichannel, array processing, beamforming,
Wiener filter, independent component analysis, sparse component
analysis, expectation-maximization, postfiltering.

I. INTRODUCTION

S
PEECH enhancement and separation are core problems in

audio signal processing. Real-world speech signals often

involve one or more of the following distortions: reverberation,

interfering speakers, and/or noise. In this context, source

separation refers to the problem of extracting one or more

target speakers and cancelling interfering speakers and/or

noise. Speech enhancement is more general, in that it refers

to the problem of extracting one or more target speakers and

cancelling one or more of these three types of distortion. If

one focuses on removing interfering speakers and noise, as

opposed to reverberation, the terms of “signal enhancement”

and “source separation” become essentially interchangeable.

These problems arise in various real scenarios. For instance,

spoken communication over mobile phones or hands-free

systems requires the enhancement or separation of the near-

end speaker’s voice with respect to interfering speakers and

environmental noises before it is transmitted to the far-end

listener. Conference call systems or hearing aids face the same

problem, except that several speakers may be considered as
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targets. Speech enhancement and separation are also crucial

pre-processing steps for robust automatic speech recognition

and understanding, as available in today’s personal assistants,

GPS, televisions, video game consoles, and medical dictation

devices. More generally, they are believed to be necessary to

provide humanoid robots, assistive devices, and surveillance

systems with machine audition capabilities. While the above

applications require real-time processing, off-line separation of

singing voice, drums, and other musical instruments has been

successfully used for music information retrieval, upmixing of

mono or stereo movie soundtracks to 3D sound formats, and

remixing of music recordings. Other applications, e.g. meeting

transcription, can be also processed off-line.

With few exceptions such as speech codecs and old sound

archives, the input signals are multichannel. The number of

microphones per device has steadily increased in the last

few years. Most smartphones, tablets and in-car hands-free

systems are now equipped with two or three microphones.

Hearing aids typically feature two microphones per ear and

a wireless link [1] to enable communication between the left

and right hearing aids, and conference call systems with eight

microphones are commercially available. Research prototypes

with forty to hundreds of microphones have been demonstrated

in lecture halls, office and domestic environments [2]–[6].

The enhancement capabilities offered by these multichannel

interfaces are usually greater than those of single-channel in-

terfaces. They make it possible to design multichannel spatial

filters that selectively enhance or suppress sounds in certain

directions (or volumes) by exploiting the spatial diversity, e.g.

phase and level differences, or more generally, the different

acoustic properties between channels. Single-channel spectral

filters, in contrast, require much more detailed knowledge

about the target and the noise and they usually result in smaller

quality improvement. As a matter of fact, it can be shown that

the maximum quality improvement theoretically achievable

with only two microphones is already much greater than with

a single microphone and that it keeps increasing with more

microphones [7].

Hundreds of multichannel audio signal enhancement tech-

niques have been proposed in the literature over the last forty

years along two historical research paths. Microphone array

processing emerged from the theory of sensor array processing

for telecommunications and it focused mostly on the local-

ization and enhancement of speech in noisy or reverberant

environments [8]–[12], while blind source separation (BSS)

was later popularized by the machine learning community

and it addressed “cocktail party” scenarios involving several

sound sources mixed together [13]–[18]. These two research
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tracks have converged in the last decade and they are hardly

distinguishable today. As will be shown in this overview paper,

source separation techniques are not necessarily blind anymore

and most of them exploit the same theoretical tools, impulse

response models and spatial filtering principles as speech

enhancement techniques.

Despite this convergence, most books and reviews have

focused on either of these tracks. This article intends to fill this

gap by providing a comprehensive overview of their common

foundations and their differences. The vastness of the topic

requires us to limit the scope of this overview to the following:

• we focus on multichannel recordings made by multiple

microphones, as opposed to multichannel signals created

by mixing software which do not match the acoustics of

real environments;

• we mostly study the enhancement and separation of

speech with respect to interfering speech sources and

environmental noise in reverberant environments, as op-

posed to cancelling echoes and reverberation of the target

speech;

• we concentrate on truly multichannel techniques based on

acoustic impulse response models and multichannel filter-

ing: as such, we only briefly introduce speech and noise

models, computational auditory scene analysis (CASA)

models, and time-frequency masking techniques used to

assist multichannel processing, but do not describe their

use for single-channel or channel-wise filtering in depth;

• we do not describe possible use of the enhanced signals

for subsequent tasks;

• time difference of arrival (TDOA) estimation and speaker

localization of (multiple) sound sources are beyond the

scope of this paper.

Readers interested in multichannel signals created by pro-

fessional mixing software and in the use of source separation

as a prior step to audio upmixing and remixing may refer

to, e.g., [19]–[21]. Echo cancellation, dereverberation, and

CASA are major topics described in the books [22]–[25].

For more information about advanced spectral models and

their use for single-channel and channel-wise spectral filtering,

see, e.g., [18], [26], [27]. For the use of speech enhancement

and musical instrument separation as pre-processing steps

for speech recognition and music information retrieval, see,

e.g., [28]–[31]. For a survey of TDOA and location estimation

techniques, interested readers may refer to [32]–[34].

In spite of its limited scope, this overview still covers a

wide field of research. In order to classify existing techniques

irrespectively of their origin in microphone array processing or

BSS, we adopt four transverse axes: a) the acoustic impulse

response model, b) the spatial filter design criterion, c) the

parameter estimation algorithm, and d) optional postfiltering.

These four modeling and processing steps are common to

all techniques, as illustrated in Fig. 1. The structure of the

article is as follows. We recall useful elements of acoustics

and introduce general notations in Section II. After describing

various acoustic impulse response models in Section III,

we define the fundamental concepts of spatial filtering in

Section IV and review existing design criteria, estimation algo-

rithms, and postfiltering techniques in Sections V, VI, and VII,

respectively. We provide a list of resources in Section VIII and

conclude in Section IX by summarizing the similarities and the

differences between approaches originating from microphone

array processing and BSS and discussing perspectives in the

field.

II. ELEMENTS OF ACOUSTICS — NOTATIONS

From now on, we assume that two or more sound sources

are simultaneously recorded by two or more microphones.

The microphones are assumed to be omnidirectional, unless

explicitly stated otherwise. The set of microphones is called

a microphone array. Each recorded signal is called a channel

and the set of recorded signals is the array input signal or the

mixture signal.

A. Physics

Sound is a variation of air pressure on the order of 10−2 Pa

for a speech source at a distance of 1 m, on top of the average

atmospheric pressure of 105 Pa. For such pressure values, the

wave equation that governs the propagation of sound in air is

linear [35]. This has two implications:

1) the pressure field at any time is the sum of the pressure

fields resulting from each source at that time;

2) the pressure field emitted at a given source propagates

over space and time according to a linear operation.

Unless clipping occurs, microphones operate linearly to record

the pressure value at given point in space. If one considers the

pressure field emitted by each source as the target1, the overall

phenomenon is therefore linear.

In the free field, the solution to the wave equation is given

by the spherical wave model. The waveform xi(t̃) recorded at

point i when emitting a waveform sj(t̃) at point j is equal to

xi(t̃) =
1√
4πqij

sj

(
t̃− qij

c

)
(1)

with t̃ denoting continuous time, qij the distance between

points i and j, and c the speed of sound, that is 343 m/s at

20◦C. This speed is very small compared to the speed of light,

so that propagation delays are not negligible. The recorded

waveform differs from the emitted waveform by a delay qij/c
and an attenuation factor of 1/

√
4πqij .

In the presence of obstacles, the sound wave is affected in

different ways depending on its frequency ν. The wavelength

λ = c/ν of audio varies from 17 mm at ν = 20 kHz to 17 m

at ν = 20 Hz.

When the sound wave hits an object of dimension smaller

than λ, it is not affected. When it hits an obstacle of compara-

ble dimension to λ, it is subject to diffraction. The wavefront

is bended in a way that depends on the shape of the obstacle,

its material and the angle of incidence. Roughly speaking, it

will take more time for the wave to pass the obstacle and it

will be more attenuated than in air. This phenomenon occurs

1Loudspeakers and musical instruments such as the trumpet do not operate
linearly. These nonlinearities occur within solid parts of the loudspeaker or
the instrument, however, before vibration is transmitted to air.
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Figure 1. General schema showing acoustical propagation (gray) and the processing steps behind speech enhancement and source separation (black). Plain
arrows indicate the processing order common to all algorithms and dashed arrows the feedback loops for certain algorithms.

most notably for hearing aid users, whose torso, head, and

pinna, act as obstacles [36]. It also explains source directivity,

i.e. the fact that the sound emitted by a source depends on

direction.

When the wave hits a large rigid surface of dimension larger

than λ, it is subject to reflection. The direction of the reflected

wave is symmetrical to the direction of the incident wave with

respect to the surface normal. Only part of the wave power is

reflected: the rest is absorbed by the surface. The absorption

ratio depends on the material and the angle of incidence [37].

It is on the order of 1% for a tiled floor, 7% for a concrete

wall, and 15% for a carpeted floor.

Due to these small values, many successive wave reflections

typically occur before the power becomes negligible. This

induces multiple propagation paths between each source and

each microphone, each with a different delay and attenuation

factor. The waves corresponding to different paths are coherent

and may result in constructive or destructive interference.

B. Deterministic perspective

Let us now move from the physical domain to discrete time

signal processing. We assume that the recorded sound scene

consists of J sources and that the number of microphones is

equal to I . We adopt the following general notations: scalars

are represented by plain letters, vectors by bold lowercase

letters, and matrices by bold uppercase letters. The source

index, the microphone index, and the time index are denoted

by i, j, and t, respectively. The operator T refers to matrix

transposition, and H to Hermitian transposition.

According to the first linearity assumption in Section II-A,

the multichannel mixture signal x(t) = [x1(t), . . . , xI(t)]
T

can be expressed as

x(t) =
J∑

j=1

cj(t) (2)

where cj(t) = [c1j(t), . . . , cIj(t)]
T is the spatial image [38]

of source j, that is the contribution of that source to the

sound recorded at the microphones. This formulation is very

general: it applies both to targets and noise, and multiple noise

sounds can be modeled either as multiple sources or as a single

source [39]. In particular, it is valid for spatially diffuse sources

such as wind, trucks, or large musical instruments, which emit

sound in a large region of space.

In the case of a point source, the second linearity assump-

tion makes it possible to express cj(t) by linear convolu-

tion of a single-channel source signal sj(t) and the vector

aj(t, τ) = [a1j(t, τ), . . . , aIj(t, τ)]
T of acoustic impulse re-

sponses (AIRs) from the source to the microphones:

cj(t) =

∞∑

τ=0

aj(t, τ)sj(t− τ) (3)

This expression only holds for sources such as human speakers

which emit sound in a tight region of space. The AIRs result

from the summation of the multiple propagation paths and

they vary over time due to movements of the source, of the

microphones, or of other objects in the environment. When

such movements are small, they can be approximated as time-

invariant and denoted as aj(τ).

A schematic illustration of the shape of an AIR is provided

in Fig. 2. It consists of three successive parts. The first peak is

the direct path from the source to the microphone, as modeled

in (1). It is followed by early echoes corresponding to the

first few reflections on the room boundaries and the furniture.

Subsequent reflections cannot be distinguished from each other

anymore and they form an exponentially decreasing tail called

reverberation. This overall shape is often described by two

quantities: the reverberation time (RT), that is the time it takes

for the reverberant tail to decay by 60 decibels (dB), and the

direct-to-reverberant ratio (DRR), that is ratio of the power

of direct sound (i.e., direct path) to that of the rest of the

AIR. The RT depends solely on the room, while the DRR

also depends on the source-to-microphone distance. The RT

is virtually equal to 0 in outdoor conditions due to the absence

of reflection and it is on the order of 50 ms in a car [40], 0.2

to 0.8 s in office or domestic conditions, 0.4 s to 1 s in a

classroom, and 1 s or more in an auditorium [41].

Fig. 3 depicts a real AIR measured in a meeting room. It has

both positive and negative values and it exhibits a strong first

reflection on a table just after the direct path, but its magnitude

follows the overall shape in Fig. 2.

C. Statistical perspective

Besides the above deterministic characterization of AIRs, it

is useful to adopt a statistical point of view [35], [42]. To do

so, we decompose AIRs as

aij(τ) = eij(τ) + rij(τ) (4)
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Figure 2. Schematic illustration of the shape of an AIR for a reverberation
time of 0.25 s (from [18]).
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Figure 3. First 0.1 s of a real AIR from the Aachen Impulse Response
Database [41] recorded in a meeting room with a reverberation time of 0.23 s
with a source-to-microphone distance of 1.45 m.

where eij(τ) models the direct path and early echoes and

rij(τ) models reverberation.

The fact that reverberation results from the superposition of

thousands to millions of acoustic paths makes it follow the law

of large numbers. This implies three useful properties. Firstly,

rij(τ) can be modeled as a zero-mean Gaussian noise signal

whose amplitude decays exponentially over time according to

the room’s RT [43]. Secondly, the covariance E(rij(ν)r
∗
ij(ν

′))
between its Fourier transform rij(ν) at two different frequen-

cies ν and ν′ decays quickly with the difference between ν
and ν′ [44], [45]. Thirdly, if the room’s RT is large enough, the

reverberant sound field is diffuse, homogenous and isotropic,

which means that it has equal power in all directions of space.

This last property makes it possible to compute the normalized

correlation between two different channels i and i′ in closed-

form as [35], [45], [46]

Ωii′(ν) =
E

spat(rij(ν)r
∗
i′j(ν))√

Espat(|rij(ν)|2)
√
Espat(|ri′j(ν)|2)

=
sin(2πνℓii′/c)

2πνℓii′/c
(5)

where E
spat denotes spatial expectation over all possible abso-

lute positions of the sources and the microphone array in the

0 1 2 3 4 5 6 7 8

−0.2

0

0.2

0.4
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0.8

1
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Ω
ii
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Figure 4. Interchannel coherence Ωii′ (ν) of the reverberant part of an AIR
as a function of microphone distance ℓii′ and frequency ν.

room, and ℓii′ the distance between the microphones. Note

that the result does not depend on j anymore. This quantity

known as the interchannel coherence is shown in Fig. 4. It

is large for small arrays and low frequencies and it increases

with microphone distance and frequency. We can further define

the I × I coherence matrix of the diffuse sound field by

concatenating all elements from (5) as (Ω(ν))ii′ = Ωii′(ν).
It is interesting to note that both deterministic and statistical

perspectives are valid. The appropriate choice depends on the

observation length, and both perspectives can be useful in

accomplishing different tasks [47]. We will elaborate on this

issue in the subsequent section.

III. ACOUSTIC IMPULSE RESPONSE MODELS

The above properties of AIRs can be modeled and exploited

to design enhancement techniques. Five categories of models

have been proposed in the literature. A model is defined by

a parameterization of the AIRs and possible prior knowledge

about the parameter values. This prior knowledge can take the

form of deterministic constraints, penalty terms which we shall

denote by P(.), or probabilistic priors which we shall denote

by p(.).

A. Time-domain models

The simplest approach is to consider the AIRs as finite

impulse response (FIR) filters modeled by their time-domain

coefficients aj(t, τ) or aj(τ), τ ∈ {0, . . . , L−1}. The assumed

length L is generally on the order of several hundred to a

few thousand taps. This model was very popular in the early

stages of research [48]–[55]. Recently, interest has revived

with sparse penalties which account for prior knowledge about

the physical properties of AIRs, namely the facts that power

concentrates in the direct path and the first early echoes [56]–

[60] and that the time envelope decays exponentially [61], but

these penalties have not yet been used in a BSS context.

Time-domain modeling of AIRs exhibits several limitations.

Firstly, prior knowledge about the spatial position of the

sources does not easily translate into constraints on the AIR

coefficients [62]. Secondly, the source signals are typically
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modeled in the time-frequency domain instead, which forces

estimation algorithms to alternate between one domain and the

other [63]. Finally, the large number of parameters involved

translates into large computational cost [64].

B. Narrowband approximation

To address these limitations, the convolution in the time

domain can be approximated by a multiplication in the short-

time Fourier transform (STFT) domain [65], provided that the

frame length is sufficiently large. Let us denote by cj(n, f)
and sj(n, f) the STFT of cj(t) and sj(t), respectively, with

n ∈ {1, . . . , N} the frame index, f ∈ {0, . . . , F − 1} the

discrete frequency bin, N the number of time frames and

F the discrete Fourier transform (DFT) length. The so-called

narrowband approximation [66]–[72] is given by

cj(n, f) = aj(n, f)sj(n, f) (6)

where aj(n, f) = [a1j(n, f), . . . , aIj(n, f)]
T is the concate-

nation of the acoustic transfer functions (ATFs) from source j
to the microphones. The appropriate frame length with respect

to the length of the AIR is determined in [7], [73]. The ATFs

can be either time-varying or time-invariant. In the former

case, they can be represented via a dynamical model [74]. In

the latter case, they simplify to aj(n, f) = aj(f).
The narrowband approximation significantly simplifies esti-

mation algorithms, since the decoupling between frequencies

reduces the dimension of the problem. However, it may raise

other problems, most notably gain ambiguity and permutation

ambiguity. These ambiguities can be mitigated by smoothing

between nearby frequencies [75], [76] or by introducing ge-

ometrical (soft or hard) constraints [70], [77], [78]. Interest-

ingly, the latter references demonstrate the common founda-

tions of microphone array and BSS methods for separating

speech sources in reverberant environments.

These constraints are based on the fact that, in the absence

of echoes and reverberation, the vector of ATFs simplifies to

the steering vector, that is the DFT of (1):

dj(f) =
[

1√
4πq1j

e−2πq1jνf/c, . . . ,
1√

4πqIj
e−2πqIjνf/c

]T
(7)

with  =
√
−1, νf = f × fs/F the continuous frequency (in

Hz) corresponding to frequency bin f ∈ {0, . . . , F/2}, and fs

the sampling frequency. A case of practical interest is the so-

called far-field case, when the source-to-microphone distances

qij are large compared to the inter-microphone distances ℓii′ .
The attenuation factors 1/

√
4πqij are then considered as equal,

and the steering vector further simplifies (up to this factor) to

dj(f) =
[
e−2πq1jνf/c, . . . , e−2πqIjνf/c

]T
. (8)

An explicit model of early echoes was also recently proposed

in [79].

C. Relative transfer function and interchannel models

An alternative approach to handle the gain ambiguity is to

consider the relative transfer function (RTF) between channels

for a given source. Taking the first microphone as a reference,

the vector of RTFs ãj(f) = [ã1j(f), . . . , ãIj(f)]
T for source

j is defined as [69]

ãj(f) ,
1

a1j(f)
aj(f). (9)

A variant of this representation is to normalize the amplitude

and the phase of the ATFs as [80], [81]

āj(f) =
e−∠a1j(f)

‖aj(f)‖
aj(f). (10)

The amplitude normalization in (10), which was also consid-

ered in [66], is more robust than in (9) since the normalization

factor depends on all channels. The phase normalization

remains sensitive to the choice of the reference microphone,

though. For a soft selection of the reference channel please

refer to [82]. For generalizations of the RTF, see [83], [84].

The RTF encodes the interchannel level difference (ILD),

also known as the interchannel intensity difference (IID), in

decibels and the interchannel time difference (ITD) in seconds

at each frequency [85]:

ILDij(f) = 20 log10 |ãij(f)| (11)

ITDij(f) =
∠ãij(f)

2πνf
(12)

where ∠ denotes the phase in radians of a complex number.

The ITD is unambiguously defined only below the frequency

c/ℓi1, known as the spatial aliasing frequency, with ℓi1 the

distance between microphones i and 1. With a sampling rate

of 16 kHz, this corresponds to a sensor spacing of less than

4.3 cm. Above that frequency, the phase difference becomes

larger than 2π and the ITD can be measured only up to an

integer multiple of 1/νf . For that reason, the interchannel

phase difference (IPD)

IPDij(f) = ∠ãij(f) (13)

is often considered instead.

This model is popular for channel-wise filtering in the

context of CASA, where the ILD and ITD are called interaural

level and intensity differences, respectively, and are influenced

by the shape of the pinna, the head and the torso [36]. It

has however been used for multichannel filtering too [71],

[85]–[87]. The use of level and phase differences retains

the information about the source positions while discarding

absolute levels and phases which are considered as irrelevant.

Indeed, in the absence of echoes and reverberation, the ITD at

all frequencies becomes equal to the TDOA (qij − q1j)/c, the

vector of RTFs becomes equal to the relative steering vector

d̃j(f) =
[
1, e−2π(q2j−q1j)νf/c, . . . , e−2π(qIj−q1j)νf/c

]T
,

(14)

and the normalized vector of ATFs āj(f) becomes equal to

the steering vector d̄j(f) normalized as in (10). This has been

exploited to constrain ãj(f) in anechoic conditions [88], [89]

and to derive penalties over ãj(f) [85], [90] or āj(f) [81] in
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reverberant conditions, such as

P(aj |dj) =

F−1∑

f=0

‖āj(f)− d̄j(f)‖. (15)

It should be noted however that such penalties do not match the

actual distribution of ILD and IPD in the presence of echoes

and reverberation [18, Fig. 2]. The preservation of interaural

quantities is especially important in hearing aids, in order to

increase speech intelligibility [91] and preserve the spatial

awareness of the wearer. For penalties specifically designed

for this application area, see [92]–[99].

D. Inter-frame and inter-frequency models

As mentioned above, the narrowband approximation holds

only when the frame length is sufficiently long. Time-domain

filtering can be exactly implemented in the frequency domain

using overlap and save techniques [69], [100], provided that

the analysis frame-length is larger than the filter length.

However, this framework necessitates rectangular windows of

different length in the analysis and synthesis stages. This might

limit the performance of the separation algorithms, especially

in dynamic scenarios.

In the conventional STFT domain [65], [101], [102], it can

be shown that time-domain convolution by time-invariant AIRs

translates into inter-frame and inter-band convolution [103],

[104]:

cj(n, f) =
F−1∑

f ′=0

∑

n′

aj(n
′, f ′, f)sj(n− n′, f ′). (16)

Since this expression involves multiple filtering operations, it

is beneficial to consider the subband filtering approximation:

cj(n, f) =
∑

n′

aj(n
′, f)sj(n− n′, f) (17)

which was used to derive speech enhancement and separation

algorithms in [105], [106]. Suitable DFT zero-padding makes

it equivalent to time-domain filtering [107]–[109], however it

introduces a coupling between frequencies. These models have

been little used in practice, due to the potentially large number

of STFT domain filter coefficients to be estimated.

E. Full-rank covariance model

An alternative approach which partly overcomes the limita-

tions of the narrowband approximation is to model the second-

order statistics of the ATFs. Let us consider the narrowband ap-

proximation (6) and assume that the source STFT coefficients

sj(n, f) have a zero-mean nonstationary Gaussian distribution

with variance σ2
sj (n, f), and they are all independent source-,

frame- and frequency-wise (i.e., over j, n and f ). Under this

local Gaussian model (LGM) [110]–[112], it can be shown

that the source spatial images cj(n, f) follow a zero-mean

multivariate nonstationary Gaussian distribution

p(cj(n, f)|Σcj
(n, f)) =

e
−c

H
j (n,f)Σ−1

cj
(n,f)cj(n,f)

|πΣcj
(n, f)| (18)

with covariance matrix

Σcj
(n, f) = σ2

sj (n, f)Rj(n, f) (19)

where Rj(n, f) is the so-called spatial covariance ma-

trix [113]. Under the narrowband approximation, Rj(n, f) =
aj(n, f)a

H
j (n, f) is constrained to be a rank-1 matrix. This

implies that the channels of cj(n, f) are coherent, i.e. perfectly

correlated.

It was proposed in [113] to relax this constraint and to

consider an unconstrained, full-rank spatial covariance matrix

Rj(n, f) within the LGM instead. This more flexible formu-

lation is applicable to diffuse sources or reverberated sources

whose AIRs are longer than the frame length. In such cases,

the sound field spans several directions at each frequency, such

that the channels of cj(n, f) become incoherent. The diagonal

entries of Rj(n, f) encode the ILD and its off-diagonal entries

encode the IPD and the interchannel coherence (IC), that is

the correlation between channels.

The spatial covariance can be either time-varying or time-

invariant. In the former case, it can be represented via a

dynamical model [114]. In the latter case, it simplifies to

Rj(n, f) = Rj(f).
Due to the increased number of parameters, the estimation

of this model is more difficult, especially when the number of

microphones I is large. To overcome this difficulty, several ap-

proaches have proposed to constrain the full-rank model based

on physical AIR characteristics, microphone array geometry,

and/or presumed source positions. These constraints are in-

corporated either via deterministic constraints [113], [115] or

probabilistic prior distributions [116] on the model parameters.

In [115], Rj(f) is represented as the weighted sum of rank-1

kernels modeling individual uniformly distributed directions.

In [116], the following inverse-Wishart prior is set on Rj(f)
instead:

p(Rj(f)|Ψj(f),m) =

|Ψj(f)|m|Rj(f)|−(m+I)e−tr[Ψj(f)R
−1
j

(f)]

πI(I−1)/2
∏I

i=1 Γ(m− i+ 1)
(20)

where Γ(·) is the gamma function, m is the number of degrees

of freedom, and Ψj(f) = (m− I)R̄j(f) is the inverse scale

matrix. Under certain assumptions, the mean value R̄j(f) of

this distribution can be defined as

R̄j(f) = dj(f)d
H
j (f) + σ2

revΩ(f) (21)

where dj(f) is the steering vector in (7), Ω(f) is the covari-

ance matrix of a diffuse sound field whose entries Ωii′(νf )
are given in (5), and σ2

rev is the power of early echoes

and reverberation [113]. It was shown that, when the RT is

moderate or large, the variance of this distribution is small so

that Rj(f) is similar to R̄j(f).

F. Discussion

In summary, various AIR models can be derived from the

deterministic and statistical perspectives laid in Sections II-B

and II-C, respectively, depending on the frame length. Long

frame lengths yield the deterministic narrowband or rank-1
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model. As we shall see, up to I − 1 directional noise sources

can then be perfectly eliminated in theory by narrowband

spatial filtering. However, the large number of frequency bands

and the small number of observed time frames make it difficult

to estimate the appropriate filter in practice. Shorter frame

lengths result in the statistical full-rank spatial covariance

model instead. The amount of directional noise cancellation is

then limited. However, this allows for low-latency processing

and increases the number of frames available for the estimation

of the spatial filter (see early discussion on the influence

of the frame length on the coherence [117]). These two

perspectives hence complement each other. Actually, they

were both adopted for deriving a joint noise reduction and

dereverberation algorithm in [47].

IV. SPATIAL FILTERING

In this section we explore some fundamental concepts of

array processing. Unless otherwise stated, these definitions are

applicable to all arrays (not necessarily microphone arrays).

For a comprehensive review on arrays (not specifically for

speech applications), the reader is referred to [118].

A. Array Preliminaries

1) Beamformer: Assume that the far-field assumption (8)

holds. A linear spatial filter is defined by a frequency-

dependent vector w(f) = [w1(f), . . . , wI(f)]
T

comprising

one complex-valued weight per microphone, that is applied to

the STFT x(n, f) of the array input signal x(t). Its output is

equal to wH(f)x(n, f) and it can be transformed back into

the time-domain by inverse STFT.

Such a filter is called a beamformer. The term beamformer

originally referred to direction of arrival (DOA) based filters

and was later generalized to all linear spatial filters. We will

see in Sections V-E and VII that there also exist nonlinear

spatial filters, which we will simply call “spatial filters”.

2) Beampattern: In the rest of this section, we omit indexes

j and f for legibility. Define a spherical coordinate system,

with θ the elevation angle measured from the positive z-axis,

and φ is the azimuth angle:

k = [sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)]
T
. (22)

The radius is irrelevant for defining the classical far-field

beampattern.

In order to understand the impact of a beamformer on sound

sources impinging from different directions, let us consider the

special case of a uniform linear array (ULA) lying along the

z-axis with inter-microphone distance ℓ and a single far-field

source (J = 1) with wavelength λ = c/νf impinging the array

from the elevation angle θ. In this case, the direct propagation

path is entirely determined by ℓ and θ, as illustrated in Fig. 5.

The TDOAs are given by (qij − q1j)/c = (i − 1)ℓ cos(θ)/c.
We can therefore express the steering vector (14) as

d(θ, λ) =
[
1, e−2π ℓ

λ
cos(θ), . . . , e−2π(I−1) ℓ

λ
cos(θ)

]T
. (23)

θ

ℓ

i = 1i = 2i = I

Figure 5. Uniform linear array (along the z-axis) for far-field signals.

The complex-valued response of the array, or beampattern,

as a function of the angle θ is then given by

B

(
θ;

ℓ

λ

)
= wHd(θ, λ) =

I∑

i=1

wie
−2π(i−1) ℓ

λ
cos(θ). (24)

Define the delay-and-sum (DS) beamformer, steered towards

θ0, as the beamformer with weights wi =
1
I e

−2π(i−1) ℓ
λ
cos(θ0).

In this case, the absolute squared beampattern, called beam-

power, is given by

∣∣∣∣B
(
θ;

ℓ

λ

)∣∣∣∣
2

=

∣∣∣∣∣
sin
(
Iπ ℓ

λ (cos(θ)− cos(θ0))
)

I sin
(
π ℓ

λ (cos(θ)− cos(θ0))
)
∣∣∣∣∣

2

. (25)

Typical beampatterns as functions of the steering angle and

of the ratio ℓ
λ are depicted in Fig. 6. In Fig. 6(a)-6(b) we

set ℓ
λ = 1

2 . A ULA with ℓ
λ = 1

2 is usually referred to as a

standard linear array. In Fig. 6(a) the steering direction is

perpendicular to the array axis and in Fig. 6(b) it is parallel to

it. The former look-direction is called broadside and the latter

endfire. Note, that the beampatterns’ shape is very distinct.

The consequences of setting the inter-microphone distance to

a very low value, i.e. ℓ
λ ≪ 1, can be deduced from Fig. 6(c),

where the beampattern is almost omnidirectional, and to a very

high value, i.e. ℓ
λ ≫ 1, can be deduced from Fig. 6(d), where

the beampattern exhibits grating lobes, which are the result of

spatial aliasing.

3) Directivity: An important attribute of a beamformer is its

directivity, defined as the response towards the look direction

divided by the integral over all other possible directions. The

directivity in dB scale is denoted directivity index. In its

most general form [119], applicable to any propagation regime

(e.g. in a reverberant environment), the directivity at a given

frequency can be defined as

Dgen(w,k) =
|wHa(k0)|2

κ−1
∮
k∈K |wHa(k)|2A(k)dk

(26)

where a(k) is the vector of ATFs from the three dimensional

source position k to the microphones, A(k) is the weight

for each position k in the entire space K, and k0 is the

look direction. The normalization factor of the spatial integral

is defined as κ ,
∮
k∈K A(k)dk. In the most familiar def-

inition of directivity, far-field is assumed. The abstract ATF

parametrization is replaced by the wave propagation vector
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λ
= 1

32

  0.2

  0.4

  0.6

  0.8

  1

30

210

60

240

90

270

120

300

150

330

180 0

(d) θ0 = 90o; ℓ
λ
= 4

1

Figure 6. Beampower of the DS beamformer for a ULA (along the z-axis).

in (22).

The directivity in spherical coordinates is then given by

Dsph(w, φ0, θ0) =
|wHd(k0)|2

1
4π

∫ π

0

∫ 2π

0
sin(θ)|B(φ, θ)|2dφdθ

(27)

with k0 = [sin(θ0) cos(φ0), sin(θ0) sin(φ0), cos(θ0)]
T

the

look direction of the array. Assuming that the response in the

look direction is equal to 1, this expression simplifies to [118]

Dsph(w, φ, θ) =
(
wHΩw

)−1
(28)

where Ω is the covariance matrix of a diffuse sound field

whose entries Ωii′ are given in (5).

Maximizing the directivity with respect to the array weights

results in2

Dmax(φ0, θ0) = dH(φ0, θ0)Ω
−1d(φ0, θ0). (29)

As evident from this expression, the directivity may depend

on the steering direction. It can be shown that the maximum

directivity attained by the standard linear array ( ℓ
λ = 1

2 ) is

equal to the number of microphones I , which is independent

of the steering angle. The array weights in this case are given

by wi =
1
I , i = 1, . . . , I assuming broadside look direction.

If the directivity of a beamformer significantly exceeds I , it is

called super-directive (SD). It was also shown in [120] that for

an endfire array with vanishing inter-microphone distance, i.e.
ℓ
λ → 0, the directivity approaches I2. It was claimed that “it

2The array weights that maximize the directivity are given by the MVDR
beamformer (43) with Σu = Ω, which will be discussed in Section V-B.

is most unlikely” that any other beamformer can attain higher

directivity.
4) Sensitivity: Another attribute of a beamformer is its

sensitivity to array imperfections.

Let the source image at the input of the microphone array

be c = s ·a(k0), and let u be the respective noise component.

Define the source variance as σ2
s and the noise covariance

matrix as Σu. The signal to noise ratio (SNR) at the output

of the microphone array is therefore given by:

SNRout =
σ2
s |wHa(k0)|2
wHΣuw

. (30)

If the noise is spatially-white, i.e. Σu = σ2
uI, then:

SNRout =
σ2
s

σ2
u

|wHa(k0)|2
wHw

= SNRin

|wHa(k0)|2
wHw

(31)

with SNRin =
σ2
s

σ2
u

.

Further assuming unit gain in the look direction, the SNR

improvement, denoted as white noise gain (WNG), is given

by:

WNG =
1

wHw
= ‖w‖−2 (32)

where ‖ • ‖ stands for the ℓ2 norm of a vector. It was shown

in [121] that the numerical sensitivity of an array, i.e. its

sensitivity to perturbations of the microphone positions and

to the beamformer’s weights, is inversely proportional to its

WNG:

S =
1

WNG
= ‖w‖2. (33)

It was further shown in [121] that there is a tradeoff between

the array directivity and its sensitivity and that the SD beam-

former suffers from infinite sensitivity to mismatch between

the nominal design parameters and the actual parameters. It

was therefore proposed to constrain the norm of w to obtain a

more robust design. It should be noted that if the microphone

position perturbations are coupled (e.g. if the microphones

share the same packaging) a modified norm constraint should

be applied to guarantee low numerical sensitivity [122].

B. Array geometries

The ULA is just one possible array geometry among many

others. In most algorithms discussed in this survey, no par-

ticular array geometry is assumed. Nowadays, microphones

can be arbitrarily mounted on a device (e.g., cellphone, tablet,

personal computer, hearing aid, smart watch) or several coop-

erative devices. In many cases, the microphone placement is

determined by the product design constraints rather than by

acoustic considerations. Ad hoc arrays can also be formed

by concatenating several devices, each of which equipped

with a small microphone array and limited processing power

and communication capabilities. Ad hoc arrays will be briefly

discussed in IX-C3.

Despite the fact that arbitrary array constellations are

widespread, specific array geometries are still very important

and have therefore attracted the attention of both Academia

and Industry. We will now briefly describe some of the

common microphone array geometries, namely differential and

spherical microphone arrays.
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Differential arrays [123]–[127] are small-sized arrays with

microphone spacing significantly smaller than the speech

wavelength. They implement the spatial derivative of the sound

pressure field and achieve a higher directivity than regular

arrays, close to that of the SD beamformer. However, the

sensitivity to array imperfections is excessively high. The most

commonly used differential arrays implement the first-order

derivative, but higher-order geometries exist. A device that can

directly measure the sound velocity, i.e. the first-order vector

derivative of the sound pressure, is also available [128].

Spherical microphone arrays [129], [130] have also at-

tracted attention, due to their ability to symmetrically analyze

tridimensional sound-fields [131]–[133] (see also dual-radius

spherical arrays [134]). This analysis is conveniently carried

out in the spherical harmonic domain by using the spherical

Fourier transform (SFT). The interested reader is referred to a

recently published book entirely dedicated to this topic [135].

Finally, crystal-shaped geometries have been used in [136].

They make it possible to diagonalize the (unknown) noise

covariance matrix by a fixed, known transform, provided that

it meets an isotropy condition.

C. From geometry to linear algebra

The representation of the spatial filtering capabilities of

beamformers as a function of the DOA is not very informative

for unstructured arrays, whose geometry does not comply

with a particular structure, e.g. linear, circular or spherical.

Moreover, sound propagation in a reverberant environment is

much more intricate than in free field.

The reflections of the sound wave are captured by the AIR.

From this perspective, each source can be represented as a

vector in a high-dimensional space whose dimension is the

number of reflections times the number of microphones. A

beamformer can be interpreted as a linear operator in this

(abstract) space. The various operations can be interpreted in

terms of linear algebra, without resorting to beampatterns as a

function of the DOA. One advantage of this perspective lies in

the ability to separate desired and interfering sources sharing

the same DOA [137], due to the fact that two sources with the

same DOA, but with different distances from the microphone

array, generally exhibit different reflection patterns. As previ-

ously discussed, working in a very high-dimensional space is

usually impractical.

It was therefore proposed both in the fields of beamforming

and BSS to replace the simple steering vectors (7) and (8)

by the ATFs or the respective RTFs. It was shown in [138]

that the peak of the RTF in the time domain corresponds

to the TDOA between the microphones, provided that the

DRR is sufficiently high. Hence the RTF can be viewed as

a generalization of the TDOA.

D. Fixed beamforming

The beamformers we have seen thus far are fixed beam-

formers (FBFs), which only rely on the DOA or the RTFs

of the target source. FBF designs are suitable when the

target direction is known a priori, e.g., in cellphones, cars

or hearing aids. In these cases, the beamformer is designed

to focus on the target source while minimizing noise and

reverberation arriving from other directions. These designs

require low computational complexity, but they may be prone

to performance degradation when the microphone positions

are not accurately known (see Section IV-A). A semi-fixed

beamforming approach, suitable for cases when the position

of the target source cannot be determined in advance, is

to estimate its DOA and to design a FBF steered towards

it. Alternatively, the AIRs or the RTFs between the target

source position and the microphones can be estimated during

a calibration process and used to construct a matched-filter

FBF [139].

A common FBF is the DS beamformer [140], which con-

sists of averaging the delay-compensated microphone signals.

Although simple, it can be shown to attain the optimal

directivity for a spatially-white noise field. The beamwidth

and sidelobe levels of the beampattern can be further con-

trolled by spatial windowing of the microphone signals before

averaging them. This is simply implemented as a weighted-

sum beamformer [141].

Considering a diffuse noise field, or scenarios where the

noise field is unknown, a beamformer which steers the beam

towards the target while minimizing the interferences arriving

from all other directions, can be designed [142], [143]. In

the special case of a target located at the endfire of the

array with vanishing inter-microphone distance, the directivity

of this design approaches I2 (see discussion in Sec. IV-A).

In practice, due to the non-zero inter-microphone distance,

the beampattern becomes frequency-dependent. While the

DS beamformer has a quasi-omnidirectional beampattern at

low frequencies, the beamwidth becomes narrower at higher

frequencies. These different beamwidths result in a low-pass

effect on the output signal. At very high frequencies the

beampattern is also prone to spatial aliasing (see Fig. 6). A

first cure to this phenomenon is to split the array into subarrays

that cover different frequency bands [2], [123], [144]. In [145]

the theory of frequency-invariant beampatterns for far-field

beamforming is developed and a practical implementation is

presented.

Eigen-filter (non-iterative) design methods for obtaining

arbitrary directivity patterns using arbitrary microphones con-

figurations are presented in [146]. Common iterative methods

for FBF design, such as least squares (LS), maximum energy

and nonlinear optimization, are also explored.

V. SPATIAL FILTER DESIGN CRITERIA

From now on, we focus on data-dependent spatial filters,

which depend on the input signal statistics. Compared with

FBFs, data-dependent designs attain higher performance due

to their ability to adapt to the actual ATFs and the statistics

of target and interfering sources. In many cases these spatial

filters are also adaptive, i.e. time-varying. However, they

usually require substantially higher computational complexity.

In this section we explore many popular data-dependent spatial

filter design criteria. We start in Section V-A with a general

framework for the narrowband model and recognize several

well-known beamforming criteria as special cases of this
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framework. In Section V-B we elaborate on the minimum vari-

ance distortionless response (MVDR) and linearly constrained

minimum variance (LCMV) beamformers, and in Section V-C

on the multichannel Wiener filter (MWF) beamformer and

its variant known as the speech distortion weighted multi-

channel Wiener filter (SDW-MWF). We then proceed with

beamforming criteria for inter-frame, inter-frequency, or full-

rank covariance models in Section V-D and spatial filter design

criteria for sparse speech models in Section V-E. All these

criteria rely on a set of parameters such as the RTFs and the

second order statistics of the sources, whose estimation will

be handled in Section VI.

A. General criterion for the narrowband model

Assume the narrowband approximation in the STFT do-

main (6) holds. Further assume that the received microphone

signals comprise Jp point sources of interest and J−Jp noise

sources with arbitrary spatial characteristics. Using (2) and (6)

and the above assumptions the microphone signals are given

by:

x(n, f) = A(n, f)s(n, f) + u(n, f) (34)

where A(n, f) =
[
a1(n, f), . . . ,aJp

(n, f)
]
, s(n, f) =[

s1(n, f), . . . , sJp
(n, f)

]T
, and u(n, f) =

∑J
j=Jp+1 cj(n, f)

is the contribution of all noise sources. The frame index

n and the frequency index f are henceforth omitted for

brevity, whenever no ambiguity occurs. Denoting by Σx =
E{xxH} the covariance matrix of the received signals, Σu =
E{uuH} the covariance matrix of the noise signals, and

Σs = diag(σ2
s1 , . . . , σ

2
sJp

) the covariance matrix of the signals

of interest, assumed to be mutually independent, the following

relation holds:

Σx = AΣsA
H +Σu. (35)

In the most general form, define d = QHs as the desired

output vector, where Q, denoted as the desired response

matrix, is a matrix of weights controlling the contributions of

the signals of interest at all desired outputs, and d̂ = WHx the

outputs of a filtering matrix W (note that the desired responses

are defined by Q∗). Then, the filtering matrix W is set to

satisfy the following minimum mean square error (MMSE)

criterion:

WMO-MWF = argmin
W

E

{
tr
(
(d̂− d)(d̂− d)H

)}
=

argmin
W

{
(QH −AWH)Σs(Q−WAH) +WHΣuW

}

(36)

where the multi-output MWF matrix, WMO-MWF, is given by:

WMO-MWF = Σ−1
x AΣsQ =

(
AΣsA

H +Σu

)−1
AΣsQ.

(37)

In the more widely-used scenario, a single desired com-

bination of the signals of interest d = qHs is considered,

where q, denoted as the desired response vector, is a vector

of weights controlling the contribution of the signals at the

desired output (note that the desired responses are defined by

q∗). Let d̂ = wHx be the output of a beamformer w. The

beamformer weights are set to satisfy the following MMSE

criterion [147]:

argmin
w

E{|d̂− d|2} = argmin
w

E{|wHx− qHs|2}. (38)

Several criteria can be derived from (38). Starting from the

single desired source case Jp = 1, i.e. d = q∗s1, the MWF

can be derived by rewriting the MMSE criterion as

wMWF = argmin
w

{∣∣q − aH1 w
∣∣2 σ2

s1 +wHΣuw
}
. (39)

The minimizer of the cost function in (39) is the celebrated

MWF:

wMWF =
(
σ2
s1a1a

H
1 +Σu

)−1
σ2
s1a1q =

σ2
s1Σ

−1
u a1

1 + σ2
s1a

H
1 Σ−1

u a1
q.

(40)

The MWF cost function comprises two terms. The first

term is the power of the speech distortion induced by spatial

filtering, while the second is the noise power at the output

of the beamformer. These two terms are also known as

artifacts and interference, respectively, in the source separation

literature.

To gain further control on the cost function, a tradeoff

parameter may be introduced, resulting in the SDW-MWF cost

function [148]:

wSDW-MWF = argmin
w

{∣∣q − aH1 w
∣∣2 σ2

s1 + µwHΣuw
}

(41)

where µ is a tradeoff factor between speech distortion and

noise reduction. Minimizing the criterion in (41) yields:

wSDW-MWF =
σ2
s1Σ

−1
u a1

µ+ σ2
s1a

H
1 Σ−1

u a1
q. (42)

By tuning µ in the range (0,∞), the speech distortion level can

be traded for the residual noise level. For µ → ∞, maximum

noise reduction but maximum speech distortion are obtained.

Setting µ = 1, the SDW-MWF identifies with the MWF.

Finally, for µ → 0, the SDW-MWF identifies with the MVDR

beamformer, with a strict distortionless response wHa1 = q:

wMVDR =
Σ−1

u a1

aH1 Σ−1
u a1

q (43)

which optimizes the following constrained minimization:

wMVDR = argmin
w

{
wHΣuw s.t. aH1 w = q

}
. (44)

More information regarding the SDW-MWF and MVDR

beamformers and their relations can be found in [92]. In

Section VII we will discuss in details the decomposition of

the SDW-MWF into an MVDR beamformer and a subsequent

postfiltering stage.

It is also easy to verify [118] that the MVDR and the

following minimum power distortionless response (MPDR)

criteria are equivalent:

wMPDR = argmin
w

{
wHΣxw s.t. aH1 w = q

}
. (45)

The resulting beamformer

wMPDR =
Σ−1

x a1

aH1 Σ−1
x a1

q (46)
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exhibits, however, higher sensitivity to misalignment errors

than the MVDR beamformer [149].

Finally, it can be shown [121] that the maximum SNR

(MSNR) beamformer that maximizes the output SNR:

wMSNR = argmax
w

{ |aH1 w|2
wHΣuw

}
. (47)

The MSNR beamformer is given by

wMSNR = ζΣ−1
u a1 (48)

with ζ an arbitrary scalar. The MSNR beamformer identifies

with the MVDR and the MPDR beamformers if they satisfy

the same constraint aH1 w = q. The MSNR beamformer was

applied to speech enhancement in [150], [151].

Returning to the multi-speaker case, the multiple speech

distortion weighted multichannel Wiener filter (MSDW-MWF)

criterion can be defined [147]:

wMSDW-MWF = argmin
w

{
wHΣuw+

(
q−AHw

)H
ΛΣs

(
q−AHw

)}
(49)

where Λ = diag
{
λ1, . . . , λJp

}
is a diagonal weight matrix

with tradeoff factors controlling noise reduction and the de-

viation from the desired response on its main diagonal. The

MSDW-MWF beamformer optimizing the criterion in (49) is

given by:

wMSDW-MWF =
(
AΛΣsA

H +Σu

)−1
AΛΣsq. (50)

Various widely-used beamformers can be derived by set-

ting the values of the weight matrix Λ in the generalized

MSDW-MWF criterion:

1) By setting Λ = I we get the MWF for estimating a

desired combination of all signals of interest d = qHs:

wM-MWF =
(
AΣsA

H +Σu

)−1
AΣsq = Σ−1

x AΣsq.
(51)

2) Assume now that only one signal of interest exists, i.e.

Jp = 1, and Λ = µ−1. In this case the MSDW-MWF

beamformer simplifies to the SDW-MWF beamformer:

wSDW-MWF =
(
a1σ

2
s1a

H
1 +Σu

)−1
a1σ

2
s1q

=
σ2
s1Σ

−1
u a1

µ+ σ2
s1a

H
1 Σ−1

u a1
q.

(52)

where the last transition is due to Woodbury iden-

tity [152]. The MVDR and MPDR beamformers are

obtained from the SDW-MWF as explained above.

3) Selecting Λ = µ−1Σ−1
s we obtain at the limit:

lim
µ→0

wMSDW-MWF(Λ = µ−1Σ−1
s ) =

Σ−1
u A

(
AHΣ−1

u A
)−1

q

(53)

which is exactly the LCMV beamformer. It is easily

verified that the LCMV beamformer is equivalent to

the linearly constrained minimum power (LCMP) beam-

former [118]:

wLCMP = Σ−1
x A

(
AHΣ−1

x A
)−1

q. (54)

The LCMV beamformer optimizes the following crite-

rion:

wLCMV = argmin
w

{
wHΣuw s.t. AHw = q

}
. (55)

and the LCMP criterion is obtained by substituting Σu

by Σx in (55). The LCMP beamformer is known to be

much more sensitive to misalignment than the LCMV

beamformer [149]. Note, that while an interference

source can be perfectly nulled out by adding a proper

constraint to the LCMV criterion, its power will only be

suppressed by the minimization operation of the MVDR

criterion. Interestingly, the MVDR beamformer can also

direct an almost perfect null towards an interference

source, provided that the respective spatial covariance

matrix Σu is a rank-1 matrix. Similar relations, with

the proper modifications, apply to the LCMP and MPDR

beamformers.

The reader is referred to [118], [140], [149] for comprehensive

surveys of beamforming techniques.

In the next subsections, we will elaborate on specific

structures and implementation of widely-used beamformers. In

Section V-B two important distortionless beamformers, namely

the MVDR and LCMV beamformers, are discussed. We extend

the discussion on MMSE beamformers in Section V-C and

elaborate on methods to control the level of distortion. Beam-

forming structures that extend the narrowband approximation

are discussed in Section V-D. Spatial filtering criteria that go

beyond second-order statistics of the signals are presented in

Section V-E.

B. MVDR and LCMV

The desired signal defined in the previous general beam-

former formulation consists of a linear combination of the

“dry” sources (prior to the filtering process of the AIRs).

Hence, the designed beamformer not only aims to reduce

the noise, but also aims to de-reverberate the speech sig-

nals. Assuming that reverberation alone does not compromise

intelligibility, which is the case in many scenarios, the de-

reverberation requirement can be relaxed. A modified beam-

former can be obtained by redefining the desired signal as

a linear combination of the sources as received by some

reference microphones. Generally, the reference microphone

for each of the sources can be selected differently. Here, for

brevity, we assume that the reference microphones are the

same for all sources, and arbitrarily select it to be the first

microphone. Redefine the modified vector of desired responses

as:

q̃ ,
[
a∗11 · · · a∗Jp,1

]T
. (56)

Consider the special case of enhancing a single desired

speaker, i.e., Jp = 1, contaminated by noise, using the

MVDR criterion. Using the definition (56) with Jp = 1 in the

MVDR criterion (44) results in a modified MVDR beamformer

aiming at the enhancement of the desired signal image on the
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reference microphone a11s1:

w̃MVDR ,
Σ−1

u ã1

ãH1 Σ−1
u ã1

(57)

where ã1 denotes the RTF vector of the desired source as

defined in (9). In [153] the SNR improvement of an MVDR

beamformer is evaluated as a function of the reverberation

level at the output. It is concluded that a tradeoff between

noise reduction and dereverberation exist, i.e. the highest SNR

improvement is obtained when dereverberation is sacrificed.

Consider the multiple speakers scenario, and assume that Jp
speakers of interest can be classified into two groups, namely

as desired or as interfering speakers. Without loss of generality,

we assume that the first Jα sources are desired and denote

their respective ATF matrix by Aα. Correspondingly, the last

Jβ speakers are assumed to be interfering and their respective

ATF matrix is denoted as Aβ . The total number of source

of interest therefore satisfies Jp = Jα + Jβ . Similarly to the

above, relaxing the dereverberation requirement, the goal of

the beamformer is to extract the desired sources as received

by the reference microphone while mitigating the interfering

speakers and minimizing the background noise. Explicitly, the

constraints set can be defined as

Ã
H
w = qLCMV (58)

where Ã ,
[
Ãα Ãβ

]
comprises the RTFs of the desired

and interfering speakers arranged in matrices Ãα and Ãβ ,

respectively, and qLCMV ,
[
11×Jα

01×Jβ

]T
. A straight-

forward computation of the LCMV beamformer requires

knowledge of the RTFs of the sources (both desired and

interfering). It can be shown (see [137]) that an equivalent

constraints set can be formulated as:
[
Q̃α Q̃β

]H
w = qLCMV (59)

where the matrices Qα and Qβ are arbitrary bases spanning

the column-subspace of the matrices Aα and Aβ , respectively,

and Q̃α and Q̃β are their normalized counterparts defined as:

Q̃α =diag(Qα,11, . . . , Qα,1Jα
)−1Qα (60a)

Q̃β =diag(Qβ,11, . . . , Qβ,1Jβ
)−1Qβ . (60b)

The operator diag(·) denotes a diagonal matrix with the

argument on its diagonal and Qα,1j denotes the first element

in the j-th column of the matrix Qα. Constructing the LCMV

beamformer with the constraints set in (59) can be shown to be

equivalent to the construction with (58). Moreover, using (58)

relaxes the requirement for estimating the RTF vectors for

each of the sources, and substitutes it with estimating two

basis matrices, one for each group of sources (desired and

interfering, respectively). A practical method for estimating

the basis matrices Qα and Qβ is discussed in Section VI-B.

C. MWF, SDW-MWF and parametric MWF

Time-domain implementation of single-source MWF-based

speech enhancement is proposed in [154]. The covariance ma-

trix of the received microphone signals comprises speech and

noise components. Using generalized singular value decom-

position (GSVD), the mixture and noise covariance matrices

can be jointly diagonalized [155]. Utilizing the low-rank struc-

ture of the speech component, a time-recursive and reduced-

complexity implementation is proposed. The complexity can

be further reduced by shortening the length of GSVD-based

filters.

In later work [156], a similar solution to the

SDW-MWF [148] was derived from a different perspective.

It is suggested to minimize the noise variance at the output

of the beamformer while constraining the maximal distortion

incurred to the speech signal, denoted σ2
D. The beamformer

which optimizes the latter criterion is called parametric MWF

(PMWF):

wPMWF = argmin
w

{
wHΣuw s.t. E{|d− d̂|2} ≤ σ2

D

}
(61)

The expression of the PMWF is identical to that of the

SDW-MWF in (42). The relation between the parameters σ2
D

of the PMWF and µ of the SDW-MWF does not have a closed-

form representation in the general case. This relation and the

performance of the PMWF are analyzed in [157].

D. Criteria for inter-frame, inter-frequency, or full-rank co-

variance models

The beamformers we have seen thus far rely on the nar-

rowband approximation. The underlying MMSE criterion can

also be used when this approximation does not hold, e.g., with

inter-frame, inter-frequency, or full-rank covariance models.

With the full-rank covariance model in Section III-E, for

instance, the target signal to be estimated is the vector cj(n, f)
of STFT coefficients of each spatial source image. Beamform-

ing can then be achieved using a matrix of weights W(n, f)
as ĉj(n, f) = WH(n, f)x(n, f). The MMSE criterion is

expressed as

argmin
W

E{‖WH(n, f)x(n, f)− cj(n, f)‖2} (62)

and the solution is given by the MWF [113]

Wj(n, f) = Σ−1
x (n, f)Σcj

(n, f) (63)

with Σx(n, f) =
∑J

j=1 Σcj
(n, f). Variants of this criterion

involving multiple target speakers and tradeoff between speech

distortion and residual noise can be derived similarly to above.

A similar approach can also be used for the inter-frame and

inter-frequency models in Section III-D. Beamformers then

involve STFT coefficients from multiple frames or frequency

bins as inputs and the MWF is obtained using a similar

expression to (63) where the covariance matrices represent the

covariance between multiple frames or frequency bins [104]–

[106], [109]. In [47], the inter-frame model and the full-

rank model are combined in a nested MVDR beamforming

structure.

E. Sparsity-based criteria

The beamformers we have reviewed thus far are obtained

by minimizing power criteria which can be expressed in terms
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Magnitude STFT of a speech source sj(n, f)
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Figure 7. Distribution of the magnitude STFT of a speech source.

of the second-order statistics of the signals. Mathematically

speaking, these statistics are sufficient to characterize Gaussian

signals. However, audio signals are often nongaussian. Fig. 7

shows that, in the time-frequency domain, the distribution of

speech signals is sparse: at each frequency, a few coefficients

are large and most are close to zero compared to a Gaussian.

This has inspired researchers to design spatial filters that

take this distribution into account. This is typically achieved

by optimizing a maximum likelihood (ML) criterion under the

narrowband model (6). Three approaches have been proposed.

1) Binary masking and local inversion: A first approach

considers that each source is active in a few time-frequency

bins so that only few sources are active in each time-frequency

bin. The simplest model assumes that a single source j⋆(n, f)
is active in each time-frequency bin [85], [158], [159]. If

we further assume that j⋆(n, f) is uniformly distributed in

{1, . . . , J} and that the noise u(n, f) is Gaussian with covari-

ance Σu(f), the sources sj(n, f) and the model parameters

θ = {aj(f),Σu(f)} can be jointly estimated by maximizing

the log-likelihood

argmax
s,θ

∑

nf

− log det(πΣu(f))

− (x(n, f)− a⋆j (f) s
⋆
j (n, f))

H

Σ−1
u (f)(x(n, f)− a⋆j (f) s

⋆
j (n, f)) (64)

where a⋆j (f) and s⋆j (n, f) denote the value of aj(f) and

sj(n, f) for j = j⋆(n, f). Given j⋆(n, f) and θ, it turns out

that the optimal value of the predominant source is obtained by

the MVDR beamformer s⋆j (n, f) = wH
MVDR(f)x(n, f) where

wMVDR(f) is given by (43) by identifying a1 with a⋆j (f)
and setting q = 1. The other sources sj(n, f), j 6= j⋆(n, f),
are set to zero. This can be interpreted as a conventional

MVDR beamformer followed by a binary postfilter equal to

1 for the predominant source and 0 for the other sources (see

Section VII-A).

A variant of this approach assumes that a subset of sources

J (n, f) ⊂ {1, . . . , J} is active in each time-frequency bin

where the number of active sources is smaller than the number

of microphones I [54], [160]–[163]. The ML criterion can then

be written as

argmax
s,θ

∑

nf

− log det(πΣu(f))

−


x(n, f)−

∑

j∈J (n,f)

aj(f) sj(n, f)




H

Σ−1
u (f)


x(n, f)−

∑

j∈J (n,f)

aj(f) sj(n, f)


 . (65)

Given J (n, f) and θ, the optimal value of each active source

is now obtained by the LCMV beamformer sj(n, f) =
wH

LCMV(f)x(n, f) whose general expression is given later

in (73) where Ǎ = [aj(f)]j∈J (n,f) and q = [0, . . . , 1, . . . , 0]T

with the value 1 in the position corresponding to source j. The

activity patterns j⋆(n, f) or J (n, f) and the model parameters

θ can be estimated using an EM algorithm (see Section VI-C).

Alternative solutions include estimating θ first using, e.g. the

techniques in Section VI-B, and subsequently looping over all

possible activity patterns and select the one yielding the largest

likelihood, or even reestimating [aj(f)]j∈J (n,f) in each time-

frequency bin using other criteria than ML [163].

2) ICA and SCA: A second approach assumes that all

sources are possibly active but their STFT coefficients sj(n, f)
are independent and identically distributed (i.i.d.) according to

a known sparse distribution. The circular generalized Gaussian

distribution is a popular choice [164], [165]. It models the

phases of the source STFT coefficients as uniformly distributed

and their magnitudes as [166], [167]

p(|sj(n, f)|) = q
β1/q

Γ(1/q)
e−β |sj(n,f)|

q

(66)

where the parameters 0 < q < 2 and β > 0 govern

respectively the shape and the variance of the prior and

Γ(·) is the gamma function. This distribution includes the

Laplacian (q = 1) [72], [168], [169] as a special case and its

sparsity increases with decreasing q. It was shown in [164] that

q = 0.4 matches well the distribution of speech, as illustrated

in Fig. 7. Generalizations of this distribution [170] and other

i.i.d. distributions [67], [76], [168], [171]–[174] have also been

used.

In the so-called determined case, when the number of

sources J is equal to the number of microphones I , estimating

the matrix of ATFs A(f) is equivalent to estimating the matrix

of beamformers W(f) = A−1(f), which can be used to

jointly recover all sources as s(n, f) = WH(f)x(n, f). The
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optimal beamformers W(f) can then be estimated in the ML

sense as

WICA(f) = argmax
W(f)

∑

nf

log p(x(n, f)|A(f)) (67)

= argmax
W(f)

log | detW(f)|+
∑

jnf

log p(sj(n, f))

(68)

Interestingly, this criterion is equivalent to minimizing the

mutual information I(s1, . . . , sJ), which is an information-

theoretic measure of dependency between random vari-

ables [175]. In other words, it results in maximizing the statis-

tical independence of the source signals. For this reason, it was

called nongaussianity-based independent component analysis

(ICA) [176]–[178]. This is the most common form of ICA,

which differs from the nonstationarity-based ICA stemming

from the LGM in Section III-E. Minimum mutual information

is more general than ML as it can also be applied when the

distribution p(sj(n, f)) is unknown. In practice though, most

ICA methods rely on ML which is easier to optimize and

can also be applied to enhance a single source [179]. The

beamformer resulting from nongaussianity-based ICA signifi-

cantly differs from the ones we have seen so far in that it can

never be expressed in terms of the second-order statistics of the

signals. Actually, it cannot even be computed in closed-form:

parameter estimation and beamforming are tightly coupled as

illustrated by the dashed arrow in Fig. 1. Iterative estimation

algorithms will be reviewed in Section VI-D.

One limitation of the ICA criterion is that it is invariant

with respect to permutation of the sources. Yet, the order

of the sources must be aligned across the frequency bins.

Linear constraints [70], [77] such as the one used for MVDR

and penalty terms constraining aj(f) to vary smoothly over

frequency [75], [76] or to be close to the anechoic steering

vector dj(f) [78] have been used to constrain the optimiza-

tion (68). Post-processing permutation alignment techniques

which exploit the additional fact that the source short-term

spectra are correlated across frequency bands have also been

proposed [81], [180], [181].

In the so-called underdetermined case, when the number of

sources J is larger than the number of microphones I , ICA

cannot recover all sources anymore and joint ML estimation of

A(f) and sj(n, f) is difficult. An approximate solution is to

obtain A(f) first using, e.g. the techniques in Section VI-B3,

and to subsequently estimate sj(n, f) in the ML sense:

sSCA(n, f) = argmax
s(n,f)

∑

jnf

log p(sj(n, f)) (69)

under the constraint that x(n, f) = A(f)s(n, f). Due to the

sparse distribution used, this objective has been denoted sparse

component analysis (SCA). In the case when the generalized

Gaussian distribution (66) is used, this amounts to minimizing

the sum over all sources of the q-th power of the ℓq norm of

each source 
∑

nf

|sj(n, f)|q



1/q

. (70)

The solution cannot be found in closed-form and requires an

iterative algorithm in the general case [164], [182]. However, if

the shape parameter q is small enough, the corresponding dis-

tribution is so sparse that it forces J−I sources to zero in each

time-frequency bin and only the remaining I sources indexed

by j ∈ J (n, f) are nonzero [164]. The nonzero source STFT

coefficients are found by local inversion of the mixing process,

i.e., [sj(n, f)]j∈J (n,f) = [aj(n, f)]
−1
j∈J (n,f)x(n, f) [72]. This

can be interpreted as LCMV beamforming similarly to above.

The value of the noise covariance matrix Σu(f) does not

matter here since the matrix A(f) = [aj(n, f)]j∈J (n,f) is

invertible. An alternative approach that forces certain source

STFT coefficients to zero based on the theoretical framework

of co-sparsity was proposed in [183].

3) Non i.i.d. models: The assumptions of independence

and identical distribution behind ICA and SCA are major

limitations: contrary to traditional beamforming approaches

based on second-order statistics, they ignore the fact that

audio sources exhibit patterns over time and frequency. A few

approaches have attempted to relax these two assumptions.

The TRINICON framework [184] and the earlier framework

in [185] relax the second assumption: the source signals are

assumed to be independently distributed according to a sparse

distribution but the parameters of this distribution vary over

time. Independent vector analysis (IVA) [186]–[188] relaxes

the first assumption instead: it models the correlation between

the source STFT coefficients across frequency using a multi-

variate sparse distribution, which results in the minimization

of the sum over all sources of the q-th power of the mixed

ℓp,q norm of each source



∑

n


∑

f

|sj(n, f)|p



q/p



1/q

. (71)

This model provides a principled approach to solving the

permutation problem of ICA. Mixed norms have also been

used for underdetermined separation in [63]. However, these

approaches have little been pursued due to the limited range

of spectro-temporal characteristics they can model and the

increased optimization difficulty.

F. Summary

In Table I a summary of important single output spatial

filters, discussed above, can be found.

VI. PARAMETER ESTIMATION ALGORITHMS AND

IMPLEMENTATION

In this section we will explore some widely-used structures

and estimation procedures for implementing the beamformers

and the spatial filters discussed in Section V. We discuss the

generalized sidelobe canceller (GSC) structure, often used for

implementing MVDR and LCMV beamformers in Sec. VI-A.

The estimation of the speech presence probability (SPP), the

(spatial) second-order statistics of the various signals, and the

RTFs of the signals of interest are discussed in Sec. VI-B.

Although, traditionally, the extraction of geometry information
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Beamformer Criterion Solution # Hard Constraints Variants

MWF (39) (40) - SDW-MWF (42), MO-MWF (37)(63)

MVDR (44) (43) 1 MPDR (46), MSNR (48)

LCMV (55) (53) Jp LCMP (54)

ICA (68) no closed form - TRINICON, IVA

Table I
SUMMARY OF BEAMFORMERS FOR SPEECH ENHANCEMENT.

and signals’ activity patterns were only used by microphone

array processing methods, in recent years they were also

adopted by the BSS community. We will elaborate on the

differences and similarities of these paradigms in Sec. IX-A.

Numerous statistical estimation criteria for estimating the

various components of the spatial filters, such as maximum

likelihood (ML), maximum a posteriori (MAP), and variational

Bayes (VB), are discussed in Sec. VI-C.

A. The generalized sidelobe canceller

In its most general form the LCMV beamformer optimizes

the following criterion (see also (55)):

wLCMV = argmin
w

{
wHΣuw s.t. ǍHw = q

}
(72)

where Ǎ is a general constraint matrix (not necessarily equal

to the source ATFs) and q is the desired response. The criterion

in (72) minimizes the noise at the beamformer output subject

to a set of linear constraints. The multiple constraint set gener-

alizes the simpler MVDR criterion to allow for further control

on the beampattern, beyond the response towards the array

look-direction. Several alternatives for constraint selection are

listed in [140], including beam derivative constraint [189],

eigenvector constraint [190] and volume constraint [191].

Since adaptive constrained minimization can be a cumbersome

task (see e.g. [192]) it was proposed in [193] to decompose

the MVDR beamformer into separate (and orthogonal) beam-

formers responsible for satisfying the constraint and for noise

power minimization. The resulting structure is called GSC.

While the existence of such a decomposition was only proven

for the MVDR beamformer in [193], it was later extended to

the more general LCMV beamformer in several publications.

A short and elegant proof that all LCMV beamformers can be

decomposed into a GSC structure is given in [194].

The LCMV beamformer for an arbitrary constraint matrix

and a desired response vector q is given by:

wLCMV = Σ−1
u Ǎ

(
ǍHΣ−1

u Ǎ
)−1

q. (73)

Now, the beamformer can be recast as a sum of two orthogonal

beamformers:

wLCMV = w0 −wn (74)

where w0 ∈ Span{Ǎ}, wn ∈ Null{Ǎ}, and Span{Ǎ} and

Null{Ǎ} are respectively the column space and the null space

of the constraint matrix Ǎ. Such an orthogonal decomposition

always exists [195]. The rank of the Span{Ǎ} is Jp and the

rank of Null{Ǎ} is I − Jp. Any vector in Null{Ǎ} can be

further decomposed as wn = Bg. The columns of the I×(I−
Jp) matrix B span Null{Ǎ} and g is a (I − Jp) × 1 weight

vector. The matrix B is usually referred to as the blocking

matrix (BM), as it blocks all constrained signals.

Using this decomposition, the output of the beamformer is

given by:

d̂ = wHx = wH
0 x− gH BHx︸ ︷︷ ︸

e

.
(75)

The signals e = BHx, usually referred to as noise reference

signals, lie in Null{Ǎ}, i.e. they comprise noise-only compo-

nents.

The GSC implementation hence consists of two branches,

as depicted in Fig. 8. The upper branch is responsible for

satisfying the constraint set, and is usually denoted FBF.

It should, however, be stressed that in some scenarios the

constraint matrix is time-varying, e.g. when the sources are

free to move. Even in such scenarios, the term FBF, although

inaccurate, will still be used. A widely-used FBF is the

perpendicular to the constraint set:

w0 = Ǎ
(
ǍHǍ

)−1
q. (76)

Other alternatives will be discussed later.

A straightforward implementation of the BM is given by

selecting the first I − Jp columns of the projection matrix to

the null subspace of Ǎ, given by:

B =
(
II×I − Ǎ

(
ǍHǍ

)−1
ǍH

)[
I(I−Jp)×(I−Jp)

0Jp×(I−Jp)

]
.

(77)

It is easy to verify that BHǍ = 0.

The role of the filters g is to minimize the noise power

at the output of the beamformer. Note that, in the ideal

case, the constrained signals do not leak to the output of the

BM, hence the noise power can be reduced by unconstrained

minimization. The decoupling between the application of the

constraint and the minimization of the noise power is the

most important attribute of the GSC structure, emphasizing the

importance of avoiding the leakage of the constrained signals

at the output of the BM. Such a leakage contributes to the self-

cancellation phenomenon, often resulting in desired signals

distortion. The noise canceller (NC) filters g can be calculated

using the MWF with noise reference signals e as inputs and

the output of the FBF as the desired signal:

g =
(
BHΣuB

)−1
BHΣuw0. (78)

However, the NC is usually implemented using adaptive
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Figure 8. GSC structure for implementing the LCMV beamformer.

filters, most commonly the least mean squares (LMS) algo-

rithm [196].

The GSC structure is widely used in the microphone array

literature. In [197] a time-domain GSC is applied to enhance a

desired signal impinging the array from a fixed look-direction

in a car environment. In [66], a STFT-domain subspace

tracking procedure is utilized for estimating the ATFs of the

desired source (confined to a small predefined area), which

are necessary for implementing the FBF and BM blocks.

The subspace tracking procedure was later utilized to address

the multiple moving sources scenario in [198]. In [199] a

robust GSC is implemented in the time domain, employing

adaptive BM, constrained to a predefined DOA, and norm-

constrained NC. A frequency-domain implementation of an

equivalent structure is given in [200]. A GSC beamformer

implemented in the STFT domain is proposed in [69] with

the ATFs substituted by the RTFs that can be estimated

from the received signals utilizing speech nonstationarity. This

structure was extended to the two speaker case (i.e. two

sources of interest: one desired and one interfering) with

RTFs estimated using speech nonstationarity as well [201].

Later, the multiple speaker case was addressed in [137] with

the RTFs estimated using eigenvalue decomposition (EVD).

An efficient implementation of the BM with the smallest

possible number of filters can be found in [202]. The case

of multiple speakers is also addressed in [203] by assuming

disjoint activity of the various sources in the STFT domain

and applying clustering procedure to localize the sources.

In [204] a generalization of both the SDW-MWF and the GSC,

called spatially preprocessed SDW-MWF (SP-SDW-MWF) is

proposed. Applying this generalized form offers improved

robustness to errors in the estimated RTFs.

B. SPP-based second order statistics and RTF estimation

The beamformers and the other spatial filters defined in the

previous sections assume that certain parameters are available

for their computation, namely the RTFs of the speakers, the

covariance matrices of the background noise and the speakers,

and/or the cross-covariance between the mixture signals and

the desired signal. Numerous methods exist for estimating

these parameters. Many of them rely on estimating the SPP for

determining noise and speech time-frequency bins combined

with speaker classification (for the multiple speakers case) in

a first stage and independently estimating the various model

parameters in a second stage. In the following, we review SPP

estimation, and proceed with the estimation of covariances

matrices and RTFs.

1) Estimating the speech presence probability: Many

speech enhancement algorithms, implemented in the STFT

domain, require information regarding the temporal-spectral

activity of the speech signals. Contrary to the voice activity

detection (VAD) problem where low resolution is sufficient,

high-resolution activity estimation in both time and frequency

is required here for proper enhancement.

We first consider the estimation of the SPP in a single-

speaker scenario using a single microphone and then discuss

the multi-microphone scenario. In this scenario, the STFT of

one of the microphone signals is given by:

x = c+ u (79)

where c is the spatial image of the speech source and u is the

sum of all noise components. The microphone and sources

indices are omitted for brevity and the time and frequency

indices are (n, f) unless otherwise stated. Denote the speech

activity and absence hypotheses in time-frequency bin (n, f)
as Hs and Hu, respectively. The problem at hand can be

viewed as a classical hypothesis testing problem.

Denote the a posteriori SNR as:

γ(n, f) ,
1

|Nn| · |Ff |
∑

n′∈Nn,f ′∈Ff

|x(n′, f ′)|2
σ2
u(n

′, f ′)
. (80)

where σ2
u denotes the variance of the noise component and

Nn, Ff are sets of time and frequency indices, respectively,

defining a neighborhood of time-frequency points around

(n, f). By averaging over a neighborhood of time-frequency

points, the smoothness property of speech activity is utilized

to reduce fluctuations in γ, which will reduce fluctuations in

the SPP, and avoid distortion artifacts at the output of the

enhancement algorithms. Assuming that the STFT coefficients

of speech and noise are Gaussian distributed and independent

over time and frequency [205], γ approximately follows a

chi-squared distribution with r = 2|Nn| · |Ff |cdof degrees of

freedom, where cdof is a correction factor resulting from the

correlation between time and frequency bins due to the STFT

overlap factor and the analysis window.

Numerous methods exist for estimating the noise power

spectral density σ2
u, e.g. by conventional spectrum estima-

tion methods during speech-free time segments, by minimum

statistics [206], by the improved minima controlled recursive

averaging [207] or by an improved MMSE criterion [208].

Let p ∈ [0, 1] denote the probability that hypothesis Hs is

true, i.e. speech is present. This probability can be calculated

as

p , P {Hs|γ} =
Λ

1 + Λ
(81)
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where Λ is the generalized likelihood ratio, defined as

Λ ,
q · P {γ|Hs}

(1− q) · P {γ|Hs}
(82)

with q = P {Hs} the a priori probability of speech presence.

For computing Λ, we further assume that the speech power

is homogeneously distributed over the neighborhood of time-

frequency bin (n, f). Define the a priori SNR as

ξ ,
1

|Nn| · |Ff |
∑

n∈Nn,f∈Ff

E
{
|c(n, f)|2

}

σ2
u(n, f)

. (83)

Using these definitions and the assumption that speech and

noise STFT coefficients are Gaussian distributed, it can be

shown (see [209]) that Λ is given by

Λ =
q

1− q

(
1

1 + ξ

) r
2

exp

(
ξ

1 + ξ
· r
2
γ

)
. (84)

Substituting (84) in (81) yields

p =

{
1 +

1− q

q
(1 + ξ)

r
2 exp

(
− ζ

1 + ξ

r

2

)}−1

(85)

where

ζ , γξ. (86)

The a priori SNR and a priori SNR can be signal-

dependent [210]–[212] or fixed to typical values designed to

meet certain false-alarm and miss-detection rates [209].

This approach can be extended to multichannel SPP estima-

tion under the narrowband approximation [213], where multi-

variate Gaussian distributions are assumed for the speech and

noise components. The resulting SPP is calculated using (85)

with ζ and ξ redefined as

ξ , tr
{
Σ−1

u Σc

}
(87)

ζ ,xHΣ−1
u ΣcΣ

−1
u x (88)

where

Σc , AΣsA
H (89)

is the covariance matrix of the images of the sources of

interest.

Note that estimating SPP relies on estimates of SNR and

consequently the estimated power spectral densities (PSDs)

of speech and noise. Straightforward incorporation of SPP

in the latter power spectral density (PSD) estimates, results

in a feedback which might increase false estimation and, in

severe cases, might cause the estimated SPP to converge to

one of its limits (either 0 or 1) without the ability to recover.

Among possible solutions to this problem (see [206], [207]

and [208]) are: 1) estimating the noise PSD independently of

the estimated SPP; 2) using a fixed a priori SNR and fixed

a priori SPP, independent of previous data-dependent SPP

estimates; 3) constraining the minimal and maximal values of

the SPP, and thus effectively limiting the period contaminated

by these errors; 4) incorporating spatial information on the

speaker in estimating the SPP (such as coherence [214] and

position [215], [216]). The latter spatial information can also

be utilized to classify the active speakers in a multiple speakers

scenario.

2) Estimating second order statistics: The noise covariance

matrix can be estimated by recursively averaging instantaneous

covariance matrices weighted according to the SPP:

Σ̂u (n, f) =λ′
u(n, f)Σ̂u (n− 1, f)

+ (1− λ′
u(n, f))x(n, f)x

H(n, f). (90)

where

λ′
u(n, f) , (1− p(n, f))λu + p(n, f) (91)

is a time-varying recursive averaging factor and λu is selected

such that its corresponding estimation period ( 1
1−λu

frames)

is shorter than the stationarity time of the noise. Alternatively,

a hard binary weighting, obtained by applying a threshold to

the SPP, can be used instead of the soft weighting.

Define the hypothesis that speaker j is present as Hsj (n, f),

and its corresponding a posteriori probability as pj(n, f) ,

P
{
Hsj (n, f)|x(n, f)

}
. Similarly to (90), the covariance ma-

trix of the spatial image of source j, denoted Σcj
(n, f) ,

σ2
sj (n, f)aj(f)a

H
j (f), can be estimated by

Σ̂cj
(n, f) = λ′

sj (n, f)Σ̂cj
(n− 1, f)

+ (1− λ′
sj (n, f))(x(n, f)x

H(n, f)− Σ̂u (n− 1, f))

(92)

where

λ′
sj (n, f) , (1− pj(n, f))λs + pj(n, f) (93)

is a time-varying recursive-averaging factor, and λs is selected

such that its corresponding estimation period ( 1
1−λs

frames) is

shorter than the coherence time of the AIRs of speaker j, i.e.

the time period over which the AIRs are assumed to be time-

invariant. Note that: 1) usually the estimation period is longer

than the speech nonstationarity time, therefore, although the

spatial structure of Σcj
(n, f) is maintained, the estimated

variance is an average of the speech variances over multiple

time periods; 2) the estimate Σ̂cj
(n, f) keeps its past value

when speaker j is absent.

Individual SPPs for each of the speakers can be approxi-

mated from their estimated positions [215]–[217]. Given that

any of the speakers is active (i.e. hypothesis Hs is true and

hence p(n, f) is high), and assuming that each time-frequency

bin is dominated by at most one speaker signal (i.e. the time-

frequency sparsity assumption), the a posteriori probabilities

are obtained by

pj(n, f) = p(n, f) · P
{
Hsj |x(n, f),Hs

}
. (94)

Next, assuming that source position is the sufficient statistics

embedded in x(n, f) for classifying the active source we

obtain:

pj(n, f) ≈p(n, f) · P
{
Hsj |r̂(n, f),Hs

}
(95)

where r̂(n, f) denotes position estimate of source active in

time-frequency bin (n, f). A plethora of methods exist for

estimating source positions, however, this topic is beyond the

scope of this overview paper. By adopting a Gaussian model
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for the error of the estimated position, and by applying Bayes

rule, the SPP in (95) can be reformulated as

pj(n, f) =p(n, f) ·
πs,jN

(
r̂|µr

j ,Σ
r
j

)

∑
j′ πs,j′N

(
r̂|µr

j′ ,Σ
r
j′

) (96)

where N denotes the Gaussian distribution and πs,j , µr
j , Σr

j

are the prior probability, the mean and the covariance matrix

of the position of speaker j, respectively, for j = 1, . . . , Jp.

The parameters Jp, πs,j , µr
j , Σr

j for all j are estimated by

an expectation-maximization (EM) algorithm. The individual

SPP estimates can also utilize DRR estimates [218] affected

by the proximity of the sources to the microphone array.

3) Estimating the relative transfer function: Two common

approaches for RTF estimation are the covariance subtraction

(CS) [154], [219] and the covariance whitening (CW) [137],

[220] methods. Here, for brevity we assume a single speaker

scenario. Both of these approaches rely on estimated noisy

speech and noise-only covariance matrices, i.e. Σ̂x and Σ̂u.

Given the estimated covariance matrices, CS estimates the

speaker RTF by

ãCS ,
1

iH1 (Σ̂x − Σ̂u)i1
(Σ̂x − Σ̂u)i1 (97)

where i1 = [ 1 01×I−1 ]T is an I × 1 selection vector

for extracting the component of the reference microphone,

here assumed to be the first micrphone. The CW approach

estimates the RTF by: 1) applying the generalized eigenvalue

decomposition (GEVD) to Σ̂x with Σ̂u as the whitening

matrix; 2) de-whitening the eigenvector corresponding to the

strongest eigenvalue, denoted ãu, namely Σ̂
−1

u ãu; 3) normal-

izing the de-whitened eigenvector by the reference microphone

component. Explicitly:

ãCW , (iH1 Σ̂
−1

u ãu)
−1Σ̂

−1

u ãu. (98)

A preliminary analysis and comparison of the CS and CW

methods can be found in [221].

Alternative methods utilize the speech nonstationarity prop-

erty, assuming that the noise has slow time-varying statistics.

In [69], the problem of estimating the RTF of microphone

i is formulated as a LS problem where the l-th equation

utilizes σ̂l
xix1

, the estimated cross-PSD of microphone i and

the reference microphone in the l-th time segment. This cross-

PSD satisfies:

σ̂l
xix1

= ãi(σ̂
l
x1
)2 + σ̂l

uix1
+ ǫli (99)

where we use the relation x = ãx1 + u. The unknowns are

ãi, i.e. the required RTF, and σ̂l
uix1

, which is a nuisance

parameter. ǫli denotes the error term of the l-th equation.

Multiple LS problems, one for each microphone, are solved

for estimating the vector RTF. Note that, the latter method,

also known as the nonstationarity-based RTF estimation, does

not require a prior estimate of the noise covariance, since

it simultaneously solves for RTF and the noise statistics.

Similarly, a weighted least squares (WLS) problem with

exponential weighting can be defined and implemented using

a recursive least squares (RLS) algorithm [138]. Considering

speech sparsity in the STFT domain, in [219] the SPPs were

incorporated into the weights of the WLS problem, resulting

in a more accurate solution. Sparsity of speech signals in

the frequency domain increases the convergence time of RTF

estimation methods, until sufficient signal energy is collected

in the entire band. In [60] time-domain sparsity of the RTF

is utilized for reducing convergence time, by interpolating

missing spectral components.

In [85], [87], the RTFs of multiple speakers are obtained by

clustering ILD and ITD information across all time-frequency

bins. This approach is refined in [71], [72] by detecting single-

source time intervals using a rank criterion, estimating the

RTFs or ATFs in each time interval, and clustering these

estimates to obtain a single estimate per source. A variant of

the latter technique is applied in [54] for anechoic mixtures.

A similar approach is applied in [86], [169] where mixtures

of STFT coefficients, normalized as in (10), are clustered. The

largest clusters are then used for obtaining the RTF estimates.

Beyond clustering, a second step of resolving permutation

across frequencies is required. In [222] the clustering and

permutation alignment are performed in a single step. In [223],

rather than clustering and classification, RTFs are estimated

based on instantaneous observation vectors projected to the

signals subspace constructed by smoothing past observation

vectors. An analysis and evaluation of ICA methods for RTF

estimation is available in [224].

C. EM, VB, and MM

In contrast with SPP-based approaches which independently

estimate the model parameters, some approaches jointly es-

timate all parameters according to some criterion. Among

them, early approaches to ICA were based on time-delayed

decorrelation [68], [225] or quadratic spatial contrasts [70],

[226], which inspired ML-based approaches [53], [227]. Many

approaches based on ML and alternative statistical estimation

criteria such as maximum a posteriori (MAP) and variational

Bayes (VB) have then been proposed [53], [110]–[113], [115],

[116], [159], [227]–[237]. In many cases, the resulting opti-

mization problems cannot be solved in closed-form. General

nonlinear optimization techniques such as gradient ascent or

the Newton method are impractical due to the large number

of parameters. The EM algorithm [238] is a popular opti-

mization method which iteratively breaks down the problem

into several smaller optimization problems involving subsets

of parameters, which are solved separately using closed-form

updates. Many variants of EM have been proposed which, e.g.,

break down the problem in a different way or use nonlinear

optimization techniques to solve each subproblem. We do not

detail all of them here but rather describe the main criteria

and illustrate them in the case of the LGM in Section III-E

and the binary activation model in Section V-E.

1) ML and MAP criteria: Let us denote by θ the set of

model parameters. When no prior information about the model

parameters is given, θ is often estimated in the ML sense as

θ̂ = argmax
θ∈Θ

p(X|θ). (100)
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The likelihood p(X|θ) can be expressed as

p(X|θ) =
∫

p(X|C,θ)p(C|θ)dC (101)

where X = {x(n, f)}nf and C = {cj(n, f)}jnf denote the

set of STFT coefficients of the mixture and the spatial images

of all sources, respectively. The set of possible parameter

values Θ may be the full parameter space or incorporate prior

knowledge by means of deterministic constraints as in [113],

[115].

For example, in the case of the LGM, θ may consist of the

spatial covariances and the source variances,

θ =
{
{Rj(f)}jf , {σ2

sj (n, f)}jnf
}
. (102)

The prior distribution of the source spatial images is given by

p(C|θ) = ∏jnf p(cj(n, f)|Σcj
(n, f)) in (18), and p(X|C,θ)

is the Dirac distribution corresponding to the mixing equa-

tion (2). The likelihood is then expressed as

p(X|θ) =
∏

nf

p(x(n, f)|Σx(n, f)) (103)

with Σx(n, f) =
∑J

j=1 Σcj
(n, f).

When some prior knowledge about the model parameters is

provided via a prior distribution, e.g., p(θ) =
∏

jf p(Rj(f))
with p(Rj(f)) given by (20), the MAP criterion may be used

instead:

θ̂ = argmax
θ

p(θ|X )

= argmax
θ

p(X|θ)p(θ). (104)

Note that in practice pγ(θ) is usually considered in the above

equation rather than p(θ) where the parameter γ controls the

strength of the prior [116]. Note also that the MAP criterion

generalizes the ML criterion, since (104) reduces to (100)

when a non-informative uniform prior p(θ) ∝ 1 is considered.

In the following, we therefore formulate the EM algorithm in

its most general form for the MAP criterion.

2) EM and GEM algorithms: Let

L(θ) , log[p(X|θ)p(θ)] (105)

be the logarithm of the MAP objective. In most cases maxi-

mizing L(θ) has no closed-form solution. An intuition behind

the EM algorithm is as follows. Given that L(θ) is difficult

to optimize, it is possible, for a range of models, to con-

sider a set of unknown data Z called latent data such that

replacing the observed data likelihood p(X|θ) in (105) by the

complete data likelihood p(X ,Z|θ) makes the optimization

much easier. Since the value of the latent data is unknown,

the complete data log-likelihood log p(X ,Z|θ) is replaced by

its expectation over Z given the current model parameters and

the measurements X .

More precisely the EM algorithm consists in iterating sev-

eral times the following two steps [238]:

• E-step: Compute an auxiliary function as

Q(θ,θ(l)) = EZ|X ,θ(l) log p(X ,Z|θ) + log p(θ). (106)

• M-step: Update the model parameters as the maximum

θ(1)
θ(2) θ(3)

L(θ)

Q̃(θ,θ(1))

Q̃(θ,θ(2))

Figure 9. Graphical illustration of the EM algorithm.

of the auxiliary function:

θ(l+1) = argmax
θ

Q(θ,θ(l)) (107)

where θ(l) denotes the estimated model parameters at the l-th
iteration of the algorithm. Let us add to the auxiliary function

Q(θ,θ′) an additional term that is independent on θ and thus

does not change its optimization in (107):

Q̃(θ,θ′) = Q(θ,θ′)− EZ|X ,θ′ log p(Z|X ,θ′). (108)

The auxiliary function Q̃(θ,θ′) is proven [238] to satisfy

Q̃(θ,θ′) ≤ L(θ) and Q̃(θ′,θ′) = L(θ′), (109)

i.e., it is a lower bound of L(θ) that is tight at the current

estimate θ′. These properties are enough to prove that the cost

function L(θ) is non-decreasing under the update (107), i.e.,

L(θ(l+1)) ≥ L(θ(l)). This can be intuitively understood from

the illustration in Fig. 9. As any other nonlinear optimization

strategy, the EM algorithm does not guarantee convergence to

a global maximum. Providing an appropriate initialization of

the parameters θ is therefore very important.

In the case when the M-step is not tractable in closed-

form, one can replace (107) by any update such that

Q(θ(l+1),θ(l)) ≥ Q(θ(l),θ(l)). This algorithm still guaran-

tees that L(θ) is non-decreasing over the iterations and is

referred to as generalized expectation-maximization (GEM)

algorithm [238]. These updates may result from gradient

ascent, the Newton method, or explicit optimization over a

discretized set, for instance [159], [239].

In the particular case when the complete data distribu-

tion belongs to the so-called exponential family of distri-

butions [238], [240], the EM or GEM algorithm can be

reformulated as computing the conditional expectation of the

sufficient statistics representing the distribution (E-step) and

maximizing the complete data posterior as a function of these

statistics (M-step). With Gaussian or discrete models, the

sufficient statistics are typically zeroth-, first-, and second-

order moments. For more details, see [238], [240]. Although
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this reformulation does not change the final algorithm, it can

simplify its derivation. Most EM algorithms considered in the

literature and all the EM algorithms considered here fall into

this particular case.

In summary, a particular EM algorithm and its output

depend on many factors such as the estimation criterion (ML

or MAP), the choice of latent data, the auxiliary function

update strategy in the case of the GEM algorithm, the param-

eter initialization, and the number of iterations. To illustrate

the variety of possible EM/GEM implementations, we detail

below three algorithms for the LGM in Section III-E and the

binary activation model in Section V-E which differ by the

choice of the latent data. We use the ML criterion (100) and

assume for simplicity that both the spatial covariance matrices

Rj(f) and the source variances σ2
sj (n, f) are unconstrained.

Adding deterministic or probabilistic constraints on Rj(f)
and/or σ2

sj (n, f) would only affect the M-step. For examples

of modified M-step updates resulting from such constraints,

see [115], [116] and [228], [232], [234], respectively. The

modifications to the M-step resulting from constraints on the

source variances are also briefly addressed in Section VII-C.

3) Source spatial image EM: Let us consider the LGM

in (18)–(19). A first approach [113] which is applicable when

Rj(f) is full-rank is to consider the source spatial images

cj(n, f) as latent data. One iteration of the resulting GEM

algorithm3 can be written as follows:

• E-step: Compute the expected sufficient statistics

ĉj(n, f) = WH
j (n, f)x(n, f) (110)

Σ̂cj
(n, f) = ĉj(n, f)ĉ

H
j (n, f) + (I−WH

j (n, f))Σcj
(n, f)

(111)

where I is the I × I identity matrix and Wj(n, f) is the

MWF defined in (63).

• M-step: Update the model parameters

Rj(f) =
1

N

N∑

n=1

1

σ2
sj (n, f)

Σ̂cj
(n, f) (112)

σ2
sj (n, f) =

1

I
tr(R−1

j (f)Σ̂cj
(n, f)) (113)

Note that spatial filtering is performed in (110) as part of the

E-step. This can be thought of as a feedback loop from spatial

filtering to parameter estimation, as illustrated in Fig. 1.

4) Subsource EM: A second approach [228] is based

on the observation that spatial covariance matrices Rj(f) of

arbitrary rank R can be non-uniquely represented as

Rj(f) = Aj(f)A
H
j (f) (114)

where Aj(f) is an I ×R complex-valued matrix. The source

spatial image cj(n, f) can then be expressed as

cj(n, f) = Aj(f)zj(f) (115)

where zj(n, f) = [zj1(n, f), . . . , zjR(n, f)]
T is an R×1 vec-

tor of subsource STFT coefficients. Assuming that zjr(n, f) is

Gaussian distributed with zero mean and variance σ2
sj (n, f) for

3This is indeed a GEM algorithm since a single iteration of the up-
dates (112) and (113) does not lead to the maximum of (107).

all r, it can be verified that the covariance of cj(n, f) equals

the expression in (19). By concatenating these quantities into

an I×RJ matrix A(f) = [A1(f), . . . ,AJ(f)] and an RJ×1
vector z(n, f) = [z1(n, f)

T , . . . , zJ(n, f)
T ]T and including

an additive noise term u(n, f)4, one can rewrite the mixing

equation as

x(n, f) = A(f)z(n, f) + u(n, f). (116)

This reformulation is therefore equivalent to the original LGM

formulation.

Considering the subsources z(n, f) as latent data, an EM

algorithm was derived in [228]. One iteration of this algorithm

can be written as:

• E-step: Compute the expected sufficient statistics

ẑ(n, f) = WH(n, f)x(n, f) (117)

Σ̂xz(n, f) = x(n, f)ẑH(n, f) (118)

Σ̂zz(n, f) = ẑ(n, f)ẑH(n, f)

+ (I−WH(n, f)A(f))Σz(n, f) (119)

where W(n, f) is the multi-output MWF defined in (37)

W(n, f) = Σ−1
x (n, f)A(f)Σz(n, f) (120)

with

Σx(n, f) = A(f)Σz(n, f)A
H(f) +Σu(f) (121)

Σz(n, f) = diag([σ2
sj (n, f), . . . , σ

2
sj (n, f)︸ ︷︷ ︸

R times

]Jj=1) (122)

• M-step: Update the model parameters

A(f) =

(
N∑

n=1

Σ̂xz(n, f)

)(
N∑

n=1

Σ̂zz(n, f)

)−1

(123)

σ2
sj (n, f) =

1

R

jR∑

k=(j−1)R+1

(
Σ̂zz(n, f)

)
kk

(124)

5) Binary activation EM: Let us now consider the binary

activation model in (64). As explained in Section V-E, given

the index j⋆(n, f) of the active source and the model parame-

ters θ, the optimal value of the predominant source s⋆j (n, f) is

obtained by the MVDR beamformer. The log-likelihood then

simplifies to

L(θ) =
∑

nf

− log det(πΣu(f))− xH(n, f)Σ−1
u (f)x(n, f)

+
|a⋆H

j (f)Σ−1
u (f)x(n, f)|2

a⋆H
j (f)Σ−1

u (f)a⋆j (f)
(125)

Considering the indexes j⋆(n, f) of the active sources as latent

data, the following EM algorithm can be derived:

• E-step: Compute the posterior probability of j⋆(n, f)

4This additive noise term is necessary here, otherwise the complete data
likelihood becomes singular and A(f) remains stuck to its initial value [112].
In practice, the covariance of u(n, f) is assumed to be diagonal Σu(f) =
σ2
u(f)I and it is decreased over the iterations in an annealing fashion.
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γj(m, k) ∝ exp

(
|aHj (f)Σ−1

u (f)x(n, f)|2
aHj (f)Σ−1

u (f)aj(f)

)
(126)

• M-step: Update the model parameters

aj(f) =

∑N
n=1 γj(n, f)s

∗
j (n, f)x(n, f)∑N

n=1 γj(n, f)|sj(n, f)|2
(127)

Σu(f) =
1

N

J∑

j=1

N∑

n=1

γj(n, f)(x(n, f)− aj(f) sj(n, f))

(x(n, f)− aj(f) sj(n, f))
H (128)

with sj(n, f) updated by MVDR beamforming (43) given

aj(f) and Σu(f).

All the above EM algorithms are usually referred to as batch

algorithms, since they are exploiting all the signal samples at

once. In contrast, algorithms exploiting only the current and

previous audio samples are referred as online, and they become

crucial for many practical applications such as, e.g. real-time

signal separation on a portable device. Online variants of these

algorithms were considered in [241], [242] based on the theory

in [243]–[245]. These approaches rely either on computing

expectations of sufficient statistics by averaging them over

time with some forgetting factor [241] and/or by recomputing

them from the most recent block of time frames [242]. Online

EM algorithms for related problems were also introduced

in [246], [247].

6) VB criterion and algorithm: In contrast to ML/MAP, the

VB criterion [248] does not rely on finding a point estimate

of the model parameters θ, but consists in computing directly

the posterior distribution of the source STFT coefficients while

marginalizing over all possible model parameters:

p(C|X ) =

∫
p(C,θ|X )dθ. (129)

This leads to more accurate estimation, since the point estimate

θ̂, as in the ML and MAP criteria (100), (104), is replaced by

its posterior distribution p(θ|X ).

The computation of the integral in (129) is intractable. To

overcome this difficulty, variational approximations [248] are

usually applied. They consist in replacing the true posterior

distribution p(C,θ|X ) by a factored approximation q(C,θ) =
q(C)q(θ) [237]. The integral is then simply computed as

p(C|X ) ≈ q(C). The optimal factored approximation is ob-

tained by minimizing the Kullback-Leibler (KL) divergence

with the true distribution:

argmin
q

KL(q(C,θ)‖p(C,θ|X ))

= argmax
q

∫
q(C,θ) log p(C,θ|X )

q(C,θ) dCdθ (130)

A VB algorithm that iteratively optimizes this objective

was proposed in [231], [237] for the LGM. This algorithm is

similar to EM except for the following difference: while EM

alternatively estimates the posterior distribution of the latent

data and the parameter values θ̂, VB alternatively estimates

the posterior distribution of the latent data and the posterior

distribution q(θ) of the parameters. The latter approach is less

sensitive to local maxima and overfitting in theory. Finally,

note that variational approximations are not only used to opti-

mize the VB criterion, but also can be employed to reduce the

computational complexity of a classical EM algorithm [105].

7) MM algorithms: EM is a special case of a more gen-

eral optimization strategy named minorization-maximization

(MM) [249]. The MM principle consists in iteratively con-

structing and maximizing an auxiliary function Q(θ,θ′) that

is required to satisfy (109). However, in contrast to the

EM algorithm, the auxiliary function does not need to be

constructed as in (106). As such, the MM algorithm leads to

a broader family of updates than EM/GEM and it can even be

applied to other estimation criteria than ML, MAP or VB. In

particular, it was applied to rank-1 and full-rank LGM in [115],

[168], [188], [232].

D. Other nonconvex optimization algorithms

The algorithms we have seen so far are applicable to

energy-based estimation criteria or Gaussian models, which

translate into estimating the second-order statistics of the

signals. Nongaussianity-based ICA and its extensions such

as TRINICON and IVA (see Sections V-E2 and V-E3) stand

apart: due to the assumed continuous sparse distribution, the

resulting beamformers cannot be expressed in terms of the

second-order statistics of the signals and they cannot even

be computed in closed-form. General nonlinear optimization

algorithms such as gradient ascent must then be employed.

In practice, the data is first whitened and one then searches

for a unitary demixing matrix using so-called natural gradient

ascent [165], [171], [177], [178], [184]. The same problem

arises with SCA for under-determined mixtures, which re-

quires the minimization of the ℓp norm or the mixed ℓp,q
norm of complex-valued data. For general p and q, gradient

descent and pseudo-Netwon techniques were used in [164],

[182]. For p, q ∈ {1, 2}, sparse decomposition algorithms

based on proximal gradient [61], [63], reweighted ℓ1 [183],

or greedy methods such as basis pursuit [169] are generally

preferred.

VII. POSTFILTERING, MASKING AND JOINT

SPATIAL-SPECTRAL ESTIMATION

The performance of certain beamformers is limited when

the undesired signals are not point sources or when there are

too many interfering sources. Moreover, some beamformers

suffer from the existence of nonstationary interference, due

to the larger observation time required to estimate signal

statistics. Single-channel enhancement methods can achieve

nonlinear spatial and/or spectral filtering and usually adapt

much faster to changes in the interference characteristics.

In this section, we explore the use of such algorithms as

postfilters applied at the output of the beamformers [27].

We then proceed by presenting single microphone separa-

tion algorithms utilizing spatial information and conclude

in presenting joint spatial-spectral estimators. Beamformers

with a subsequent postfiltering stage, utilizing both spatial

and spectral information, adopt some of the single-channel

speech separation methodologies, and therefore usually lead
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to improved performance as compared with both multichannel

and single-channel algorithms. Note, that some of the modern

multichannel techniques, reviewed in this paper, are utilizing

the entire reflection pattern of the speech propagation rather

than resorting to DOA-based steering vector, and are therefore

capable of separation sources with identical DOA.

A. Postfiltering

The SDW-MWF was defined in (42) and its definition is

repeated here for readability:

wSDW-MWF =
σ2
s1Σ

−1
u a1

µ+ σ2
s1a

H
1 Σ−1

u a1
q.

By selecting the desired response as q = a∗11 the desired

component at the beamformer output becomes a11s1.

Using the Woodbury identity [152] we can decompose the

SDW-MWF, with the predefined q, into:

wSDW-MWF =
Σ−1

u ã1

ãH1 Σ−1
u ã1︸ ︷︷ ︸

wMVDR-RTF

× σ2
ds

σ2
ds

+ µσ2
du︸ ︷︷ ︸

wSDW-SWF

(131)

where wMVDR-RTF is the MVDR beamformer using the RTF

vector and wSDW-SWF is a single-channel postfilter. Further

define, σ2
ds

= σ2
s1 |a11|2 as the power of desired speech

component at the output of the MVDR-RTF beamformer and

σ2
du

= wH
MVDR-RTFΣuwMVDR-RTF as the respective noise power.

This decomposition [92], [143] constitutes the motivation for

applying a linear postfilter (speech distortion weighted single-

channel Wiener filter (SDW-SWF) in this case) at the output

of an MVDR beamformer.

A plethora of postfilters can be found in the literature,

differing in the procedures for estimating the speech and noise

statistics.

Zelinski [250] proposed the following procedure, assuming

that the MVDR is distortionless5, namely σ2
ds

= σ2
s1 . He

further assumed that the noise is spatially-white6, namely

Σu = σ2
uI. Under these assumptions the cross-PSD between

microphones i 6= i′ is given by σxixi′
= σ2

s1 and the PSD of

the microphone signals is given by σ2
xi

= σ2
s1+σ2

u. Both PSDs

can be recursively estimated from the microphone signals. The

Zelinski postfilter is finally given by

wZel =

2
I(I−1)

∑I−1
i=1

∑I
i′=i+1 ℜ(σ̂xixi′

)

1
I

∑I
i=1 σ̂

2
xi

. (132)

with ℜ(·) the real part of a complex number, applied here

to ensure real-values speech-PSD estimation. It was proposed

in [251] to substitute the Wiener filter proposed by Zelinski, by

a combined spectral subtraction and Wiener postfilter. These

structures were further analyzed and improved in [252].

McCowan and Bourlard [142] substituted the spatially-white

noise field assumption by a diffuse noise field assumption

instead. Hence, σuiui′
= σ2

uΩii′ where Ωii′ is given in (5).

The auto- and cross-PSDs of the microphone signals are now

5Zelinski assumed a simple free-field propagation and hence the RTFs
degenerate to delay-only filters.

6In this case the MVDR actually degenerates to the DS beamformer.

given by σxixi′
= σ2

s1+σ2
uΩii′ , i 6= i′, and σ2

xi
= σ2

s1+σ2
u, re-

spectively. With these definitions, the McCowan and Bourlard

postfilter is given by

wMB =

2
I(I−1)

∑I−1
i=1

∑I
i′=i+1 σ̂sisi′

1
I

∑I
i=1 σ̂

2
xi

(133)

where

σ̂sisi′ =
ℜ(σ̂xixi′

)− 1
2ℜ(Ωii′)(σ̂

2
xi

+ σ̂2
xi′

)

1−ℜ(Ωii′)
.

Both postfilters [142], [250] use overestimated noise PSD,

since they use the input signals rather than the beamformer

output for the estimation. An improved postfilter is proposed

by Leukimmiatis et al. [253]:

wLeuk =
σ̂2
s1

σ̂2
s1 + σ̂2

uw
H
MVDRΩwMVDR

(134)

with

σ̂uiui′
=

1
2 (σ̂

2
xi

+ σ̂2
xi′

)−ℜ(σ̂xixi′
)

1−ℜ(Ωii′)

σ̂2
u =

2

I(I − 1)

I−1∑

i=1

I∑

i′=i+1

σ̂uiui′
.

A generalized formulation of these postfilters and an EM-

based ML estimation procedure a proposed in [235].

A mathematical justification for applying nonlinear postfil-

tering (provided that it can be stated as an MMSE estimator

of a nonlinear function of the desired signal) is given in [254]

(see also related discussion in [118]). Assuming that the

desired source and the noise signals are jointly complex-

Gaussian, the conditional probability of x given s1 may be

expressed as:

p(x|s1;σ2
s1 ,Σu,a1) =

1

det (πΣu)
exp

{
−(x− a1s1)

HΣ−1
u (x− a1s1)

}
(135)

it can be shown that a sufficient statistics (in the Bayesian

sense) for estimating s1 in MMSE sense is the output of the

MVDR beamformer:

p(ρ(s1)|x;σ2
s1 ,Σu,a1) = p(ρ(s1)|wH

MVDRx;σ
2
s1 ,Σu,a1)

(136)

where ρ(·) is some nonlinear function. This relation states

that the MMSE estimator of ρ(s1) given the microphone

signals can be evaluated by applying the MVDR beamformer

to the microphone signals and subsequently applying a single-

channel postfilter to its output. By setting ρ(·) to the unity

function we simply get the result in (131) that the MWF can

be decomposed as an MVDR followed by a single channel

Wiener filter. By setting ρ(·) to the absolute value function we

obtain the Ephraim and Malah short-time spectral amplitude

estimator [210], and by setting ρ(·) to the logarithm of the

absolute value the Ephraim and Malah log-spectral amplitude

estimator [255] is obtained. This property of the estimator

constitutes the justification of applying any proper postfilter

to the output of the MVDR beamformer.
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[201]

Figure 10. Postfilter incorporating spatial information [256], [257].

A multichannel speech enhancement method comprising

an MVDR (implemented in a GSC structure [69]) followed

by a modified version of the log-spectral amplitude estima-

tor [211] (OMLSA) is presented in [256], [257]. As depicted

in Fig. 10, the required SPP is estimated by incorporating

spatial information through the GSC structure. In brief, devi-

ation from stationarity is calculated for both the FBF and BM

outputs. A larger change in the lower branch power indicates

a change in noise statistics, while a larger measure of non-

stationarity at the upper branch indicates speech occurrences.

This information can be utilized to enhance the performance

of the single-channel speech enhancement algorithm that now

incorporates the more reliable spatial information. Moreover,

the SPP decisions can be fed back to the beamformer to better

control its adaptation. Hence, if non-speech segments are

detected, the NC can be updated and if speech is detected, the

RTF estimator can be updated, allowing for source tracking.

A statistical analysis of two-channel postfilter estimators in

isotropic noise field can be found in [258]. Other nonlinear

postfilters can be found in [78], [259], [260]. The under-

determined case, with more sources than microphones, is

addressed in [261].

B. Separation by Single-Microphone Masking using Spatial

Information

In this section, we explore separation methods that do not

apply spatial filtering, but rather apply single microphone

separation techniques, usually based on binary masking, that

utilize multichannel information. The use of binary masking

imitates the perceptual effect of masking in the human auditory

system [158]. Furthermore, as speech signals tend to be W-

disjoint orthogonal in the STFT domain [85], [262], it can

be assumed that each time-frequency bin is solely dominated

by a single speaker. It is therefore possible to separate the

sources by clustering the time-frequency bins and applying a

binary mask. The importance of the ideal binary mask as a

goal for CASA is summarized in [263]. For further discussion

on methods that exploit speech sparsity the reader is referred

to Section V-E.

Since first proposed in the early 2000’s [85], [158], many

algorithms, adopting the masking paradigm, have been pro-

posed. These contributions differ in several aspects: 1) the

features used; 2) the clustering procedures; and 3) the type

of masking applied. In this section, we will briefly describe

the various components of separation by masking using spatial

information.

1) Feature Vectors: Masking-based speaker separation al-

gorithms are usually implemented using dual microphone

structures, imitating the binaural hearing. The first stage of

any separation algorithm, based on clustering, is the feature

extraction. ITD, ILD, or a combination thereof, are the most

widely used features [158], [264]–[266]. Other popular fea-

tures are the absolute value and phase the ratios of the two

microphone signals in the STFT domain [85], [262], [267],

[268], TDOA [269], and single-channel cues (pitch) [270].

2) Classification and Clustering Procedures: A key point in

the application of the masking is to assign each time-frequency

bin of the mixture to the corresponding speaker. Supervised

classification is adopted in [158] using hypothesis testing.

In [271], time-frequency bins of the interference source are

identified using a BM in a GSC structure trained during speech

absence periods. In [266], a mapping between source locations

and binaural cues is trained and an inverse mapping is inferred

by applying the variational expectation-maximization (VEM)

approach.

In [85], [262] an unsupervised clustering approach is

adopted, where speakers are clustered according to their

different propagation filters (attenuation and delay). In [81]

these parameters are estimated by minimizing a cost function

resulting in time-frequency bin clustering. Finally, popular

clustering techniques, e.g. k-means [80] and Gaussian mixture

model (GMM)-EM [264], [268] are widely used in the context

of time-frequency bin clustering. For further details on EM-

based speech separation methods the reader is referred to

Section VI-C.

3) Masking: The last stage in the separation is the ap-

plication of the mask to separate the various sources. The

number of sources can be larger than the number of micro-

phones (undetermined case), but the W-disjoint orthogonality

assumption is violated if the number of speakers increases (the

percentage of time-frequency bins satisfying this assumption

is analyzed in [85], where it is shown to drop below 80% for

more than 5 speakers). In most algorithms a binary mask is

applied. In [265], a soft mask is proposed based on a mapping

between the ITD values and the relative contribution of the

target source.
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C. Joint spatial-spectral estimation

Following early studies in [105], [272], many recent speech

enhancement and source separation approaches now rely on

joint modeling and exploitation of spatial and spectral in-

formation [112], [115], [183], [228], [229], [233], [242],

[273]–[275]. Spatial information is usually represented by

spatial models such as those detailed throughout this review.

Spectral information relating to the source time-frequency

characteristics is modeled for example by constraining the

source spectrograms to be low-rank, sparse, and/or to have an

excitation-filter structure. Joint modeling of these two types

of information potentially improves parameter estimation and

subsequent enhancement performance, since spectral informa-

tion can improve the estimation of the spatial parameters and

vice-versa. It also helps solving certain limitations of purely

spatial models, such as permutation ambiguity.

The spectral models employed for joint spatial-spectral

multichannel estimation are often similar to the spectral mod-

els used for single-channel source separation. These models

include, but are not restricted to, autoregressive (AR) mod-

els [276]–[278], pitch models [273], [274], GMMs [105],

[233], hidden Markov models (HMMs) [279], and nonneg-

ative matrix factorization (NMF) [112], [115], [229], [242],

[275]. Due to the flexibility of statistical approaches, spectral

models allowing statistical formulations are usually easier to

integrate within a joint spatial-spectral estimation framework.

The choice of a particular model depends on the type of

sources to be separated [280]. As such, a general statistical

source separation framework was proposed in [228], which

allows to combine in a principled way appropriate spatial-

spectral models for different sources.

NMF is one of the most popular spectral models for audio

source separation [26], [281]. As illustrated in Fig. 11, it

approximates a nonnegative source power spectrogram as a

product of two nonnegative matrices. One can see from the

figure that this decomposition allows for a good approximation

of a speech signal while using only a few parameters. We

provide below an example of a joint spatial-spectral estimation

corresponding to the ML criterion (100) with each source j
described by a full-rank unconstrained spatial model Rj(f)
and source variances σ2

sj (n, f) modeled by NMF as

σ2
sj (n, f) =

∑Kj

k=1
bjk(f)hjk(n) (137)

with bjk(f) the basis spectra and hjk(n) the time activa-

tions [112], [275], [281]. The set of parameters to be estimated

is θ = {{Rj(f)}f , {bjk(f)}f,k, {hjk(n)}k,n}j . This can be

achieved by the following GEM algorithm [242] (one iteration

is given below):

• E-step: Compute expected sufficient statistics ĉj(n, f)

and Σ̂cj
(n, f) as in (110) and (111).

• M-step: Update Rj(f) as in (112), and update bjk(f)
and hjk(n) via multiplicative update (MU) rules [281]

Vj

≈

×

Bj Hj

|Sj |2

=

=

Figure 11. NMF structuring of source variances σ2
sj
(n, f) as in (137)

can be represented as a factorization of F × N nonnegative matrix Vj ,

[σ2
sj
(n, f)]n,f into a product of F ×Kj and Kj ×N (here Kj = 8) non-

negative matrices Bj , [bjk(f)]f,k and Hj , [hjk(n)]k,n, respectively.
This decomposition is applied to every source (here, a speech signal), not to
the mixture.

as:

bjk(f) = bjk(f)

∑
n σ

−4
sj (n, f)σ̂2

sj (n, f)hjk(n)∑
n σ

−2
sj (n, f)hjk(n)

(138)

hjk(n) = hjk(n)

∑
f σ

−4
sj (n, f))σ̂2

sj (n, f)bjk(f)∑
f σ

−2
sj (n, f)bjk(f)

(139)

where σ̂2
sj (n, f) is computed as in (113).

Note again that the E-step involves spatial filtering and postfil-

tering (or, more precisely, joint spatial-spectral filtering (110))

which allows feedback to the parameter estimation. Indeed,

the spectral parameters estimated in the previous iteration

affect the spatial parameters estimated in the current iteration

via ĉj(n, f) and Σ̂cj
(n, f). Note also that the multiplicative

updates (138)–(139) differ from those of single-channel NMF

by the fact that they are applied to the estimated power

spectrum of each source σ̂2
sj (n, f) instead of to the observed

power spectrum of the mixture. Recently, this algorithm was

extended to VB estimation in [231], [237] and in [74], [282]

(also considering dynamic scenarios).

VIII. RESOURCES AND RESULTS

Over the years, the above speech enhancement and source

separation techniques have led to a number of software tools,

which are referenced on repositories such as LVA Central7 and

the wiki of ISCA’s Special Interest Group on Robust Speech

7http://lvacentral.inria.fr/
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Table II
SOME AIR DATASETS.
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RWCP [283]9 364 84 7 1 9 no no

SiSEC [284]10
∼50 2 5 1 ∼20 no no

AIR [41]11 214 2 8 1 13 no no

Binaural RIR [285]12 2920 8 5 1 365 yes yes

CAMIL [266]13 32400 2 1 16200 1 yes no

CHiME2 [286]14 242 2 1 1 121 yes yes

RIRDB [287]15 1872 24 3 3 26 no no

Processing8. In the following, we provide a non-exhaustive

list of popular resources, databases and results, which will be

useful for readers to get an idea of the typical performance

that may be achieved and to start their own work in the field.

A. Datasets

A first approach to evaluation is to generate the test signals

by convolving clean speech signals with AIRs as in (3),

summing them together as in (2), and possibly adding real

recorded noise. This makes it possible to control the source

positions and the room characteristics, which is useful in a

development stage. Table II lists a few AIR datasets. Each has

its own advantages, depending whether one is interested in a

variety of environments, in a large number of microphones,

in various speaker-microphone geometries, or in real noise.

A variant of this approach which enables even more precise

control of the setup is to use artificial AIRs [288], [289]

simulated using, e.g., Roomsim [290]16 or Room genera-

tor17 and the respective spherical harmonic domain variant

SMIRgen [291]18. Alternatively, one might record each source

separately and then sum all source images together [284],

[292]. The series of Signal Separation Evaluation Campaigns

(SiSEC) has shown that these three variants lead to comparable

separation quality [284]. Although they are often applied to

non-moving sources only, the generation of source movements

by AIR interpolation has recenty been justified in [286] and

8https://wiki.inria.fr/rosp/
9http://research.nii.ac.jp/src/en/RWCP-SSD.html
10https://sisec.inria.fr/
11http://www.ind.rwth-aachen.de/de/forschung/tools-downloads/aachen-

impulse-response-database/
12http://medi.uni-oldenburg.de/hrir/
13https://team.inria.fr/perception/category/data/
14http://spandh.dcs.shef.ac.uk/chime challenge/chime2013/
15http://www.eng.biu.ac.il/˜gannot/RIR DATABASE
16http://sourceforge.net/projects/roomsim/
17http://www.audiolabs-erlangen.de/fau/professor/habets/software/rir-

generator
18http://www.audiolabs-erlangen.de/fau/professor/habets/software/smir-

generator

Table III
SOME REAL MULTICHANNEL AUDIO DATASETS, FROM [293].
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Aurora-321 car ∼20 4 1 static no

AMI [294]22 meeting 100 16 3 static yes

DICIT [295]23 TV order 6 16 1 moving no

COSINE [296]24 discuss. 38 20 8 moving yes

SWC [5]25 game 7 92 1 moving yes

CHiME3 [297]26 tablet 19 6 4 moving babble

Table IV
EVALUATION SOFTWARE.

Name Implemented metrics

PESQ [299] perceptual speech quality (PESQ)

PEMO-Q [300] perceptual similarity metric (PSM)

STOI [301]27 short-time objective intelligibility (STOI)

Loizou’s [11]28

segmental signal-to-noise ratio
log-likelihood ratio
cepstrum distance
composite measure

BSS Eval [38]29
signal-to-distortion ratio (SDR)
signal-to-interference ratio (SIR)
signal-to-artifacts ratio (SAR)

PEASS [302]30

overall perceptual score (OPS)
target-related perceptual score (TPS)
interference-rel. perceptual score (IPS)
artifacts-related perceptual score (APS)

implemented in Roomsimove19 and Signal generator20.

A second approach is to consider real recorded (and mixed)

signals. This is useful in a test stage, but it makes it harder to

evaluate the results due to the fact that the true source signals

are unknown. Table III lists some datasets for which the target

speakers have been recorded by a close-talk microphone so as

to provide approximate ground truth. Once again, each dataset

has its own advantages, depending whether one is interested in

a particular use case, in the amount of data, in the number of

microphones, or in the presence of speech overlap. For more

details and more datasets, see [293]. The use of mobile robots

has recently been proposed as a promising approach towards

recording larger real datasets [298].

For either approach, the enhancement and separation qual-

19http://www.loria.fr/˜evincent/Roomsimove.zip
20http://www.audiolabs-erlangen.de/fau/professor/habets/software/signal-

generator
21http://catalog.elra.info/index.php?cPath=37 40
22http://groups.inf.ed.ac.uk/ami/
23http://shine.fbk.eu/resources/dicit-acoustic-woz-data
24http://melodi.ee.washington.edu/cosine/
25http://mini.dcs.shef.ac.uk/data-2/
26http://spandh.dcs.shef.ac.uk/chime challenge/
27http://amtoolbox.sourceforge.net/doc/speech/taal2011.php
28http://www.crcpress.com/product/isbn/9781466504219
29http://bass-db.gforge.inria.fr/bss eval/
30http://bass-db.gforge.inria.fr/peass/
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ity can be evaluated by conducting subjective listening

tests [302]–[304] or by comparing the estimated source signals

with the true source signals using objective performance

metrics. Table IV lists a few metrics. According to the study

in [302], the frequency-weighted segmental SNR, the compos-

ite metric in [11] and the OPS metric of PEASS [302] exhibit

the highest correlation with subjective assessment of overall

quality.

B. Results

Some attempts were carried out to compare different source

separation methods e.g. [284], [305], beamforming methods

e.g. [306], and source separation methods vs. beamforming

methods [307]. Most of the efforts were carried out in the

source separation research community, where six international

Signal Separation Evaluation Campaigns (SiSEC) have been

run since 2007 [284], [308]–[313]. This allows an objective

comparison of different source separation approaches on the

same data. Moreover, several source separation methods were

used as pre-processing for speech recognition within a series of

speech separation and recognition challenges [305]. It was also

proposed to objectively evaluate the performance measures

of the corresponding source separation methods through the

SiSEC campaigns [284].

As for beamforming methods, to the best of our knowledge,

there is neither an evaluation campaign nor an evaluation paper

comparing the performance of many different beamformers

with objective performance metrics. Some studies [306] eval-

uate different beamformers as pre-processors for a speech rec-

ognizer via speech recognition performance metrics. However,

since the task used for this evaluation is different from the

primary goal of beamforming, it is difficult to conclude from

these studies about the performance of the beamformers. In

the coming years it is expected that an evaluation campaign

will become available in the beamforming community as well.

Finally, the study in [307] compared some source separation

methods with some beamforming methods. These methods are

evaluated for separation of one or two target speech sources

from a diffuse background noise.

Hereafter we summarize some results from SiSEC cam-

paigns that are relevant for this review. An overview and

comparative analysis of SASSEC [308], SiSEC 2008 [309]

and SiSEC 2010 [310] can be found in [284]. Table V sum-

marizes the results of five SiSEC campaigns for the “Under-

determined speech and music mixtures” task over the same

dataries that were reused from one campaign to another. The

SASSEC campaign [308] is not considered here, since it used

a different dataset. We also excluded instantaneous mixtures

(only convolutive mixtures are considered) since they are not

realistic, as well as music sources (only speech sources are

considered) since they are out of the scope of this review.

Finally, we excluded the results of partial source separation

submissions, i.e. when the corresponding dataset was not

processed entirely, since comparing such average results with

others is meaningless. As such, the figures in Table V do not

coincide in general with the figures from the corresponding

SiSEC papers. Details about the considered dataries may be

found in the SiSEC papers and the corresponding web pages.

We here, very briefly, recall their main characteristics (we use

the dataset names from the original campaigns):

• test: synthetic or live recorded31 mixtures; 2 microphones

with 1 m or 5 cm spacing; 3 or 4 sources; 0.13 s or 0.25 s

RT.

• test2: synthetic mixtures; 2 microphones with 20 cm or

4 cm spacing; ; 3 or 4 sources; 0.13 s or 0.38 s RT.

• test3: synthetic mixtures; 3 microphones with 50 cm or

5 cm spacing; 4 sources; 0.13 s or 0.38 s RT.

One can draw the following conclusions from the results in

Table V. First, separating the live recorded mixtures does not

seem to be more difficult than separating the synthetic ones.

Second, the performance of the algorithms does not always

increase from one campaign to another. This may be explained

by the fact that the participants do not usually resubmit the

method they have already tried in previous campaigns. Third,

none of the methods can overcome the performance ceiling of

5.5 dB SDR and 40 OPS. Finally, one can notice that the two

evaluation metrics may behave very differently (see, e.g. the

results of two submissions for SiSEC 2011 in Table V).

IX. SUMMARY AND PERSPECTIVES

This section concludes this survey article. First, we discuss

the two major algorithmic families introduced in this survey,

namely microphone array processing and BSS and their dif-

ferences and similarities. Then, we provide some guidelines

on the selection of the proper algorithm, based on the acoustic

scenario and available resources. We conclude this section and

the entire article by reviewing some current and future trends

in the field.

A. Microphone array processing and BSS: Differences and

similarities

Two main paradigms for speech enhancement and source

separation were explored in this survey, namely microphone

array processing and BSS. We claim here that recent trends

are showing that these two paradigms are converging by

borrowing ideas from each other.

Concerning the signal models, array processing methods

traditionally utilized the spatial resolution of the array as a

function of the DOA while BSS methods were originally

designed for instantaneous mixtures (no delay, echoes or

reverberation). It was then proposed, in the field of array

processing, to substitute the simple DOA-based propagation

model by ATFs and RTFs [66], [69]. In parallel, BSS methods

developed from instantaneous mixtures to convolutive mix-

tures also modeled by ATFs and RTFs [67], [321]. Under this

31For the synthetic mixtures the source images are artificially produced by
convolving the sources with the corresponding AIRs. For the live recorded
mixtures the source images are physically recorded. In both cases the mixtures
are produced synthetically by adding the corresponding source images.

32http://sisec2008.wiki.irisa.fr/
33http://sisec2010.wiki.irisa.fr/
34http://sisec2011.wiki.irisa.fr/
35http://sisec2013.wiki.irisa.fr/
36http://sisec.inria.fr/
37The system is an extended version of the reference.
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Table V
SISEC 2008 - 2015 RESULTS FOR CONVOLUTIVE SPEECH MIXTURES OF “UNDER-DETERMINED SPEECH AND MUSIC MIXTURES” TASK. GRAY CELLS

MEAN THAT EITHER THE DATASET OR THE EVALUATION METRIC WAS NOT CONSIDERED DURING THE CORRESPONDING EVALUATION CAMPAIGN, “-”
SIGN MEANS THAT THE CORRESPONDING DATASET WAS NOT PROCESSED ENTIRELY, AND THE HIGHEST SCORES ARE IN BOLD.

SiSEC Authors of submission Method
Average of SDR metric [38] Average of OPS metric [302]

test test2 test3 test test2 test3

Syn. Live Syn. Syn. Syn. Live Syn. Syn.

2008 [309]32
Mandel [314] 1.14 1.91
Weiss [315] 1.46 2.26
El Chami [316] 3.02 2.95

2010 [310]33 Ozerov, Nesta and Vincent [228]37 1.77 2.66 1.72 21.2 37.9 26.8
Sawada [317] 4.89 5.18 3.77 20.7 27.9 17.8

2011 [311]34

Cho [318] 3.09 2.54 1.19 26.6 26.3 29.7

Nesta (1) [319]37 4.60 4.00 - 35.8 33.6 -
Nesta (2) [319] 5.30 4.38 - 38.5 36.5 -

Ozerov and Vincent [228]37 3.30 2.13 - 32.7 29.5 -
Sawada [181] - - 5.28 - - 31.1

2013 [312]35 Cho [320] 5.29 4.69 5.24 31.1 30.5 34.75

Adiloglu, Kayser and Wang [228], [231]37 2.70 0.75 3.23 30.0 23.3 35.22

2015 [313]36 Nguyen [181]37 5.06 4.01 4.27 36.2 32.6 35.55

perspective, there is no distinction between the two paradigms

anymore. As a matter of fact, their equivalence was already

observed in an early stage [322].

Concerning the spatial filter design criteria, array processing

techniques traditionally rely on second-order statistics, while

BSS techniques can either apply second- or higher-order

statistics. However, this distinction is not always applicable.

In [323] higher-order statistics were utilized to estimate the

steering vectors of a beamformer. A structure, reminiscent of

the GSC implementation, that utilizes higher-order statistics

was proposed in [324], where the signals are first separated by

applying a BSS method, then sorted according to their kurtosis,

and finally the desired speech is further enhanced by means of

an adaptive noise canceller. More recently, information theo-

retic criteria based on the TRINICON framework [184] were

incorporated into an LCMV beamformer [325]. Conversely,

the most widely-used BSS methods today rely on second-order

statistics, as popularized by [110]–[112], [227].

Geometry-based information (e.g. microphone distances and

DOA) is usually exploited by array processing. It can however

also be incorporated into BSS criteria [70], [90], [326]. The

use of priors [116], [182] breaks the “blindness” of BSS meth-

ods even further. Conversely, some array processing methods,

e.g. [69], [151], are not using any spatial priors but rather rely

on a specific activity pattern.

Concerning the application of the methods, the array pro-

cessing paradigm traditionally addressed speech detection,

parameter estimation and signal separation successively, while

the BSS paradigm addressed them in parallel. This line is

becoming blurred too, as certain BSS techniques relies on suc-

cessive estimation [72], [85] while joint parameter estimation

has been used [276], [277] and is becoming more popular in

the array processing community [246], [247].

The scenario of several concurrently speaking speakers

is well-studied in the BSS area, but more cumbersome in

array processing. It was shown in [137] (and extended later

in [95]), that the RTFs of the entire group of desired and

the entire group of interference sources can be estimated,

provided that the group activities do not overlap during the

estimation period. These RTFs estimators are then utilized

to construct a subspace-based LCMV beamformer. Recent

contributions [90], [327] circumvent the requirement for dis-

joint activity of the desired and interference groups of sig-

nals, by incorporating concepts from the BSS paradigm into

the beamformer design. Other array processing methods for

multiple concurrent sources involve hypothesis testing for the

activity of the sources in T-F bins, before applying the optimal

beamformer [216], [233], [328].

Finally, classical beamformers do not handle under-

determined problems. However, with the utilization of speech

sparsity this becomes feasible for both paradigms [80], [150],

[329].

We can therefore conclude that the array processing and

BSS paradigms share many underling concepts, and will

eventually converge to a point in which they will become

indistinguishable.

B. Guidelines

We have surveyed a plethora of algorithms and methods

for speech enhancement and separation. In this section we

will not attempt to pick up the “best” algorithm, but rather

give guidelines for selecting the most appropriate class of

algorithms for a given scenario.

1) Number of sources and microphones: If there is only one

source in noise, the natural choice would be the MWF/MVDR

family of beamformers. If multiple sources of interest exist

(either desired or interference) but their number remains

smaller than the number of microphones, then LCMV beam-

formers or BSS methods can be considered. If the number of

microphones is smaller than the number of sources of interest

(under-determined problem), then the speech sparsity should

be utilized, usually in conjunction with BSS methods, but also

with modern beamformers.
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2) Array geometry: If the specific array geometry is known,

e.g., linear, differential or spherical, preference should be given

to array processing or source separation methods which exploit

this information. In entirely blind scenarios, BSS methods

are commonly used, however some modern array processing

methods based on ATFs or RTFs can also be used.

3) Prior information: If additional prior information is

available, preference should be given to methods which exploit

this information. For instance, information about the source

DOA can be exploited both by array processing and source

separation methods, while information about the nature of the

sources and training data is more easily exploited by the latter.

C. Perspectives

In this section we explore some of the current and future

trends in the field of multi-microphone array processing.

1) Learning-based spatial filters: The signal models we

have reviewed in this article rely on limited prior information:

the ATFs (or the respective RTFs) are assumed to be either

unconstrained, or to satisfy universal constraints depending

on the source positions [70], [81] and the room reverberation

time [61], [116]. What if the exact shape and acoustic proper-

ties of the room were fixed? In this situation, one would know

the exact ATFs/RTFs associated with all possible source and

microphone positions. Source localization and ATF estimation

would become identical problems, that would be much easier

to solve. This ideal situation can be approximated in practice

by acquiring ATFs for a finite set of source and microphone

positions using mobile devices and interpolating them to find

the ATFs in other positions, using the fact that the set of

ATFs in a given room forms a (nonlinear) manifold. This

idea has recently been the starting point for an increasing

number of studies which model the manifold of ATFs using

models based on sparsity and compressed sensing [56], [57],

[60], [330]–[334] or locally linear embedding and manifold

learning [62], [335]–[338]. A preliminary study of applying

the latter concepts to construct a GSC beamformer can be

found in [339]. Extending these approaches to work across a

full, real-world room is an exciting perspective.

2) Deep learning-based parameter estimation: deep neural

networks (DNNs) have emerged as a promising alternative

to SPP estimation, EM, VB, or MM in the situations when

large amounts (typically, hours) of source signals similar to

those in the mixture to be separated, are available for training.

DNNs model complex, high-dimensional functions by making

efficient use of this wealth of data. They typically operate

in the magnitude STFT domain, take several frames of the

mixture as inputs, and output the SPP or the spectra of all

sources in each time frame. Most work in this area has focused

and still focuses on single-channel separation using spectral

cues or channel-wise filtering using ILD and ITD cues [340]

or pitch and azimuth [341] (using multi-layer perceptrons).

Yet, a few multichannel approaches have recently been

proposed that use DNNs in a variety of ways: to estimate

the SPP using a DNN and subsequently derive a beam-

former [342], to alternately reestimate the source magnitude

spectra using DNNs and the spatial covariance matrices in

an EM-like fashion [343], or to learn beamformers directly

in the time domain [344]. The integration of these data-

driven techniques with the domain knowledge learned from

the established techniques presented in this review is an open

research direction.

3) Distributed algorithms for ad hoc microphone arrays:

In classical microphone array processing, as explored in this

survey, both the sensing and the processing of the acquired

speech are concentrated in a single device, usually called

a fusion center. In many scenarios, this approach cannot

provide the required performance, since the acoustic scene

may be spatially distributed, and a powerful fusion center

may not be available. It is therefore reasonable to allevi-

ate the performance drop by a large spatial deployment of

inter-connected microphone sub-arrays (nodes), arranged in a

wireless network, preferably equipped with local processors.

Recent technological advances in the design of miniature and

low-power electronic devices make such distributed micro-

phone networks, often referred to as wireless acoustic sensor

network (WASN), feasible. As a matter of fact, cellular phone,

laptops and tablets are perfect candidates as nodes of such

networks, as they are self-powered and equipped with multiple

microphones (typically two to three), as well as powerful

processors and various wireless communication modules. The

large spatial distribution of WASNs increases the probability

that a subset of the microphones is close to a relevant sound

source and has the potential to yield improved performance

as compared with classical, condensed, microphone arrays.

However, the distributed and ad hoc nature of WASNs arises

new challenges, e.g. transmission and processing constraints

and intricate network topology, that should be addressed to

fully exploit their potential.

Several families of algorithms, that allow for optimal solu-

tions without requiring the transmission of all signals to a cen-

tral processor, but rather a compressed/fused version thereof,

have been proposed [345]. One such family is the distributed

adaptive node-specific signal estimation (DANSE) family of

algorithms, which allow for a distributed implementation of

several speech enhancement algorithms that were introduced

in this survey (including SDW-MWF [346], [347] and LCMV

beamforming [220]). Several network topologies can be im-

plemented, e.g. fully-connected and tree-structure. Another

family of algorithms exploits the special GSC structure to

obtain recursive solutions that are proven to converge to the

optimal beamforming criteria [348]. Theoretical performance

bounds of such distributed microphone array algorithms can

be derived [349]. Efficient adaptation mechanisms to changes

in the number of available nodes and signals of interest can

be found in [350].

Randomized gossip implementation of the DS beamformer

is presented in [351]. A distributed algorithm for MVDR

beamforming, based on message passing, is presented in [352].

A distributed MVDR beamformer based on the diffusion

adaptation paradigm, that neither imposes conditions on the

topology of the network nor requires knowledge of the noise

covariance matrix, can be found in [353]. Near-field beam-

formers using smartphones forming an ad hoc network are

described in [354]. Intra- and inter-node location features are
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integrated in a clustering-based scheme for speech separation

in [355].

In practical scenarios the microphone signals can have an

arbitrary temporal offsets. A method to alleviate this problem

can be found in [356]. In severe cases, identical sampling

frequency across all nodes cannot be guaranteed. Method to

re-synchronize the signals, either based on the communication

link, on the speech signals, or on a combination thereof, can

be found in [357]–[365].

Despite these advances in the field of distributed algorithms

for ad hoc microphone arrays, the quest for a full-fledged

solution, considering all challenges in reverberant and dynamic

acoustic environment, is still far from reached.

4) Robustness: Two kinds of robustness can be attributed

to beamformers, namely numerical robustness and spatial

robustness [366]. Numerical robustness refers to the sensitivity

of the array gain to mismatches in the microphone gains

and phases and the beamformer weights. As was already

explored in Section IV-A in the general context of (narrow-

band) array processing, numerical robustness is proportional

to the WNG [118], [121] (see modification for structured

arrays in [122]). It is further proposed in [121] to increase

the robustness, trading-off array directivity, using diagonal

loading. In [367] it is proposed to increase the robustness of a

broadband array with an arbitrary directivity, by incorporating

the probability density functions of the microphone gains and

phases into the beamformer design criterion. The statistics of

the microphone characteristics is also taken into account in the

design of a robust superdirective beamformer (e.g. differential

microphone arrays) [368].

The term spatial robustness refers to mismatches between

the actual location of a desired source and the assumed

location used to derive the beamformer weights. It is a

widely-explored area in the field of array processing [369]–

[371]. Widening the beampattern is a common practice to

increase robustness to steering errors. This can be done by

either adding derivative constraints [189], by methods bor-

rowed from filtering design procedures [372], or by defining

multiple constraints in an area surrounding the prospective

source location [191]. Alternatively, a probabilistic framework

for describing the errors in the steering vectors is proposed

in [366] to design a robust beamformer based on the maximum

signal to interference plus noise ratio (SINR) criterion.

The GSC structure is utilized to combine spatial robust-

ness considerations (in the BM block) and numerical robust-

ness considerations (in the adaptive noise canceller (ANC)

block) [199], [200]. A GSC-type beamformer utilizing ad-

vanced BSS techniques, namely TRINICON, is also proposed

for increasing robustness [373].

Although many methods for increasing the robustness of

beamformers in speech applications can be found in the

literature, designing a robust beamformer that takes room

acoustics and speech properties into account, remains an open

research question.

5) Dynamic scenarios and tracking: The application of

beamforming and BSS techniques, explored in this survey,

to dynamic scenarios is a cumbersome task, mainly due to

the limited amount of data available for estimating the time-

varying filters. Methods that utilizes instantaneous direction-

of-arrival estimates to allow for fast adaptation of LCMV

beamformers can be found in [163], [374]. A tracking mech-

anism for the RTFs of the desired and interference sources,

based on subspace tracking [375], is described in [198]. The

time-varying estimates of the RTF are utilized to design

LCMV beamformer to extract the set of desired speakers.

EM and VB frameworks were also proposed in [74], [114],

[282]. The resulting algorithms employ a Kalman smoother

to estimate time-varying mixing filters, that are subsequently

utilized to construct Wiener filters for separating the sources

in under-determined mixtures.

6) Binaural multi-microphone processing: The objective of

a binaural noise reduction algorithm is not only to selectively

extract the desired speaker and to suppress interfering sources

and ambient background noise, but also to preserve the audi-

tory impression, as perceived by the hearing aid user. Existing

methods can be roughly categorized into three main families.

The first family is based on the concept of CASA [376]–

[378], which aims at imitating the behavior of the human

auditory system [25], [379].

The second family consists of BSS algorithms [380]–[382],

which are based on the fundamental assumption of mutual

statistical independence of the different source signals.

The third family is based on a binaural versions of the

MMSE [92], MVDR and LCMV criteria. The binaural MWF

inherently preserves the binaural cues of the desired source but

distorts the binaural cues of the noise (i.e. the beamformer im-

poses the noise to be coherent and perceived as arriving from

the same direction as the desired source). Several extensions

of the binaural MWF have been introduced aiming to also

preserve the binaural cues of the noise [93], [96], [97], [383].

By design, these methods suffer from some distortion imposed

on the desired source component at the output. Alternatively,

distortionless criteria, such as the MVDR and LCMV, can be

used instead of MWF [95], [98], [384]–[386].

Hearing aids impose severe design constraints on the devel-

oped algorithm: short latency, fast adaption, small number of

microphones, limited connectivity between the hearing devices

and low-complexity, to name a few. Designing algorithms,

satisfying these constraints, and still exhibiting high noise and

interference reduction together spatial cues preservation, is still

an ongoing research topic.

7) Audio-visual speech enhancement: Finally, although we

have focused on audio-only algorithms above, one must bear

in mind that microphones are quite often embedded in devices

equipped with other sensors, e.g., cameras, accelerometers.

In [387], cameras have been used to estimate speech statistics

from visual (face and lips) features and noise statistics from

visual voice activity detection. They have also been used

to find the spatial location of the sources in [388]–[391].

An optimal integration of acoustic and visual information is

obtained by joint inference in both modalities using the turbo-

decoding framework [392]. In [393] an audio-visual voice

activity detection is proposed, using dimensionality reduction.

The area of audio-visual speech processing remains largely

understudied despite its great promise.
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[288] V. Välimäki, J. D. Parker, L. Savioja, J. O. Smith, and J. S. Abel, “Fifty
years of artificial reverberation,” IEEE Trans. Au., Sp., Lang. Proc.,
vol. 20, no. 5, pp. 1421–1447, Jul. 2012.

[289] J. Allen and D. Berkley, “Image method for efficiently simulating
small-room acoustics,” J. Acoust. Soc. of Am., vol. 65, no. 4, pp. 943–
950, Apr. 1979.

[290] D. R. Campbell, K. J. Palomäki, and G. J. Brown, “Roomsim, a
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[312] N. Ono, Z. Koldovský, S. Miyabe, and N. Ito, “The 2013 signal

separation evaluation campaign,” in Proc. of IEEE International

Workshop on Machine Learning for Signal Processing, Southampton,
UK, Sept. 2013.

[313] N. Ono, D. Kitamura, Z. Rafii, N. Ito, and A. Liutkus, “The 2015 signal
separation evaluation campaign,” in Proc. Int. Conf. Latent Variable

Analysis and Signal Separation, Liberec, Czech Republic, Aug. 2015.
[314] M. I. Mandel and D. P. W. Ellis, “EM localization and separation using

interaural level and phase cues,” in IEEE Workshop on Applications

of Signal Processing to Audio and Acoustics, Oct. 2007.
[315] M. I. Mandel, D. P. W. Ellis, and T. Jebara, “An EM algorithm for

localizing multiple sound sources in reverberant environments,” in
Proc. Neural Info. Proc. Conf., 2007, pp. 953–960.

[316] Z. El Chami, A. Pham, Servière, and G. A. C., “A new model based
underdetermined source separation,” in Proc. IWAENC, 2008.

[317] H. Sawada, S. Araki, and S. Makino, “A two-stage frequency-domain
blind source separation method for underdetermined convolutive mix-
tures,” in IEEE Workshop on Applications of Signal Processing to

Audio and Acoustics (WASPAA 2007), Oct. 2007, pp. 139–142.
[318] J. Cho, J. Choi, and C. D. Yoo, “Underdetermined convolutive blind

source separation using a novel mixing matrix estimation and MMSE-
based source estimation,” in Proc. IEEE International Workshop on

Machine Learning for Signal Processing (MLSP 2011), 2011.
[319] F. Nesta and M. Omologo, “Convolutive underdetermined source

separation through weighted interleaved ICA and spatio-temporal cor-
relation,” in Proceedings LVA/ICA, 2012.

[320] J. Cho and C. Yoo, “Underdetermined convolutive BSS: Bayes risk
minimization based on a mixture of super-gaussian posterior approx-
imation,” IEEE/ACM Transactions on Audio, Speech, and Language

Processing, vol. 23, no. 5, pp. 828 – 839, 2015.
[321] E. Weinstein, M. Feder, and A. V. Oppenheim, “Multi-channel signal

separation by decorrelation,” IEEE Trans. Sp. Au. Proc., vol. 1, no. 4,
pp. 405–413, 1993.

[322] S. Araki, S. Makino, Y. Hinamoto, R. Mukai, T. Nishikawa, and
H. Saruwatari, “Equivalence between frequency-domain blind source
separation and frequency-domain adaptive beamforming for convolu-
tive mixtures,” EURASIP J. on Appl. Sig. Proc., vol. 11, pp. 1157–1166,
2003.

[323] J.-F. Cardoso and A. Souloumiac, “Blind beamforming for non-
gaussian signals,” IEE Proceedings F (Radar and Signal Processing),
vol. 140, no. 6, pp. 362–370, 1993.

[324] S. Y. Low and S. Nordholm, “A hybrid speech enhancement system
employing blind source separation and adaptive noise cancellation,” in
Proceedings of the 6th Nordic Signal Processing Symposium (NOR-

SIG), 2004.
[325] K. Reindl, S. Meier, H. Barfuss, and W. Kellermann, “Minimum mutual

information-based linearly constrained broadband signal extraction,”
IEEE/ACM Trans. Au., Sp., Lang. Proc., vol. 22, no. 6, pp. 1096–1108,
June 2014.



37

[326] H. Buchner, “A systematic approach to incorporate deterministic prior
knowledge in broadband adaptive mimo systems,” in ASILOMAR,
2010, pp. 461–468.

[327] S. Markovich-Golan, S. Gannot, and W. Kellermann, “Com-
bined LCMV-TRINICON beamforming for separating multiple speech
sources in noisy and reverberant environments,” IEEE/ACM Trans. Au.,

Sp., Lang. Proc., 2016, to be published.
[328] S. Araki, M. Okada, T. Higuchi, A. Ogawa, and T. Nakatani, “Spatial

correlation model based observation vector clustering and MVDR
beamforming for meeting recognition,” in Proc. IEEE Intl. Conf. on

Acous., Sp. and Sig. Proc. (ICASSP), Mar. 2016, pp. 385–389.
[329] S. Araki and T. Nakatani, “Hybrid approach for multichannel source

separation combining time-frequency mask with multi-channel Wiener
filter,” in Proc. IEEE Intl. Conf. on Acous., Sp. and Sig. Proc. (ICASSP),
May 2011, pp. 225–228.

[330] A. Asaei, M. E. Davies, H. Bourlard, and V. Cevher, “Computa-
tional methods for structured sparse component analysis of convolutive
speech mixtures,” in Proc. IEEE Intl. Conf. on Acous., Sp. and Sig.

Proc. (ICASSP), 2012, pp. 2425–2428.
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