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Abstract

We present an algorithm that gives a constant

factor approximation for the following problem.

Given a set of n points in the plane with a Eu-

clidean distance metric and an integer k < n, find

the tree of least weight that spans k points. If de-

sired, one may also specify in the problem a “root

vertex” that must be in the tree. Our result im-

proves on the previous best bound of O(log k) of

Garg and Hochbaum [5], which in turn improved

a previous 0(kl/4) bound of Ravi et al [9].

1 Introduction

The k-MST problem [9] is the following. You are

given a graph on n points and an integer k < n

and your goal is to find the tree of least weight that

spans k points. In this paper, we consider the case

that the n points are on the plane and distances are

given by the Euclidean metric. Our main result is

a constant factor approximation for this case, im-

proving on the previous best bound of O(log k) by

Garg and Hochbaum [5], which in turn improved

on an 0(k1i4) bound of Ravi et al. [9]. For the case

of general graphs, Ravi et al. [9] also had a factor

O(W) approximation, which has since been im-

proved to 0(log2 k) [1].
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The problem appears to have been first studied

by Fischetti et al [4], although not from an approx-

imation standpoint. The k-MST problem models a

variety of natural situations. For example, suppose

you are a salesman with a car full of k widgets, and

you can sell one widget per city. You have a map

of all the n cities in the U. S., but you do not want

to visit every city, just enough to sell your widgets.

A solution (or approximation) to the k-MST prob-

lem immediately yields an approximation to the

question: what route should I take (most impor-

tantly, what cities should I visit) in order to travel

as short a distance as possible.

Our algorithm is a fairly simple dynamic pro-

gramming algorithm inspired by the approach of

Garg and Hochbaum [5]. Our analysis involves

studying the relationship between the MST for a

set of points and the optimal tree of a restricted

form that we call a “division tree”.

2 Preliminaries and definitions

We will assume for simplicity for any set of points

under consideration (in particular, for the set of n

points we are given) that no two lie on the same

horizontal or vertical line.

We say that a spanning tree T for a set of points

P is a Division Z+ee (l IT) if T satisfies the follow-

ing recursive property:

There exists some point ~ (the “root”)

such that either the vertical or the hor-

izontal line through r splits T into two

division trees. More precisely, we require

both that (A) this line does not intersect

any edges of T, and (B) the trees T1 and

T2 induced by the points on either side

of the line including T should be division

trees. For the base case, if IP[ = 2 then

the single edge is a division tree.
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Figure 1: A division tree.

The bounding boz of a set of points in the plane

is the minimum enclosing axis-parallel rectangle

for the set of points.

An equivalent definition of a Division Tree of

a set of points P is any tree which can be con-

structed by the following process. Start with the

bounding box B of P. Divide B with a vertical

or horizontal line segment that passes through a

point of P and is not one of the bounding seg-

ments of B. Construct bounding boxes for points

on both sides (considering the point on the new

line segment as being on both sides) and recurse

on them, dividing each box using a vertical or hor-

izontal segment and so on. Continue until each

box has exactly two points (which will be at oppo-

site corners of the box), Finally, connect the two

points in each box. It is not hard to see that the

set of edges added by this procedure will form a

spanning tree of P and that this is equivalent to

the earlier definition. We will often identify the di-

vision tree with the IPI – 1 boxes created, Figure

1 shows an example of a division tree, and Figure

2 shows the final bounding boxes.

The notion of partitioning a collection of points

with dividing lines has appeared elsewhere in the

literature. For instance Karp [7] uses a structure

resembling a division tree to approximate the op-

timal traveling salesman tour for points randomly

scattered in a rectangular region of the plane.

Gonzalez and Zheng [6] use “guillotine partitions”

(which are similar to our dividing lines) for a dif-

ferent approximation problem.

Figure 2: The final bounding boxes in the above

division tree.

3 Algorithm

Our algorithm for the k-MST problem uses a dy-

namic programming procedure to find the subset

of k points with a division tree of minimum weight.

The algorithm is most easily viewed in a recur-

sive “memoizing” form. It returns both the desired

set of k points and the cost of the associated di-

vision tree. The algorithm takes as input a set of

points P, an integer k, and also up to four addi-

tional constraints. For each of the 4 sides of the

bounding box of P the algorithm maLy be told that

the point on that bounding side is “required” and

must be in any set of k points the algorithm pro-

duces. At the outer loop there are no required

points. Given these inputs, the algc)rithm consid-

ers each vertical and horizontal he that passes

through some point in P (actually, lines that co-

incide with an edge of the bounding box need not

be considered). For a given such line—let p be the

point in P that the line passes through-the algo-

rithm constructs the bounding boxes B1 and Bz

of the points in P on the two sides,, considering p

to be on both sides. It then calls itself recursively

k – 1 times for each of the two boxes .Bi: in each call

passing down the set of points in Bi, a new integer

k’ E [2, k], and the set of required points it was

originally given (only considering those that lie in

the box Bi) including the new point p. Once the

algorithm receives its k – 1 answers from each side,

it simply compares to find the pair (k’, k – k’ + 1)

whose costs sum to the least amount (the reason

for the “+1” is that point p lies on both sides). In

the base case, k = 2, the algorithm just returns
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the cost of the single edge.

Because there are at most n4 different bounding

boxes, k different possibilities for the desired num-

ber of points, and 16 different settings for the “re-

quired points”, the memoized procedure (or equiv-

alently, dynamic program) will run in polynomial

time.

It is not too hard to see from the construction

and the definition of division tree that this algo-

rithm finds the set of k points with the lightest di-

vision tree. What remains to be shown (and what

the sections below consist of a proof of) is that

for any set of points, the division tree of minimum

weight is only a constant factor more costly than

the minimum spanning tree.

4 Lower-Bounding Technique

The main result of this paper is the following geo-

metric fact about points in the plane.

Theorem 1 Let P be a set of points in the Eu-

cl~dean plane. Then there is a constant c so that

MDT(P) < c . MST(P), where MDT and MST

stand for minimum division tree and minimum

spanning tree respectively.

In our discussion, the length of a rectangle refers

to its longer side and the width to its shorter side.

In particular, for box l?, length(l?) and zvidth(l?)

are the lengths of the longer and shorter sides of

B respectively. An axis-pardiel rectangle is called

horizontal (verticalj if its length is horizontal (ver-

tical). We define the centre of a rectangle to be the

intersection of its diagonals.

Definition 1 An r-Fat box (r < 1) is a rectangle

with the ratio of its smaller side to larger side at

least r. An r-Thin box is a rectangle which is not

r-fat .

In section 5 we will fix a specific value of r and

abbreviate r-fat and r-thin to just fat and thin

respectively. To derive lower bounds on the mini-

mum spanning tree (MST) of points on the plane,

we make use of a theorem due to Das et al [3, 2].

Theorem 2 (Existence of Spanners) Let P be a

set of points in the plane. Then for every c > 0

there exists a Steiner graph T on P (by Steiner

graph we mean a gmph on a superset of P) that

is light and distance-preserving in the following

sense:

1.

2.

The sum of the weights of edges in T is at

most g(c) *MST(P) and g(c) is a quantity that

depends only on c.

The distance in T (i.e. using only edges in

T) between any two points u, v E P is at most

(l+c)d(u, v) where d(, ) is Euclidean distance.

Lemma 1 (Fat-Box Lower Bound) Let F be a

set of r-fat boxes with non-overlapping interiors,

with each box f E F specifying two points u~

and v~ on its boundary such that the line joining

them intersects the centre of the box. Let P(F) =

UjEF{Uj, Vj} denote the set of these boundary

points. Then MST(P(F)) ~ c . ~jc~(length(f))

where c is a constant that depends only on r.

Proof. Use Theorem 2 to build a light distance-

preserving graph on P(F) with c chosen so that

for each f c F, at least half of the shortest path

in T between Uf and vf lies inside f (for instance

, . *+w--
/l+rz

). In other words since f is

r-fat, any path between Uj and Vf that has less

than half its length inside f must be longer than

(1 + c)d(uj, vj). This implies that the graph T

constructed by the theorem has total edge weight

at least half the sum of the lengths of all boxes in

F. Therefore the statement of the theorem is true

with c = l/2g(c). 9

An implication of this lemma for proving The-

orem 1 is that if we are lucky and there exists a

division tree for P such that all the [PI – 1 boxes

created are fat, then we are done. This is because

the cost of the division tree is at most W times

the sum of the lengths of all the boxes.

The above lemma can be generalized in the fol-

lowing way; remove the restriction that the fat

boxes be non-overlapping, and instead each fat box

is required to have a “large” empty region such

that these regions do not overlap. Then by choos-

ing c small enough (a constant depending on the

size of the empty region) in the construction of

a spanner for F’(F) we can ensure that the path
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froln u to v in a box ~ intersects at least half

tile empty region. The lemma also remains true

if we relax the requirement that each box has two

points on the ends of a diagonal to the requirement

that there should be a point on each bounding line

of each fat box. The following refinement of the

fat-box lower bound incorporates these generaliza-

tions:

Lemma 2 (Empty-Regions Lower Bound) Let F

be a set of r--fat boxes with the following properties

(see Figure 3):

1, Each box f c F has a point on every bounding

line. Let P(f) denote this set of points.

2. Each box f G F contains “large” empty re-

gions, (where by empty we mean that the in-

terior has no points): for constants a, b > 0,

either

(a)

(b)

f has one or more empty strips (rectan-

gles extending fully along its width) such

that the sum of the sizes of the strips

in f along the length of f is at least

a . length(f) (in other words, the strips

together contain a constant fraction ‘a’

of the area of f), OR

f has an axis-parallel r-fat empty rectan-

gle of length at least b . length(f) whose

centre is on a line joining two of the

boundary points off.

3. The empty regions (strips or rectangles) of two

diflerent boxes are non-overlapping, i.e. for

any two boxes fl, f2 c F, and any two empty

regions c1 c fl and C2 c f21 c1 and C2 are

non-overlapping.

Let P(F) = Uj~F P(f). Then MST(P(F)) 2
c ~jEF(length(f )) where c > 0 is a constant that

depends only on T, a and b.

Proof. For the proof we define an auxiliary col-

lection X of fat boxes and two relevant points ~g

and Vg for each g E X. Let 1? be a co~ection of fat

boxes satisfying the requirements of the lemma and

let ~ ~ F. Assume f is horizontal. Let the points

on the left, top, right and bottom boundaries be

R, 1%,p,, pb respectively (these are not necessarily

distinct). For each f we look at the following cases:

9

Figure 3: Illustrating the Empty-region lower

bound. Empty regions are shown shaded.

1.

2.

3.

4

If f satisfies condition 2b then we put fin X.

Define Uf and Vj to be the two points on the

boundary off from condition 2b.

Otherwise, if the bounding box. of {P[, P. } is

$-fat, let fl be this bounding box. We place

fl in X with Ufl = P1 and Vjl = p,.

Otherwise, if pl is in the middle third of the

left boundary of f or if p. is in the middle

third of the right boundary of f, then we can

draw an axis-parallel $-fat box fl inside f of

the same length so that the line joining pl and

pr intersects the centre of the box. Then add

fl to X with ufl = pi and Vf, ❑= p,.

Otherwise pl and pr are both close to the top

or bottom boundary of f. Assume they are

close to the bottom boundary of f. Consider

the bounding boxes of {PJ, Pt} and {pt, P,}.

One of them (call it fl ) must contain at least

half the width of the empty strips and is there-

fore min(a/2, 2r/3)-fat. Then fl E X with

Ujl, Vjl set accordingly.

This collection of fat boxes X has the property

that each box f of length 1 either satisfies condition

2b or is min(a/2, r/3)-fat and has two points on

its boundary so that the line joining them passes

through the centre of the box and has empty strips

totaling to at least a . 1/2. In each box f of length

1 draw two lines parallel to the line joining uj, vj

at a distance rnin(a , 1/8, b o 1/4) on either side.

Use Theorem 2 with ~ small enough so that the

path from u to v in each box does not cross these
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parallel lines. This can be done with c as a function

of only a, b, r. This ensures that the path intersects

at least a constant fraction of the empty region in

each box in X and completes the proof. ■

5 Analysis

The algorithm presented earlier finds the subset

of k points (from the given set of n points) that

has the minimum weight division tree among all

k point subsets. In the rest of the paper we show

that for any set of points there exists a division

tree whose weight is at most a constant times the

minimum spanning tree for the set.

Let P be a set of points in the plane. The final

set of boxes created by finding a division tree for

P, i.e, boxes with no further subdivision and two

points per box, will be called leaves. Let this set

of boxes be denoted by L. As noted above, it is

easy to see that DT(P) < fi~lc~(length(l)); so

if all the leaves obtained are fat, using the fat-box

lower bound we have DT(P) < 0(1) .MST(P).

However this is not the case in general.

5.1 Constructing a light division tree

To prove the mathematical statement that there

exists a light division tree, we present a construc-

tion whose basic approach will be to create r-fat

boxes if possible, where we use r = 1/10. Here is

the precise construction: We start with the bound-

ing box of the given set of points. The general step

is that we arbitrarily pick a box 1? which has more

than two points in it (at the first step it is the orig-

inal bounding box) and divide B by adding one or

more lines. Assume that 1? has its length horizon-

tal. When dividing B vertically through a point

u we denote the left and right bounding boxes by

Bl( u) and B,(u) respectively. If B is thin, then

simply add the vertical line through the point hor-

izontally closest to the center of the longer side

and collapse both sides to bounding boxes. If B

is fat, then if possible divide it with one or more

vertical lines so that on forming bounding boxes

all the boxes obtained are fat. If, however, this

is not possible, then there are three cases to be

considered:

1. Let the point horizontally closest to the cen-

ter of the longer side be u. Consider the ver-

tical line through u. If the horizontal side of

B/(u) or B,(u) is smaller than Jength(B)/4,

then add the two vertical lines which mark

out the empty region of horizont al side at least

lengi!h(B)/2 in the middle of the box. This is

possible unless the empty region extends all

the way to the right end of B, i.e. B,(u) is

a leaf. In this case just add the one line con-

sidered. (Note that B/(u) and B,(u) may be

thin, horizontally or vertically)

2. Otherwise, if B is 5~-fat, add the vertical line

through u, the point horizontally closest to

the center.

3. Otherwise, again consider the vertical line

through u. It must induce a horizontal thin

box on one side. Assume B/(u) is horizontal

thin. Then start at the left end of B and lo-

cate the first point z from the left which has

the property that the Bl(z) is horizontal thin.

Add vertical lines through x and the point y

which is just to the left of z. If z is the second

point from the left then there is only one line

to be added.

The above division rules are illustrated in Figure

4. We make a few useful observations about this

construction.

Claim 1 In case 2 of the construction, assume

w.l. e.g. that Bl(u) is horizontal thin (at least one

of B/(u) or B.(u) must be) and let d be its length.

Then there is an r-fat empty rectangle above or be-

low Bl(u) of iength at least 3d/5 so that its centrv

lies on the line joining two of the boundary points

of B. (See Figure 5.)

Proof. Bl(u) is horizontal thin. Let v be a point

on the left boundary of -B (also on the left bound-

ary of Bl(u)) and assume without loss of generality

that v is closer to the bottom of B than to the top.

Let w be a point on the top boundary of B. Let pl

be the point where the line joining v and w inter-

sects the vertical line through u and let p2 be the

point where this line intersects the top boundary

of Bl(u). Notice that the slope of the line vw is at
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Rule 1

least ~. Thus, the vertical distance of pl from the

top boundary of Ill(u) is at least ~ -d-r d = ~ d.

Also the horizontal distance from p2 to the vertical

line through u is at least d – rd& = 3d/5. We can

draw a rectangle of these dimensions (namely, the

bounding box of {pl, pz}) whose centre is on the

line joining v and w, Since d z length(13)/4 the

claim follows. ■

Claim 2 In case 3 of the construction, the points

x and y will be such that their bounding box has its

length horizontal.

Rule 3

Figure 4: Division rules.

~_____––———~+-----
I I

l__________ L___= ______l

-—————————.
d

Figure 5: Illustrating Claim 1.

Roof. Let z and y be the two points chosen by

case 3 of the construction. B1 (y) is fat or vertical

thin. If it is vertical thin, then since Ill(x) is hori-

zontal, the bounding box of {z, y} is horizontal. If

Bl(y) is fat then l?,(y) must be horizontal thin, as

is B1 (z) by definition of z. Denoting the horizontal

side of the bounding box of {z, y} as horiz and the

vertical side as vert, we have

Iength(lil) = Zength(l?l(z)) + length(Br(y))

–hori.z,

width(B) < width(B1(z)) + width(l?r(y))

–vert.

Since 1? is fat but Ill(z) and B,(y) are horizontal

thin, this implies that the bounding box of {x, y}

is horizontal, ■

Claim 3 Suppose that in case 3, B1( y) is vertical

thin. Let the horizontal distance between x and y

bed. Then width(B1(y)) < d~, which is (much)

less than dr/2 foT our chosen value of r = 1/10.

Proof. Follows from the fact that l?l (m) is hor-

izontal thin. ■

5.2 Bounding the weight

Let P be a set of k points on the plane. Construct

a division tree for P using the procedure of the

previous section. Let this be T, The weight of

T can be written as the sum of the weight in fat

leaves and the weight in thin leaves. From the fat-

box lower bound we know that the weight of T
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in fat leaves is at most a constant times MST(P).

The main lemma of the proof puts a bound on the

weight of T in thin leaves.

Lemma 3 (The main Lemma) The weight of T

in thin leaves is less than c . MST(P) for a fixed

constant c.

In order to prove this lemma, we need to con-

sider two different kinds of thin boxes. Let us de-

fine the parent of a box B to be the box whose

sub division resulted in the immediate creation of

1?. Then a thin box can be classified into one of

two types depending on whether its parent is fat or

thin. F’-thin boxes will be those with fat parents

and T-t hin boxes will be those with thin parents.

First we account for the weight in T-thin leaves.

The weight of the edge in a T-thin leaf is charged

to its parent. If this thin parent itself has a thin

parent (i.e., it is a T-type box) then it will in turn

l)ass all its charge to its parent, and so on. This

way the weight of T-thin leaves will reach F-thin

boxes which are not leaves (if the original box—

the bounding box of P—is thin, we will label it as

$)-thin).

We define the charge on a box to be the total

charge it receives from its descendants. Also, for

convenience, we say that a thin leaf has charge

equal to the weight of its edge. The next claim

upperbounds the total charge that can accumulate

on a thin box by this process.

Claim 4 The total weight of T-thin leaves charged

to a thin box is less than twice the length of the thin

box.

Proof. Let t be a thin box. Assume without

10SSof generality that t is horizontal thin. Explore

the subdivision oft stopping whenever a fat box is

reached. We prove the claim by induction on the

number of points in t. For 2 points (t is a leaf)

tile claim is trivially true (charge = length of edge

joining the two points). Consider now the general

case and let tl,t2 be the boxes obtained on divid-

ing t with the next line segment of the division

tree. If one of tl, t2, say tl, is fat then charge(t) <

charge(t2 ) and we are done by the induction hy-

pothesis as a fat box does not send up any charge.

If both tl and t2 are horizontal thin, then by the

hypothesis cha~ge(t) < charge(tl ) + charge(tz) <

2( Zength(t1 ) + /ength(tz)) <2. length(t). Lastly,

If one of them, say tl is vertical thin, then the next

subdivision of t2 will produce a leaf 1 and possibly

another box t3.Then Jength(tl) < r-length(t) and

length(t~) < r . length(t), giving us charge(t) <

charge(tl ) + charge(t3) + (<~)length(t) <

(4T + {W)length(t), which is less than 2.

length(t) for r <0.24. ■

By the above claim, all that remains is to bound

the total length of the F-thin boxes by some con-

stant times the cost of the MST. Let us now con-

sider the ways in which such boxes can be created, *

First, consider F-thin boxes created in case 2 of

the construction from a 5r-fat parent. By Claim

1 the F-thin boxes created in case 2 have total

length at most a constant times the cost of the

MST since their parent boxes satisfy condition 2b

of the Empty-Regions lower bound. Now consider

cases 1 and 3. In each of these cases, a large empty

strip is created (between u and v in case 1 and be-

tween z and g in case 3) whose width is at least half

the total length of any thin boxes created. Thus,

all we need to show is that the sum of the widths

of the empty strips is at most a constant times the

MST of P, and this will bound the total length of

the F-t hin boxes.

To do this we use a charging procedure as fol-

lows. The idea is that we are going to charge

the widths of the empty strips to fat boxes, which

will in turn pass their charge down to their chil-

dren, until all the charge resides on boxes that can

be used for Lemma 2 (the Empty-Regions Lower

Bound), We use X to denote the set of these use-

ful boxes. For fat boxes not in X we maintain the

invariant that each is charged at most its length

+ width, and for fat boxes in X the charge will

only be a constant factor larger. Thus, Lemma 2

will imply that the total charge is only a constant

factor greater than the cost of the MST.

Consider a fat box f with perhaps some charge.

We now examine the cases for division of ~ in our

construction. Let a = 1/10.

‘One minor point: the (initial) bounding box of P, if it

is thin, can be accounted for separately since its length is

clearly at most the cost of the MST.
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o.

1.

2.

3.

If we divide f into two fat boxes fl and f2,

we transfer the charge on f (if any) to fl and

f2 in proportion to their perimeters. Notice

that the Iength+width of f is at most the

Iength+width of fl plus the length+ width of

f2.

If we divide f using rule 1 of the construction,

then f has a large empty strip (width at least

half the length of f). So we place f into X

and we charge the width of the empty strip to

f as well.

If we use rule 2 to divide f (f was 5r-fat), we

again just put f into X with its given charge.

If we used rule 3 to divide f then we continue

sub dividing wit h vertical lines every horizon-

tal fat box created (except those 5r-fat that

fall into rule 2 of the construction) until every

box within f is either a vertical (fat or thin)

box, a leaf (inducing a vertical empty strip),

or a

now

(a)

(b)

(c)

5r-fat box falling under rule 2. There are

3 subcases.

If the sum of the widths of the empty

strips is at least a/2 .Jength(f), we place

f into X. We charge to f the widths of

the empty strips (totaling to at most the

length off ).

If the sum of the lengths of the 5r-fat

boxes in f is at least a/2 . length(f)

we place these 5r-fat boxes into X, dis-

tributing among them the charge on .f

and the sum of the widths of the empty

strips.

Otherwise (the sum of the widths of

strips in f and the lengths of the 5r-fat

boxes is less than a . length(j)) let S be

the set of vertical fat boxes obtained. We

now charge the widths of the strips and

the charge on f to the boxes in S in pro-

portion to their perimeters.

The point of this is that in this case

the boxes in S must have a large total

length+ width since they are all vertical

and have large total width (since at most

a. length(j) of the length of ~ is used by

empty strips or 5r-fat boxes).

The last claim bounds the total charge that can

reach a fat box.

Claim 5 Fix a = 1/10 and r = 1/1.0. Then the

total charge on a box is less than the length+ width

of the box.

Proof. By induction. Assume f is a horizontal fat

box.

If f is divided into two fat boxes then this charge

is transferred to the two boxes and the charge per

unit length remains the same or decreases. The

only other time charge is passed down is in the fi-

nal case (3c) above. Let / = length(f). In this case

~~~s width(s) Z (1 – a - a/2 - ar/2)1, (widths

of empty strips plus lengths of 5r-fat boxes to-

tal to less than al by assumption, thin boxes ad-

jacent to empty strips created in case 3 of the

construction are of total width at most (ar/2)1

by Claim 3, and thin boxes created in case 1

of the construction, horizontal or vertical, are of

length at most (a/2)i by the construction). Also

(length(f) + width(f))< 1(1+ 5~).

Combining the last two facts we have: the total

charge to boxes in S divided by the sum of the

length plus widths of the boxes in S is at most

(1(1 + 5r) + al)/(21(1 - a - a/2 - ar/2)). Using
a = ~ = 1/10 this is less than 1, ■

We now combine the above claims to prove the

main lemma.

Proof of Lemma 3. As shown above, all

the charge reaches boxes which are added to

X. Using the Empty-Regions lower bound the

(length+ width) of boxes in X is a lower bound on

the cost of the minimum spanning tree of P (up to

a constant). This proves the main lemma :

Total weight of .DT(.P) in thin leaLves

< 0(1) . [total length of F-thin boxes]

(by Claim 4)

s 0(1) . [total charge on fat boxes in X]

s O(1) . [total length of fat bc)xes in X]

(by Claim 5)

< O(1) . MST(P) (by Lemma 2)
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Theorem 1 is immediate from the main lemma. [9]

Final comments

Although the constant resulting from our proof

is quite high (and depends on the constant from

Das et al.), the algorithm itself appears to be very

good. We have not been able to find any examples

on which it performs worse than a factor of 2.

Very recently R. Ravi has an exciting new result

that appears to achieve a constant factor approx-

imation for the k-MST problem in general graphs

[8],
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