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Abstract. Constitutive equations for finite elastic-plastic deformation of polymers and metals are
usually formulated by assuming an isotropic relation between the Jaumann rate of the Cauchy-stress
tensor and the strain-rate tensor. However, the Jaumann-stress rate is known to display spurious non-
physical behaviour in the elastic region. Replacing the Jaumann-stress rate by a Truesdell-stress rate
results in an adequate description in the elastic region, but gives rise to a volume decrease during
plastic flow in tensile deformation. In this paper a “compressible-Leonov model” is introduced, in
which the elastic volume response is rigorously separated from the elasto-viscoplastic isochoric de-
formation. This has the advantage that the model can be extended in a straightforward way to include
a spectrum of relaxation times. It is shown that in the limit of small elastic strains, the compressible
Leonov model reduces to the Jaumann-stress rate model, but diverges from the Truesdell-stress rate
model. Finally, a comparison is made of the above mentioned models in a homogeneous uniaxial ten-
sile test and a homogeneous plane-stress shear test, using polycarbonate (PC) as a model system. All
models considered in this paper are “single mode” models (i.e. one relaxation time), and, therefore,
cannot describe the full (non)linear viscoelastic region, nor the strain-hardening or strain-softening
response.

Key words: elasto-viscoplastic deformation, mathematical models, polymers, thermodynamics,
yield-point

1. Introduction

The yield behaviour of polymer materials is classically described by using yield
criteria, of which the pressure- and rate-dependent generalization of the von Mises
criterion seems to be most successful. After yielding, strain hardening sets in,
sometimes preceded by intrinsic strain softening (Ward, 1990).

The principle to describe yield-like behaviour of polymeric materials by use of a
stress-dependent relaxation time, dates back to Tobolsky and Eyring (1943). It was
later used by Haward and Thackray (1968) who added a finite-extendible spring (a
so-called “Langevin” spring) to account for a maximum draw ratio during strain
hardening (see Figure 1).

? Current address: ETH Zürich, Institut für Polymere, ETH Zentrum, UNO C 15, Univer-
sitätsstrasse 41, CH-8092 Zürich, Switzerland.
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Figure 1. Mechanical analogue of the Haward–Thackray model. The initial elastic response is
described by the complianceDg , the yield point is determined by a stress-dependent viscosity
η, and the strain-hardening response follows fromDr .

The stress dependence of the relaxation time in the Haward–Tackray model
is incorporated using a stress shift factoraσ (τ), defined as the ratio of the relax-
ation time at a given stress level and the linear relaxation time at zero (very low)
stress, withτ a scalar measure of the stress state. The effect of a stress-dependent
relaxation time is revealed most clearly in creep tests at different stress levels,
see Figure 2. At very low stress levels, the relaxation time is constant, and the
behaviour is linear (the creep compliance is independent of stress). At higher stress
levels, the relaxation time is reduced by a factoraσ (τ). Using a logarithmic time
axis, this results in a horizontal shift of the compliance curve.

A set of calculated true stress-strain curves, at different strain rates, using the
Haward–Thackray model, is schematically depicted in Figure 3. From this figure, it
is clear that the model correctly accounts for the rate-dependence of the yield stress
and the initial “glassy” modulus. However, the use of a single stress-dependent re-
laxation time results in an abrupt transition from elastic to plastic behaviour, similar
to elasto-plastic behaviour, employing a rate-dependent yield criterion. Moreover,
using only a single relaxation time, it is not possible to describe an experimental
linear relaxation modulus.

More recently, Boyce et al. (1988) introduced the “BPA-model”, which is es-
sentially an extension of the Haward–Thackray model to three-dimensional finite
deformations, using the Argon theory and the three-chain model (James and Guth,
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Figure 2. Schematic representation of the creep compliance of the Haward–Thackray model
at different stress levels.

Figure 3. Schematic representation of stress-strain curves, according to the Haward–Thackray
model at different strain rates.
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1943) to describe, respectively, the plastic flow process and the strain-hardening
response. The BPA-model was later refined by Arruda (1992) and Wu and van
der Giesen (1993) with respect to the strain-hardening response and by Hasan et
al. (1993) to include the effect of aging and rejuvenation. In all these models, no
explicit use is made of a yield criterion. Instead, like in the Haward–Thackray
model, the deformation behaviour is determined by a single relaxation time that
is dependent on an equivalent stress (proportional to the von Mises stress). Con-
sequently, these models suffer from the same drawbacks as the Haward–Thackray
model, as described above.

One way to improve the Haward–Thackray model, with respect to its poor de-
scription of the linear viscoelastic deformation behaviour, would be the application
of a spectrumof relaxation times rather than one (Tervoort et al., 1996). In case of
three-dimensional behaviour this requires a splitting of the volume deformation and
the deviatoric deformation, since it is well known that, to a good approximation, the
compressibility of materials is not affected by plastic flow. This study is, therefore,
concerned with the derivation of a three-dimensional constitutive model for the
finite elasto-viscoplastic deformation of (polymeric) materials, in which the devia-
toric response is determined by a stress-dependent relaxation time, and the volume
response remains elastic. The model will be derived using a formalism developed
to describe thermodynamically consistent constitutive equations (Jongschaap et al.,
1994).

2. Theory

2.1. MATRIX REPRESENTATION OFCONSTITUTIVE EQUATIONS

In the simple fluid concept it is assumed that constitutive variables like the stress
tensor are fully determined by the history of deformation (axiom of determinism).
Using the concept of fading memory, the history dependence of the material is then
described by functional relations (Coleman and Noll, 1963). However, using this
framework it is difficult to incorporate information about the microstructure into
the constitutive equation. Therefore, in recent polymer rheology as well as plas-
ticity literature it is recognized advantageous to formulate constitutive equations
using state variables, e.g., the natural reference state concept of Besseling and van
der Giessen (1994) in the field of plasticity, the Poisson-bracket approach of Beris
and Edwards (1990) and the matrix model by Jongschaap et al. (1994) in polymer
rheology. Here, the latter will be used to derive a constitution equation for the rate-
dependent yield behaviour of polymer glasses without strain hardening. To this
intention, the matrix model will briefly be introduced first. For a more elaborate
discussion the reader is referred to the original papers of Jongschaap (1990, 1994).

The notion ofstate variablesplays a central role in the matrix model of Jong-
schaap. The current state of a material body is completely determined by the instan-
taneous values of the external rate variables,[F, Ḟ, F̈, . . . , Q̇] (F is the deformation
gradient tensor,Q is the radiating energy, while the dot denotes the material time
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derivative). Although the body as a whole can be in a non-equilibrium state, it is
assumed that there are subsystems which are in thermodynamic equilibrium. The
internal (thermodynamic) state of these subsystems is described in the sense of
equilibrium thermodynamics by the current value(s) of a (set of) state variable(s)
[X1,X2, . . . , Xn]. These may be scalar quantities like free volume, higher order
tensorial quantities like the stored elastic strain, or even distribution functions.
Since state variables completely specify the state of the material body in the sense
of equilibrium thermodynamics, it must in principle be possible to fix or control
their value for an arbitrary time span by adjusting the external rate variables. More-
over, the state variables must appear in Gibb’s fundamental equation, since this
equation completely describes the thermodynamic equilibrium state of the material
body:

U = U(S,X1,X2, . . . , Xn) (1)

with S the entropy per unit volume. The rate of internal energy is obtained by
differentiating Equation (1) with respect to time:

U̇ = T Ṡ + F1Ẋ1+ F2Ẋ2+ · · · + FnẊn. (2)

Here,T is the absolute temperatureT = ∂U/∂S andFi are the thermodynamic
forces associated to the state variables, defined as:

Fi = ∂U

∂Xi
= Fi(S,X1,X2, . . . , Xn). (3)

Since entropy is not an easy quantity to control in practice, it can be eliminated
from the list of independent variables by introducing theHelmholtz free energy
A = U − T S and thus:

Ȧ = −SṪ + F1Ẋ1+ F2Ẋ2+ · · · + FnẊn. (4)

From this equation it can be concluded that in an isothermal process, the rate of
free energyȦ equals the rate of reversible storage of energy (Astarita and Marrucci,
1974).

The rate of entropy production6 is defined as:6 = Ṡ − Q̇/T and can be
obtained by eliminatingU̇ from the law of conservation of energy:

U̇ = Q̇+ Ẇ = Q̇+ T : L (5)

and Equation (2) which results in:

6 = 1

T
,

1 = T : L −
n∑
i=1

FiẊi, (6)
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with T the Cauchy-stres tensor andL the velocity gradient tensor. The quantity
1 is the difference between the total external power supply to the material body
and the rate of reversible energy storage in the body and is denoted as therate
of dissipation. By the second law of thermodynamics the absolute temperature is
always positive and the rate of entropy production is greater than or equal to zero.
Therefore, the rate of dissipation is always greater than or equal to zero.

Without loss of generality, for the moment it is assumed that the internal vari-
able which determines the internal state of the body is a second-order tensorS
(sometimes called a “structure tensor”) with an associated thermodynamic force
M = ∂A/∂S. In that case, for isothermal conditions, combining Equations (4) and
(6), the rate of dissipation can be written as:

1 = T : L − Ȧ = T : L − ∂A
∂S
: Ṡ = T : L −M : Ṡ≥ 0. (7)

An important concept in the matrix model of Jongschaap is that ofmacroscopic
time reversal, where it is examined to what extend the rate of the state variablesṠ
and the stress tensorT are affected by a reversal of the macroscopic external veloc-
ity gradientL . Here it should be noted that any functionf (L) can be decomposed
in an even partf + and an odd partf − according to:

f (L) = f +(L)+ f −(L) = 1

2
[f (L)+ f (−L)] + 1

2
[f (L)− f (−L)]. (8)

By definition, the parity of the velocity gradientL itself is odd. Recognizing that
state variables are even and assuming that the rate of dissipation is also even, it is
possible to decompose Equation (7) in an even part:

1 = 1+ = T− : L −M + Ṡ+ (9)

and an odd part:

0= T+ : L −M : Ṡ−. (10)

Without loss of generality, the reversible part ofṠ, Ṡ− can be written as:

Ṡ− = 3 : L , (11)

where the tensor3 = 3(M ,L) is of rank four and even with respect toL . A very
general expression for the reversible part of the stress tensorTR = T+ is obtained
by substitution of Equation (11) in Equation (10):

T+ = TR = M : 3 = 3T : M . (12)

A similar relation was first discussed by Grmela (1985) in his Poisson-bracket
formulation of material behaviour.

To complete the matrix model, the fourth-order tensorsη andβ are introduced
to describe the dissipative parts of the stress tensorTD and the time derivative of
the state variablėSD:

TD = T− = η(M ,L) : L and ṠD = Ṡ+ = −β(M ,L) : M . (13)



ELASTO-VISCOPLASTIC DEFORMATION OF GLASSY POLYMERS 275

The tensorsη andβ are (semi-)positive definite and even with respect toL . Equa-
tions (11), (12) and (13) can be written in matrix notation, which concludes the
generic matrix representation of constitutive equations:[

T
Ṡ

]
=
[
η −3T
3 β

]
:
[

L
−M

]
. (14)

2.2. VISCOELASTIC BEHAVIOUR

The matrix model of Jongschaap will now be applied to derive a general “single
mode” viscoelastic relationship. To illustrate the method, the limit case of complete
(isotropic) elastic behaviour will be considered first.

2.2.1. Elastic Behaviour

In case of isotropic elastic behaviour it is assumed that the state variable determin-
ing the free energy is the left Cauchy–Green strain tensorB. Because of isotropy,
the free energyA can be expressed in the invariants ofB: A = A(IB, IIB, IIIB).
The thermodynamic force consequently equals:

M = dA

dB
= ∂A

∂IB

dIB
dB
+ ∂A

∂IIB

dIIB
dB
+ ∂A

∂IIIB

dIIIB
dB

= α1I + α2[tr(B)I − B] + α3det(B)B−1 (15)

with αi the derivatives of the free energy (per unit volume) with respect to the
invariants ofB.

From kinematics it follows that the Truesdell (upper converted) derivative
O

B of
B equals the null tensorO:

O

B= Ḃ− L · B− B · LT = O. (16)

This leads to the evolution equation forB:

Ḃ = L · B+ B · LT = 3 : L with 3ijkl = δikBmj + Bimδjk. (17)

Since there is no dissipation,η andβ vanish and with Equations (14), (15) and (17)
the constitutive equation for isotropic elastic behaviour reduces to:[

T = M : 3 = 2[α3det(B)I + (α1+ α2tr B)B− α2B · B],
O

B= 0,
(18)

which is the well-known expression for Green elastic behaviour (Hunter, 1983).
The objective of this study is to develop a three-dimensional expression for

viscoelastic behaviour, where the volume repsonse is purely elastic. Therefore, as



276 T.A. TERVOORT ET AL.

a second example, the case of purely elastic behaviour will be considered where
the volume deformation and the change of shape are uncoupled.

Because of the independent volume deformation it is assumed that the free en-
ergy is determined by two state variables, which can be derived fromB: the volume
deformation factorJ = detF = √detB (for convenienceJ I will be used, instead
of J ) and the left Cauchy–Green strain tensor at constant volumeB̃ = J−2/3B.
In case of isotropic behaviour, the free energy will be a function ofJ and of the
invariants ofB̃:

A = A(J, IB̃, I IB̃), (I IIB̃ = detB̃ = 1). (19)

Two conjugated thermodynamic forces can be distinguished now, one related to the
volume deformation (N) and one related to the change of shape (M̃ ):

N = ∂A

∂J I
= 1

3

(
∂A

∂J

)
I , (20a)

M̃ = ∂A

∂B̃
= α̃1I + α̃2(tr(B̃)I − B̃T ). (20b)

From kinematics it follows that:

J̇ I = J tr(D)I = J II : L (21a)

˙̃B = L d · B̃+ B̃ · (L d)T =
(
3− 2

3
B̃I
)
: L = 3̃ : L , (21b)

where the fourth-order tensorII is the dyadic product of the second-order identity
tensor with itself, and̃BI is the dyadic product of̃B with I .

The constitutive equation for elastic behaviour now becomes:

T = N : J II + M̃ : 3̃ = Th + Td

= J
(
∂A

∂J

)
I + 2α̃1B̃d + 2α̃2tr(B̃)B̃d + 2α̃2(B̃ · B̃)d,

˙̃B = L d · B̃+ B̃ · (L d)T ,
J̇ I = J tr(D)I .

(22)

Following Simo et al. (1985) and Rubin (1994), a formal separation of the
volume effects from the shape deformation can now be achieved by assuming that
there are two uncoupled contributions to the free energy, a “volumetric” partAv

and an “isochoric” (constant volume) partAi :

A = A(J, IB̃, I IB̃) = Av(J )+ Ai(IB̃, I IB̃), (23)

which results in:

∂A

∂J
= ∂Av

∂J
, α̃1 = α̃1(B̃), α̃2 = α̃2(B̃). (24)
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As might be expected, the hydrostatic stressTh is determined solely by the volume
deformation, whereas the deviatoric stressTd is governed bỹB.

2.2.2. Decomposition of the Rate-of Strain Tensor, Viscoelastic Behaviour

In order to develop a basic viscoelastic constitutive equation for glassy polymers,
the expression for elastic behaviour with a separated volume response, Equa-
tion (22), will be used as a starting point. First it is noted that the evolution equation
for B̃ may also be written as:

◦
B̃= ˙̃B−W · B̃− B̃ ·WT = Dd · B̃+ B̃ ·Dd, (25)

where
◦
B̃ is the Jaumann rate of̃B, and D and W are the symmetric and

skewsymmetric part ofL , respectively.
In case of plastic deformation it is now assumed that the accumulation of elastic

strain (at constant volume) is reduced because of the existence of a (deviatoric)
plastic rate-of-strainDp (Leonov, 1976). Therefore, the evolution equation forB̃ is
modified to:

◦
B̃e= (Dd − Dp) · B̃e + B̃e · (Dd − Dp). (26)

Hence, there is no direct coupling anymore between the state variableB̃e and the
external rate variables, as in the case of elastic deformation in the previous sec-
tion. Therefore, kinematic arguments alone are not sufficient to solve the evolution
equation forB̃e and a constitutive description of the plastic rate-of-strain tensorDp

must be provided.
For materials in general (Krausz and Eyring, 1975) and polymers in specific

(Ward, 1990), it is known that the plastic shear rate is often well modelled by
using an Eyring-flow process. In the Eyring-flow process it is assumed that the free
energy barrier for molecular jump events becomes asymmetric upon the application
of a (shear) stress.

The Eyring flow model can be depicted one-dimensionally as:

γ̇p = 1

A
sinh

(
τ

τ0

)
. (27)

Here,τ is the shear stress anḋγp is the plastic shear. The material constants (at
constant temperature)A andτ0 are related to the activation energy,1H , and the
activation volume,V ∗, respectively:

A = A0 exp

(
1H

RT

)
,

τ0 = RT

V ∗
, (28)
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with A0 a pre-exponential factor involving the fundamental vibration frequency,R

the universal gas constant andT the absolute temperature.
By inversion of the Eyring equation (Equation (27)), a viscosity can be defined:

γ̇p = τ

(τ arcsinh(Aγ̇p)/γ̇p)
= τ

η(γ̇p)
. (29)

The Eyring-flow equation (Equation (29)) is a special case of a one-
dimensional non-Newtonian fluid relationship, which can be generalized into a
three-dimensional form in a standard way (Bird et al., 1987, chapter 4):

Dp = Td/2
τ0 arcsinh(Aγ̇eq/γ̇eq)

= Td/2
η(γ̇eq)

,

γ̇eq =
√

2tr(Dp ·Dp). (30)

The equivalent rate-of-strain,̇γeq, is defined such that in case of a shear flowγ̇eq

reduces to the plastic rate of shearγ̇p (and then Equation (30) reduces to (29)). Note
that the plastic rate-of-strain tensor is parallel to the deviatoric Cauchy stress tensor,
since plastic flow is assumed to be incompressible (trDp = 0). Complementary to
the equivalent rate-of-strain, an equivalent stress (τeq) can be defined satisfying:

γ̇eq= 1

A
sinh

(
τeq

τ0

)
, τeq=

√
1

2
tr(Td · Td). (31)

Substitution of Equation (31) into (30), results in a three-dimensional Eyring
equation, relating the plastic rate-of-strain tensor to the deviatoric part of the
Cauchy-stress tensor:

Dp = Td

2η(τeq)
, η(τeq) = Aτ0

(τeq/τ0)

sinh(τeq/τ0)
= η0aσ (τeq), (32)

with the so-calledshift functionaσ . The Eyring equation can be augmented in
a straightforward way, to allow for pressure dependence and intrinsic softening
effects, but this will not be considered here.

On a fitting level, the Eyring equation is almost indistinguishable from the Ar-
gon equation (Argon, 1973), used in the “BPA-model” (Boyce et al., 1988) and the
“full chain model” (Wu and van der Giessen, 1993), but conceptually there are dif-
ferences (Ward, 1990). In contrast to the Argon theory, which regards yielding as a
nucleation-controlled process, the Eyring approach implies that deformation mech-
anisms are essentially always present and that stress merely changes the rate of
deformation. This is clearly expressed by the functional dependence of the Eyring
viscosity on stress (Equation (32)). There is a linear region at low (equivalent)
stress (τeq� τ0), where the viscosity is equal to thezero-shear viscosityη0 = Aτ0

and all the non-linear stress effects are incorporated into the shift functionaσ . Thus,
according to the Eyring equation, deformation processes at very low stresses, as
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observed in linear viscoelastic measurements, are accelerated by stress. This point
of view has been explored in more detail by Tervoort et al. (1996).

A constitutive formulation for viscoelastic behaviour with an elastic volume
response is now obtained by combining Equation (22) for elastic behaviour with
the new evolution equation for̃Be, Equations (26) and (32), leading to:

T = J
(

dA

dJ

)
I + 2α̃1B̃de + 2α̃2tr(B̃e)B̃de + 2α̃2(B̃e · B̃e)d,

◦
B̃= (Dd − Dp) · B̃e + B̃e · (Dd − Dp),

J̇ I = J tr(D)I ,

Dp = Td

2η(τeq)
.

(33)

It is assumed that the volume changes remain small (J ≈ 1). According to
Hooke’s law, the hydrostatic-stress termTh = J (dA/dJ )I in Equation (33) can
then be written as:Th = K(J − 1)I , whereK is the bulk modulus. Choosing
α̃2 = 0 (only a linear dependence ofTd on B̃e) and identifying 2̃α1 to the shear
modulusG, the constitutive formulation (33) reduces to:

T = K(J − 1)I +GB̃de , (34a)

◦
B̃ = (Dd − Dp) · B̃e + B̃e · (Dd − Dp), (34b)

J̇ I = J tr(D)I , (34c)

Dp = Td

2η(τeq)
, (34d)

η(τeq) = Aτ0
(τeq/τ0)

sinh(τeq/τ0)
. (34e)

Although derived in a different way, this model is similar to Leonov models as
discussed by Rubin (1994) and Baaijens (1991).

3. Experimental

All experiments were performed on test samples produced from extruded sheets
of Makrolon (bisphenol A polycarbonate) on a Frank 81565 tensile tester. Tensile
tests were performed according to ASTM-D638. The planar extension experiments
were performed as described by Whitney and Andrews (1967), using a sample
length-to-width ratio of two, rather than one. Shear experiments were performed
according to ASTM-D4255-83. All experiments were performed on separate sam-
ples of identical thermal history, their age exceeding by far the longest times in the
experiments, to minimize the effect of physical aging.
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4. Results

Some features of the “compressible Leonov model”, which was derived in the
previous section, are demonstrated in this section, using polycarbonate as a model
polymer.

4.1. MATERIAL PARAM ETERS

The material parameters required by the compressible Leonov model are the linear
elastic constantsK andG in Hooke’s law and two non-linearity parameters in the
Eyring viscosity function:A andτ0. The elastic constants were obtained by mea-
suring the Young’s (glassy) modulusE and the Poisson constantν in a tensile test,
at low stresses and strains, which resulted inE = 2350 [MPa] andν = 0.41 [–].
The shear modulus is related toE andν by:G = E/2(1+ ν) = 830 [MPa], and
the bulk modulus by:K = E/3(1− 2ν) = 4600 [MPa].

At the yield point, the plastic rate-of-strain is approximately equal to the to-
tal rate-of-strain. Therefore, according to the Leonov model, at the yield point, a
material behaves as a generalized Newtonian fluid:

T = −pI + 2ηDp = −pI + 2ηD. (35)

Because of the incompressibility constraint, the hydrostatic stressp depends only
on the boundary conditions. The yield point is defined by the moment the stress
remains constant at a constant applied rate-of-strain and is, therefore, completely
determined by the viscosity function (Equation (30)):

η = τ0

γ̇eq
arcsinh(Aγ̇eq), γ̇eq=

√
2(Dp · Dp). (36)

If the yield pointσy is measured in a tensile experiment at a (Hencky) rate-of-strain
ε̇ in the axial direction, Equation (35) leads to: 0 0 0

0 0 0
0 0 σy

 =
 −p 0 0

0 −p 0
0 0 −p

+ 2η(γ̇eq)

 −
1
2ε̇ 0 0

0 −1
2ε̇ 0

0 0 ε̇

 . (37)

From this equation it can be seen that the equivalent plastic rate-of-strain becomes
γ̇eq= ε̇

√
3. The yield stress as a function of rate-of-strain, therefore, equals:

σy = τ0

√
3 arcsinh(Aε̇

√
3). (38)

If the argument of the hyperbolic sine function is large, it can be approximated by
an exponential function and relation (38) may be transformed to:

σy = τ0

√
3 ln(2A

√
3)+ τ0

√
3 ln ε̇. (39)
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Figure 4. Eyring plot for polycarbonate constructed from yield points in various deformation
modes. The solid lines are a best fit using a single set of Eyring parameters.

From the last equation it follows that the Eyring parameters from the Leonov model
can be determined by linear regression, plotting the yield stressversusthe logarith-
mic of the rate-of-strain. This is called an Eyring plot. Note that Equation (39)
depends on the mode-of-deformation, for example, in shear, the Newtonian flow
Equation (35) relates the shear-yield stressτy to the applied rate-of-sheaṙγ by:

τy = τ0 ln(2A)+ τ0 ln γ̇ . (40)

In a planar extension test, the Newtonian flow rule reduces to:

σ pl
y = 2τ0 ln(4A)+ 2τ0 ln ε̇pl, (41)

whereσ pl
y is the yield stress in planar extension at a rate-of-planar extensionε̇pl.

Eyring plots for polycarbonate in various deformation modes are depicted in
Figure 4. The solid lines in this figure are the best fit of a single set of Eyring
parameters:τ0 = 0.9 [MPa] andA = 1.75·1020 [s]. From this figure it is clear that
at the yield point polycarbonate behaves like a generalized Newtonian fluid.

Having determined all the material constants, it is now possible to calculate any
response from the compressible Leonov model. First, a standard uniaxial tensile
test will be considered, in which a tensile bar is elongated in the axial direction
at two different rates of deformation. The tensile bar is stress free in the radial
and tangential direction (see Figure 5a). As a second deformation mode, a plane-
stress shear test, also called “laboratory shear”, is chosen. The configuration of a
plane-stress shear test is shown in Figure 5b, the shear strainγxy = tan(φ).
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Figure 5. Schematic drawing of (a) the uniaxial tensile test and (b) the plane-stress shear test,
the shear strainγ = tan(φ).

Figure 6. Calculated response from the Leonov model for polycarbonate in uniaxial-tensile
and plane-stress shear deformation, at two rates-of-strain.
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The response of the Leonov model (34) for these deformation modes, a uniaxial
tensile and a plane-stress shear test, is given in Figure 6. In this figure it can be
observed that the Leonov model predicts a sharp instead of a gradual transition
from elastic to plastic behaviour, which is very similar to that of an elastic-perfectly
plastic material with a rate-dependent von Mises yield criterion. This similarity
originates from the proportionality of the equivalent stressτeq with the von Mises
equivalent stressτVM (τeq= τVM 1/3

√
3).

4.2. COMPARISON WITH OTHER MODELS

A common way to describe viscoelastic behaviour is the so-calledgeneralized
Maxwell model, often depicted as a number of springs and dashpots in series. In a
Maxwell model it is assumed that the velocity gradient is decomposed in an elastic
and a plastic part:

L = L e + Lp = (De +We)+ (Dp +Wp). (42)

For the kinematic interpretation ofL e andLp usually a so-called unloaded state or
“natural reference state” is introduced (Besseling and van der Giessen, 1994).

In case of isotropic materials, the orientation of the unloaded state is irrelevant
and the plastic spinWp is set equal to the null tensor. Furthermore, it is an ex-
perimental fact that to a good approximation, polymers, like most other materials,
show negligible volume deformation during plastic flow, i.e. trDp = 0. Therefore,
the (deviatoric) plastic rate-of-strain tensorDp is assumed to be codirectional to
the deviatoric Cauchy-stress tensor:

Td = 2η(p, τeq)Dp (43)

with p the pressure (p = 1/3 tr(T)). This equation reflects that the viscosity may
be pressure dependent although the volume response is purely elastic.

The elastic part of the deformation is usually modelled by a rate formulation
of Hooke’s law for isotropic materials. This results in an isotropic relationship
between an objective time derivative of the Cauchy-stress tensor and the elastic
rate-of-strain tensor:

�

T= λ tr(De)I + 2µDe = Le : De. (44)

Here,� denotes an objective rate,λ andµ are the Lamé constants andLe is a tensor
of rank four.

Combining Equations (42), (43) and (44), leads to a standard viscoelastic rate
equation:

�

T= Le : (D− Dp),

Dp = Td

2η(IT , τeq)
.

(45)
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The subject of objective rates is a controversial one in continuum mechanics. By
far the most common choice in plasticity theory is the Jaumann rate or corotational
derivative, which is the time derivative with respect to a corotating reference frame
(Neale, 1981). Applying the Jaumann derivative in Equation (45) results in the
so-calledcorotational Maxwell model:

η(IT , τeq)

G

◦
T +Td = 2η(IT , τeq)D+ λ

(
η(IT , τeq)

G

)
tr(D). (46)

Another well-known rate is the Truesdell or upper-convected time derivative. As
already mentioned above, this is the time derivative with respect to a codeforming
reference frame (Bird et al., 1987, chapter 9). Using the Truesdell derivative in
Equation (45) results in what will be denoted as the “Truesdell-rate model”:

η(IT , τeq)

G

O

T +Td = 2η(IT , τeq)D+ λ
(
η(IT , τeq)

G

)
tr(D). (47)

It can be shown that integration of the Truesdell-rate formulation of Hooke’s law
results in hyperelastic behaviour, whereas integration of the Jaumann rate results
in a hypoelastic law (van Wijngaarden, 1988; Sansour and Bednarczyk, 1993) (in
contrast to a hypoelastic relation, a hyperelastic law is a constitutive equation for
elastic behaviour, which can be derived from a strain-energy potential). Therefore,
if large elastic deformations occur like in polymer flow, the Truesdell-rate is more
attractive from a physics point of view. This was, for instance, shown by Beris and
Edwards (1990), who found that their Poisson-bracket formulation of continuum
mechanics could only accommodate the upper-convected time derivative (and its
counterpart, the lower-convected derivative).

From the Truesdell-rate model (47) and the corotational Maxwell model (46),
only the latter is approximately equal to the compressible Leonov model (34) in the
limit of small elastic strains. This can be shown by taking the Jaumann derivative
of the expression for the stress tensor in the Leonov formulation, Equation (34a):

◦
T= KJ̇ I +G

◦
T̃e −G3 tr( ˙̃Be)I . (48)

Substitution of the evolution equations forB̃e andJ , Equations (34b) and (34d) at
small isochoric-elastic and volume strains (B̃e ≈ I andJ ≈ 1), then results in the
corotational Maxwell model:

◦
T= K tr(D)I + 2G(Dd − Dp) = Le : (D− Dp). (49)

However, taking the Truesdell derivative of Equation (34a), results in:

O

T= KJ̇ I − 2K(J − 1)D+G
O

B̃e −G
3

tr( ˙̃Be)I . (50)
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Again substituting the evolution equations forB̃e andJ at small elastic strains, now
results in:

O

T = 2G(Dd − Dp)+K tr(D)I − 2K(J − 1)D

= Le : (D− Dp)− 2K(J − 1)D. (51)

In this expression an extra term appears, compared to the Truesdell-rate model
(47), which cannot be neglected when the elastic rate-of-strain tensorDe is small
(D ≈ Dp). In contrast to the Jaumann derivative, the Truesdell derivative of a
deviatoric tensor, in general, is not deviatoric. Therefore, the Truesdell derivative
fails to preserve the (physically meaningful) distinction between the hydrostatic
part and the deviatoric part of the Cauchy-stress tensor (Sansour and Bednarczyk,
1993).

It is possible, however, to reduce the compressible Leonov model (34), at small
elastic strains, to a slightly modified Truesdell-rate model. For this purpose, an
extra-stress tensorTE is defined, of which the deviatoric part is equal to the
deviatoric part of the Cauchy-stress tensor:

TE = G(B̃e − I); TdE = Td. (52)

Taking the Truesdell derivative of this expression, followed by substitution of
the flow rule for Dp, Equation (43), and the evolution laws forB̃e and J ,
Equations (34b) and (34d), at small elastic strains, results in:

T = K(J − 1)I + TdE,

η(IT , τeq)

G

O

TE +TdE = 2η(IT , τeq)D

J̇ = tr(D).

(53)

Apart from the stress dependence of the viscosity, the Truesdell-rate equation
for the extra-stress tensorTE, Equation (53), corresponds to the upper-convected
Maxwell model, well known from polymer rheology (Larson, 1988, chapter 1). In
the next section, this model, to be denoted as the UCM model, will be evaluated
as well. Note that the corotational Maxwell model, Equation (46), can be writ-
ten in a similar form as Equation (53), using only the Cauchy-stress tensor, due
to the fortunate fact that the Jaumann derivative of a deviatoric tensor is always
deviatoric:

T = Td +K(J − 1)I ,

η(IT , τeq)

G

◦
T +Td = 2η(IT , τeq)D,

J̇ = tr(D).

(54)

The performance of the compressible Leonov model and the “standard” rate
equations involving the Truesdell and the Jaumann derivative are mutually com-
pared and evaluated by means of two simple homogeneous deformation tests, using
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Figure 7. Stress-strain curves for a uniaxial tensile test (Txx versusεxx) and a plane-stress
shear test (Txy versusγxy), both at a rate-of-deformation of 10−3 [s−1].

polycarbonate as a model polymer. The material parameters areG = 830 [MPa],
K = 4600 [MPa] (which is equivalent toE = 2350 [MPa] andν = 0.41 [–]),
A = 1.75 · 1021 [s−1] and τ0 = 0.89 [MPa]. First, a standard uniaxial tensile
test will be considered, in which a tensile bar, stress-free in the radial and the
tangential direction, is elongated in thex-direction at a rate-of-deformation of 10−3

(see Figure 7). As might be expected from these single mode models, they all show
a sharp instead of a gradual transition from elastic to plastic behaviour.

The calculated volume response as a function of logarithmic strain, is depicted
in Figure 8. All four models show a “correct” volume response in the elastic region,
according to Hooke’s law. However, the Truesdell-rate model displays a volume
decrease during plastic flow, which is not in accordance with the assumption of
incompressible flow during plastic deformation.

Second, a plane-stress shear test will be calculated. The Truesdell-rate model
is not considered anymore because of its anomalous volume decrease in a tensile
test. Virtually the same behaviour is obtained for all three models, Figure 7. How-
ever, the calculated normal stess in they-direction,Tyy, differs markedly for the
three models considered, as is depicted in Figure 9. In contrast to the corotational
Maxwell model, both the compressible Leonov model and the UCM model display
“correct” neo-Hookean behaviour in the elastic region, where the normal stress in
the y-direction is a quadratic function of the shear strain. This is to be expected,
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Figure 8. Relative volume deformation as a function of logarithmic strain for a uniaxial tensile
test at a rate-of-deformation of 10−3 [s−1].

Figure 9. Normal stress in they-direction as a function of shear strain at a rate-of-deformation
of 10−3 [s−1].
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Figure 10. First normal stress differenceN1 (N1 = Txx − Ty) as a function of shear strain
at a deformation rate of 10−3 [s−1].

since integration of the Jaumann-rate version of Hooke’s law does not result in
hyperelastic behaviour. In contrast, at higher strains, the UCM model predicts
zero normal stress in they-direction, whereas shear flow of a polymeric substance
normally results in negative normal stresses (Bird et al., 1987, chapter 3), as it is
displayed by the corotational Maxwell model and the compressible Leonov model.
The Leonov model provides a smooth transition from neo-Hookean behaviour
in the elastic region, to the more realistic response of the corotational Maxwell
element during yielding.

It is interesting to note that the first normal stress difference,N1 (N1 = Txx −
Tyy), is virtually equal for all three models considered, as can be concluded from
Figure 10.

Apparently, at small elastic strains, all three models differ mainly in the
hydrostatic-stress contribution, resulting in different absolute values of the normal
stress themselves. This can also be derived from the calculated volume response,
see Figure 11, recalling that in these models, the relative volume change is directly
related to the hydrostatic stress.
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Figure 11. Relative volume deformation as a function of shear strain for a plane-stress shear
test at a rate-of-deformation of 10−3 [s−1].

5. Discussion and Conclusions

In this study a so-called “compressible Leonov model” has been introduced which
can be depicted as a single Maxwell model employing a relaxation time dependent
on an equivalent stress proportional to the von Mises stress. The model has been
derived using a generic formalism for the development of thermodynamically con-
sistent constitutive equations. It was assumed that the free energy of the system
at constant temperature, which is a measure for the amount of stored energy, is
determined by two state variables, the isochoric elastic strain and the volume strain.
The plastic rate-of-strain was constitutively described by stress-activated Eyring
flow.

A comparison has been made between the Leonov model and two standard
constitutive equations for the description of relaxation behaviour, the Truesdell-
rate and the corotational Maxwell model. It was concluded that neither of these
two standard models is able to describe plastic deformation accompanied by large
elastic deformations, as it can occur during strain hardening of glassy polymers.
Integration of the corotational Maxwell model is known the result in hypoe-
lastic elastic behaviour, whereas integration of the Truesdell model results in a
volume decrease during plastic flow in a tensile test. Based upon the Leonov
model, a slightly modified Truesdell-rate model was proposed, the so-called upper-
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convected Maxwell model (UCM model), for which the volume remains constant
during plastic flow in a tensile experiment.

In a plane-stress shear test, the UCM model, the corotational Maxwell model
and the Leonov model only seem to differ in their volume response. The coro-
tational Maxwell model shows no volume response at all, which is somewhat
unrealistic for a plane-stress configuration. Contrary, the compressible Leonov
model and the UCM model display a volume increase in the elastic region, but
the volume does not remain constant after yielding as in the tensile test. It is doubt-
ful whether experimental data can shed any light on these results. In principle,
the normal stress in they-direction can be measured experimentally up to the
yield point. After the yield point however, shearbands will develop, prohibiting a
straightforward interpretation of the data. Furthermore, even if it would be possible
to extract useful data after the yield point, the effects mentioned would probably
be overwhelmed by the strain-hardening response. Since the models considered
here are all “single mode” models, even the response in the linear viscoelastic
region will not be predicted realistically. Also, the strain-hardening response is
not captured by the models discussed in this paper. Furthermore, in all the single
mode models discussed in this paper, the plastic deformation is irreversible. This is
realistic for metals, but does not necessarily apply to polymers, which can return to
their undeformed shape upon heating the sample. It must be emphasized, however,
that the compressible Leonov model can easily be extended to include multiple
relaxation times, in which case a realistic non-linear viscoelastic description of the
deformation behavior (including strain hardening) of polymers can be obtained. A
theoretical and experimental study of the full non-linear viscoelastic response up
to the yield point of polycarbonate, is discussed by Tervoort et al. (1996).
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