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Abstract 

This paper deals with a constitutive model of particulate-reinforced composites which can 

describe the evolution of debonding damage, matrix plasticity and particle size effects on 

deformation and damage. An incremental damage model of particulate-reinforced composites 

based on the Mori-Tanaka's mean field concept has been extended to consider the particle size 

effects by using the Nan-Clarke's simple method. The particle size effect on deformation is 

realized by introducing dislocation plasticity for stress-strain relation of in-situ matrix in 

composites, and the particle size effect on damage is described by a critical energy criterion 

for particle-matrix interfacial debonding. For composites containing particles of various sizes, 

the effects of particle size distribution is incorporated into the model. Influence of debonding 

damage, particle size and particle volume fraction on overall stress-strain response of 

composites is discussed based on numerical results. 

 

Keywords:  A. Metal-matrix composites (MMCs); A. Particle-reinforcement; 

B. Debonding; C. Micro-mechanics 

 

1.   Introduction 

The technique to improve mechanical performance of materials by dispersing particles 

in a matrix has been applied to ceramic-matrix, metal-matrix and polymer-matrix composites, 

and these materials are called particulate-reinforced composites. In particulate-reinforced 

composites, a variety of damage modes such as fracture of particles, interfacial debonding 

between particles and matrix, and cracking in matrix adjacent to hard particles develop from 

an early stage of deformation under monotonic and cyclic loads. These damage modes 

strongly affect mechanical performances such as stress-strain relation, tensile strength and 

fracture toughness [1-8]. It is well known that in particulate-reinforced metal-matrix 

composites mechanical performances also depend on particle size; the particle size is smaller, 

yield and flow stresses are more enhanced, while fracture toughness and ductility are often 

more reduced [9,10]. On the development of high-performance composites containing 

nano-particles, it is important to make clear the particle size effects and progress of damage in 
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particulate-reinforced composites. In the present report, a constitutive model of 

particulate-reinforced composites taking account of the particle size effects and damage 

evolution has been proposed. 

The influence of progressive damage on stress-strain relation of particulate-reinforced 

composites was studied with two schemes. Finite element analysis for a unit cell containing 

one particle in a matrix was widely applied to fracture or debonding of particles [11-18]. The 

unit cell analysis has an advantage to provide details of damage process in one particle. In the 

unit cell analysis, however, because it is assumed that all particles are in the same stage of 

damage process, we can not obtain overall stress-strain response of realistic composites 

containing intact particles and damaged particles. To overcome this problem, some 

modifications were proposed; for examples, the damaged cell model [12,14] and 

multi-particles cell model [15-18]. On the other hand, some micromechanics-based models 

were developed. In the micromechanics-based models, the damage evolution in composites 

can be described by transition of volume fraction from intact particles to damaged particles. 

Tohgo and Chou [19] and Tohgo and Weng [20] proposed an incremental damage model of 

particulate-reinforced composites taking into account plasticity of a matrix and progressive 

debonding damage of particles based on the Eshelby's equivalent inclusion method [21] and 

Mori-Tanaka's mean field concept [22]. This model was also extended to progressive cracking 

damage of reinforcements in discontinuously reinforced composites [23,24]. Chen et al. [25] 

developed a constitutive relation of particulate-reinforced viscoelastic-matrix composites with 

progressive debonding damage based on the same scheme. Matous [26] presented a 

constitutive relation of particulate-reinforced composites with debonding damage based on 

the transformation field analysis [27] and imperfect interface model [28] and applied it to 

damage analysis of glass-elastomer composites. Maire et al. [29] and Gonzalez and Llorca 

[30] separately proposed progressive cracking damage models of particulate-reinforced 

composites by applying an incremental self-consistent model developed by Corbin and 

Wilkinson [31] to the materials consisting of undamaged and damaged regions which are 

characterized by finite element analysis of unit cells. Ju and Lee [32] and Sun et al. [33] 

regarded the partially-debonded particles in composites as fictitious orthotropic inclusions 
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without debonding according to Zhao and Weng [34], and proposed a progressive debonding 

damage model of particulate-reinforced composites based on the ensemble-volume averaging 

procedure. Some of the micromechanics-based models have an advantage of easy 

implementation into a finite element method. Tohgo et al. [35] and Tohgo and Itoh [36] 

introduced their damage model into a finite element method, and carried out damage analysis 

of a crack-tip field in particulate-reinforced composites. Based on the experimental and 

numerical results, they discussed roles of intact particles and debonding damage on 

toughening of composites.  

The particle size effects on overall deformation behavior of composites come from the 

particle size effects on deformation and on damage. According to conventional continuum 

mechanics analysis of composites, magnitude of microscopic stress/strain depends on 

macroscopic stress/strain and microstructure, and distribution of microscopic stress/strain is 

uniquely determined on the basis of reference length of microstructure such as particle 

diameter or inter-particle distance. This means that the gradient in distributions of 

microscopic stress and strain is higher in composites with finer microstructure. In some 

composite systems, interphase with thickness of a characteristic length scale is created 

between particles and matrix. If mechanical properties of the interphase are different from 

those of the particles and matrix, the overall deformation behavior of composite depends on 

particle size because a volume fraction of the interphase increases with a decrease in particle 

size even if a fixed particle volume fraction. As the fracture strength of brittle materials is 

higher when the size of sample is smaller, the fracture and debonding of particles in 

composites is harder to occur on smaller sized particles. To describe these particle size effects 

in composites, it is tried to introduce the strain gradient plasticity for deformation behavior of 

the matrix, the interphase between particles and matrix, and the damage criterion considering 

the particle size effect on damage process into composites models. Niordson and Tvergaard 

[37], and Xue et al. [38] carried out unit-cell analysis for discontinuously reinforced 

composites by using a finite element method based on the strain gradient plasticity [39], and 

discussed the size effects of reinforcements on overall deformation behavior of composites. 

Nan and Clarke [40] extended the Nan-Yuan's effective medium approach [41] by introducing 
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the particle size effects into stress-strain relation of in-situ matrix in composites and damage 

criterion of particles. Liu and Sun [42,43] and Jiang et al. [44] developed the 

micromechanics-based models of particle reinforced composites by taking account of the 

interphase between particles and matrix and discussed the particle size effect on deformation 

due to interphase. For the particle size effect on damage, the Weibull probability given in 

terms of particle stress and size is used to describe nucleation and progress of particle damage 

as in references [14,16,18,2529,30]. 

In this paper, the incremental damage model by Tohgo, Chou and Weng [19,20] has 

been extended to consider the particle size effects by using the Nan-Clarke simple method 

[40]. Numerical analyses of stress-strain response under uniaxial tension are carried out for 

composites containing constant sized particles and for composites containing various sized 

particles. Influence of debonding damage, particle size and particle volume fraction on overall 

stress-strain response of composites is discussed based on the numerical results. 

 

2.   Incremental damage theory 

Tohgo and Chou [19] developed an incremental damage model, which describes 

plasticity of a matrix and progressive debonding damage of particles in particulate-reinforced 

composites, based on the Eshelby's equivalent inclusion method [21] and Mori-Tanaka's mean 

field concept [22]. The incremental damage model of particulate-reinforced composites is 

briefly explained. For the model, the limitations and comparison with other models were 

already discussed in references [19,20]. The incremental constitutive relation (dεij - dσij 

relation) is described by the form decomposed into hydrostatic part (dεkk - dσkk relation) and 

deviatric part (dεij' - dσij' relation). dσij and dεij are incremental total stress and strain, 

(1/3)dσkk, (1/3)dεkk and dσij', dεij' are their hydrostatic and deviatric parts, respectively. The 

incremental total stress and strain are given by  

     ijkkijij δσσσ d
3
1'dd +=     ,      ijkkijij δεεε d

3
1'dd +=      (1) 

where δij is the Kronecker delta. In the composite system elastic spherical particles are 

uniformly dispersed in an elastic-plastic matrix. 
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2.1.   Properties of constituent materials 

Elastic incremental stress-strain relation of isotropic particles follows as  

kkkk σ
κ

ε d
3

1d
p

=   ,      'd
2

1'd
p

ijij σ
μ

ε =  (2) 

where κp and μp are the bulk modulus and shear modulus of the particles. Elastic behavior of 

the matrix is also taken to be isotropic with the moduli κ0 and μ0. κ0, κp and μ0, μp are related 

to the Young's moduli E0, Ep and Poisson's ratios ν0, νp by 

)21( 3 i

i
i
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ν

κ
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=     ,      )1( 2 i

i
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ν

μ
+

=   ,    por    0=i  (3) 

Elastic-plastic deformation of the matrix is described by the Prandtl-Ruess equation (the 

J2-flow theory), which is approximated by the following isotropic relation [19]: 

          d
3

1d
0

kkkk σ
κ

ε =   ,      'd
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1'd
0

ijij σ
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=
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and μ0' and ν0' are the tangent shear modulus and tangent Poisson's ratio of the matrix under 

elastic-plastic deformation [45]. H' is the work-hardening ratio of the matrix: 

         pl
e  

e

d
d

'
ε
σ

=H   (6) 

where 

2/1

e ''
2
3

⎟
⎠
⎞

⎜
⎝
⎛= ijij σσσ        (7) 

  
2/1

plpl
e

pl dd
3
2d ⎟

⎠
⎞

⎜
⎝
⎛= ijij εεε   (8) 

σe and dεe 
pl are the von Mises' equivalent stress and incremental equivalent plastic strain, 

respectively, and dε 
pl

ij is incremental plastic strain. Eq. (4) is strictly valid for monotonic 

proportional loading. 
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In the composite system the stress and strain of the particles and matrix are represented 

with superscripts "p" and "0", respectively, and those of the composite are shown by symbols 

without superscript. 

2.2.   Incremental constitutive relation of composite with progressive debonding damage 

A composite under consideration contains spherical particles with a finite concentration 

fp0 in a matrix. Fig. 1(a) shows a schematic illustration of a composite in debonding damage 

process under high triaxial stress condition. The composite contains intact particles with 

volume fraction fp
in, fully-debonded particles with volume fraction fp

fd, and partially-debonded 

particles with volume fraction fp
pd [8,46]. The stress of a particle is released by nucleation and 

progress of debonding damage, and eventually is completely released by full debonding. Even 

if not full debonding, if the particle loses almost whole stress, it can be regarded as a 

fully-debonded particle and acts as a void in the composite. The stress of intact particles in the 

micromechanics model is uniform and given by ij
pσ , and average stresses of intact, 

fully-debonded and partially-debonded particles are approximately described by 

ijij k pp  σσ =〉〈 ; where k=1 for intact particles, k=0 for fully-debonded particles, and 0<k<1 

for partially-debonded particles depending on debonding area. As the coefficient k is related 

to volume fraction of each particle as in Fig. 1(c), the composite overall stress is given as 

follows: 

dfkf ij
f

ijij    )1( p
0

0
p0

p0 σσσ ∫+〉〈−=  

ijij ff p
p

0
p0  )1( σσ +〉〈−=  (9) 

where, 〉〈 ij
0σ  is average stress of the matrix and 

dfkf
f

 p0

0p ∫=  ,       pp0d fff −=  (10) 

The composite shown in Fig. 1(a) can be regarded as a composite containing intact particles 

with fp and voids with fd as shown in Fig. 1(b). Then, the progress of damage in the 

composites is described by transition of a volume fraction from intact particles to voids and 

corresponding stress redistribution. There is limitation due to regarding fully-debonded 

particles as voids because the debonded particles can sustain the compressive stress. 
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Therefore, the present model is confined to deformation and damage behavior under high 

triaxial stress condition for composites with relatively weak interface. 

With the modeling as mentioned above, the composite is statistically homogeneous and 

macroscopically isotropic before and after damage. Fig. 2 illustrates the states before and after 

incremental deformation of the composite in damage process. Solid and open circles in the 

figure represent intact particles and voids (fully-debonded particles), respectively. In the 

composite, the microscopic stresses/strains in intact particles and matrix are generated due to 

material heterogeneity, in addition to the overall macroscopic stress/strain. The process of 

debonding damage in the composite can be simulated by the following assumptions. 

(1) Debonding of particles is controlled by a critical value of particle stress because the 

interfacial stress between particles and matrix is described as a function of the particle stress 

[25,47]. In the present study, the critical stress is given by a critical energy criterion for 

particle-matrix interfacial debonding. 

(2) During debonding, the stress of debonded particle is released and the site of particle 

is regarded as a void. 

(3) A volume fraction of debonded particles turns into a void volume fraction, and 

progressive damage in the composite is expressed by a decrease in an intact particle volume 

fraction and an increase in a void volume fraction. 

If the volume fraction of particles to be debonded in incremental deformation process is 

denoted by df, the volume fractions of intact particles and voids will change from fp and fd for 

the state before deformation (Fig. 2 (a)) to fp-df and fd+df for the state after deformation (Fig. 

2 (b)), respectively. To describe deformation and damage of the composite in this incremental 

process, the Eshelby's equivalent inclusion method and Mori and Tanaka's mean field concept 

were applied for the heterogeneous body containing intact particles with fp-df, voids with fd 

and particles to be debonded with df [19]. For this incremental deformation, the strain-stress 

relation of the composite is given as follows: 

  d 
3

1d
3
1d p

  
dt

fkkkkkk σ
κ

σ
κ

ε +=     (11) 
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(dσkk, dσij') and (dεkk, dεij') are the incremental overall stress and strain of the composite, and 

(σ pkk, σ pij') denotes the current stress of the particles. With spherical particles and voids the 

constants α and β follow from Eshelby's relations [21]: 

         
0

0
1
1

3
1

ν
ν

α
−
+

=   ,       
0

0
1

54
15
2

ν
ν

β
−
−

=    (19) 

Incremental average stresses of the matrix and particles are given by 
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Furthermore, incremental average strains of the matrix, particles and voids are given by 
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2.3.   Equivalent stress of the matrix in composite 

To describe the matrix plasticity, we need to estimate the von Mises’ equivalent stress 

of the matrix. In the composite, as the matrix deforms heterogeneously, the microscopic stress 

and von Mises’ equivalent stress are not uniform but distributed in the matrix. On the other 

hand, the present model gives the average microscopic stress of the matrix. Tohgo and Weng 

[34] proposed expression for average von Mises’ equivalent stress of the matrix taking 

account of heterogeneous deformation in the composite. According to the theory, the 

equivalent stress σ 0e of the matrix in the composite before plastic deformation and damage is 

given by  

( ) ( ) ( )20
m 

0

0p
 

p
 p0

p0

020
e 

3
2

1
3

σ
κ
μ

εσ
μ

σ −−
−

= ijijfU
f

  (30) 

where, σ 0m (=(1/3) σ 0kk) is average hydrostatic stress of the matrix. U is energy of a unit 

volume of the composite: 

ijijU εσ
2
1

=    (31) 

After the incremental deformation the equivalent stress of the matrix is estimated by 

σ 0e+dσ 0e, where σ 0e and dσ 0e denote current equivalent stress before the incremental 
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deformation and its increment, respectively. In numerical analysis σ 0e is known and dσ 0e is 

given by 

    ⎟
⎠
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⎜
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= p
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where dU is incremental energy of the composite and dR is energy released by debonding 

damage: 

ijijU εσ dd =    (33) 

         damd
2
1d ijijR εσ=   (34) 

where dε ij
dam is strain increment due to damage corresponding to the second terms in Eqs. 

(11) and (12).  

If the matrix is in elastic-plastic state, the elastic moduli μ0 and ν0 in all equations in 

Sections 2.2 and 2.3 reduce to their elastic-plastic counterparts μ0' and ν0', respectively.  

In deformation and damage behavior of particulate-reinforced composites, the particle 

size is an important factor in addition to the particle volume fraction. However, the above 

model based on the Eshelby's equivalent inclusion method and Mori-Tanaka's mean field 

concept can not describe the influence of particle size on elastic-plastic deformation.  

 

3.   Implementation of particle size effects  

3.1  Particle size effect on deformation 

In order to introduce particle size effects into the above incremental damage theory, the 

Nan-Clarke's simple method [40] has been used.  

Particle size effect on deformation of the matrix is realized by introducing the 

dislocation plasticity for stress-strain relation of the in-situ matrix in composites. The 

stress-strain relation is given by Ramburg-Osgood relation as follows: 
n

EE

/1

0
0  

0
e  

0

0
0  

0

0
e  0

e  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

σ
σσλσε  (35) 

where, σ0
e and ε0

e are the equivalent stress and strain, E0, σ0
0 and n are the Young's modulus, 
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yield stress and work-hardening exponent, respectively, and λ is material constant. In the 

conventional model, these material constants are determined for Eq. (35) to fit the uniaxial 

stress-strain relation of a bulk matrix material. Nan and Clarke [40] assumed that σ0
0 is 

affected by particles in composites, and then modified as follows: 

( ) 0
0  Bulk

0
0  

0
0  σΔσσ +=  (36) 

where, (σ0
0)Bulk is the yield stress for a bulk of the matrix material. Δσ0

0 expresses hardening 

of the matrix caused by particles in composites and is given by the dislocation plasticity as 

follows: 
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b
d

bf θΔΔ
μγ

ε
μη (37) 

where, μ0, b, ε0p
e are the shear modulus, Burgers vector and equivalent plastic strain of the 

matrix, respectively, and d is particle diameter. ξ (= ~1.0), η (= ~0.4), ζ (= ~2.0) and γ (= 

~1.0) are constants. Δσ0
OR is the Orowan stress for dislocation to pass through aligned 

particles, Δσ0
ISO and Δσ0

KIN are isotropic and kinematic contributions due to the effects of 

strain gradient plasticity related to the geometrically necessary dislocations for heterogeneous 

deformation around a particle in composites [48], and Δσ0
CTE is a contribution of the 

dislocations stored in fabrication due to thermal expansion mismatch Δθ and temperature 

change ΔT [49,50]. ΔT is the difference between fabrication or heat treatment temperature and 

room temperature. 

Contributions of the four kinds of hardening mechanisms seem to depend on 

composites. In the present investigation, for the contributions of each hardening mechanism, a 

nonlinear form as in Eq. (37) was assumed [51]. 

Kouzeli and Mortensen [10] reported the detailed experimental results on Al2O3 or B4C 

particulate-reinforced pure aluminum composites which supported the dislocation hardening 

of in-situ matrix depending on particle size or inter-particle distance. 
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3.2  Particle size effect on debonding damage 

In particulate-reinforced composites, it is well known that debonding damage of 

particles is easy to occur on large particles and hard to occur on small particles. To consider 

the particle size effect on damage, it is assumed that debonding damage is controlled by a 

critical energy criterion for particle-matrix interfacial debonding. Let us consider a particle 

with diameter of d in a composite. The particle encounters debonding damage when the 

microscopic tensile stress of the particle reaches a critical value σ pcr. Since elastic strain 

energy stored in the particle is released and the void surface is created by full debonding 

damage, the following relation is obtained from energy balance during debonding process of a 

particle: 

( ) 23

p

2
cr

p
 dd

E
Γσ

∝  (38) 

where Γ is the specific interface energy and Ep is the Young's modulus of the particle. Eq. (38) 

gives a proportional relationship between σ pcr and dE Γp  [25]. In the present 

investigation, the following relation is used for the sake of simplicity. 

d
E Γ

σ
 p

cr
p =  (39) 

Furthermore Γ means the critical strain energy release rate for particle-matrix interfacial 

debonding from a viewpoint of fracture mechanics. By introducing a critical stress intensity 

factor KC defined by Γ =KC
2 / Ep, Eq. (39) is described by 

d
KCcr

p =σ  (40) 

 As Γ or KC is uniquely given for combination of constituent materials in composites, Eqs. 

(39) and (40) represent the particle size effect for debonding damage. 

 

     By this implementation of particle size effects into the incremental damage theory, we 

need new parameters ξ, η , ζ  and γ in Eq. (35) and Γ in Eq. (39) or KC in equation (40). The 

values of ξ, η , ζ  and γ are roughly suggested by Nan and Clarks [40], and the value of Γ or KC 

would be basically obtained by fracture toughness tests for the interface between constituent 
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materials. At present, since there are no data available for these parameters, they have to be 

determined by fitting so that the numerical stress-strain relations describe the experimental 

results. In the fitting procedure, by starting from the suggested values by Nan and Clarke for ξ, 

η , ζ  and γ, and from the fracture toughness KIC of particle material for KC, first ξ , η, ζ  and γ can be 

determined from an early stage without damage of experimental stress-strain relation, and 

then KC can be determined from a final stage with mach damage. 

 

4.   Analysis of composites containing constant sized particles 

4.1.  Numerical procedure 

Numerical analyses were carried out on SiC particle reinforced aluminum (Al) alloy 

composite (SiC/A356-T4) under uniaxial tension [9,40]. In uniaxial tension, the stress 

triaxiality defined by a ratio of hydrostatic stress to equivalent stress is about 0.33 and may be 

high enough to cause debonding damage of particles [35]. The present model is applied to 

obtain the relationship between the stress (σxx) and strain (εxx) in the tensile direction of the 

composite under uniaxial tension. The material properties of Al-alloy matrix were E0=70GPa, 

ν0=0.33, (σ 00)Bulk= 86MPa, n=0.212, λ=3/7 and b=0.283nm. The material properties of SiC 

particles were Ep=427GPa and ν p=0.17. It was assumed that the composites contained 

constant sized particles with 15% of a particle volume fraction and then the particle size was 

changed in the analyses. The thermal expansion mismatch Δθ and temperature change ΔT for 

T4 heat treatment were θ=19.3×10−6/°C and ΔT=520°C. In Eq. (37), the values of ξ, η, ζ  and 

γ were assigned as 1.0, 0.4, 2.0 and 1.0, respectively, as in the Nan-Clarke's model for the 

comparison between the present model and the Nan-Clarke's model. In the composites with 

debonding damage, Γ=15.8N/m (KC=2.6MPa m ) was used for interfacial debonding 

between particles and matrix (see Section 5). 

4.2.  Influence of particle size 

Fig. 3 shows the particle size effects on stress-strain relations of the composites without 

debonding damage and comparison between the present model and the Nan-Clarke's model 

[40]. If the particle size is larger than 50μm, the stress-strain relations converge on a 

conventional result by the incremental damage model without particle size effects (ID model). 
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However, if the particle size is smaller than 10μm, the dislocation strengthening becomes 

dominant with decreasing particle size as shown in Fig. 3. Fig. 3 also shows that the present 

model predicts almost the same stress-strain relations as the Nan-Clarke's model. The present 

model is based on the Eshelby's equivalent inclusion method and Mori-Tanaka's mean field 

concept as a composite model and adopts the tangent modulus for matrix plasticity, while the 

Nan-Clarke's model is based on the effective medium approach and the secant modulus for 

matrix plasticity [40]. 

Fig. 4 shows the stress-strain relations of the composites in which the particle size is 

0.5μm and only one term in Eq. (37) is considered. It is found from Fig. 4 that contributions 

of the dislocations stored in fabrication due to thermal expansion mismatch (Δσ0
CTE) and the 

strain gradient in the matrix (Δσ0
ISO and Δσ0

KIN) are dominant as compared with that of the 

Orowan mechanism (Δσ0
OR). As shown in Eq. (37) and Fig. 4, Δσ0

OR and Δσ0
CTE mainly 

contribute to an increase in the initial yield stress and Δσ0
ISO and Δσ0

KIN contribute to the 

plastic hardening in flow process. The contribution of each term of Eq. (37) on the 

stress-strain response depends on the constants ξ, η, ζ  and γ. The characteristics of 

contribution as in Fig. 4 are useful in the determination of the values of ξ, η, ζ  and γ. 

4.3.  Influence of debonding damage 

In the composites with constant sized particles, Eq. (39) is spontaneously satisfied and 

debonding damage occurs on all particles. Numerical analyses of debonding damage in the 

composites with constant sized particles were carried out as follows. When Eq. (39) was 

satisfied at a certain deformation stage in the numerical analysis for strain increments, the 

progress of debonding damage was analyzed for damage increments under the strain 

increment of zero (dεkk=0, dεij'=0) in Eqs. (11) and (12). After becoming a porous material of 

fp=0 and fd=fp0 the numerical analysis was continued for strain increments. This numerical 

analysis corresponds to the finite element analysis of debonding damage process in a unit cell 

containing one particle. 

Fig. 5 shows the composite macroscopic stress and microscopic average stresses in the 

particles and matrix against to the composite macroscopic strain obtained by the damage 

analysis of the composite with particles of 30μm in diameter. Before debonding damage the 
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particles carry high stress. In the damage process, as the particle stress decreases to zero with 

progress of damage, the stresses of composite and matrix also decrease and the matrix goes 

back into elastic state. After that, the matrix yields plastically again for further deformation. 

Therefore, as shown in Fig. 5, a pop-in designated by a point P is obtained in the stress-strain 

relation. Because the composite becomes a porous material after debonding damage, the 

microscopic matrix stress is higher than the composite macroscopic stress. 

Fig. 6 shows the influence of particle size on the stress-strain relations of the 

composites with debonding damage. The stress-strain relations of the matrix material and 

porous material containing voids of 15% are also shown in Fig. 6. The composite stress 

decreases down with debonding damage, and then after debonding damage the stress-strain 

relation of the composite is almost consistent with that of the porous material because the 

composite behaves as a porous material. The following two points are noticeable in Fig. 6. 

The particle size is smaller, the debonding damage is delayed more; this is obvious from Eq. 

(39). The stress-strain relation after debonding damage is slightly higher than that of the 

porous material; this might be caused by hardening of matrix material due to the particle size 

effects derived by the plastic deformation before debonding damage, and the hardening is 

more outstanding in a composite with smaller sized particles. 

The step-wise stress decrease and pop-in on the stress-strain relations in Figs. 5 and 6 

are the result of strict application of the deterministic criterion Eq. (39) to debonding damage 

in the composites with constant sized particles, and the similar results are also obtained in the 

finite element analysis of a unit cell analysis [11-13]. If the probabilistic Weibull criterion is 

used for the nucleation and progress of debonding damage, the smooth stress-strain relation 

can be obtained. The step-wise stress-strain relation due to the deterministic criterion may 

suggest that the nucleation of debonding damage can be a trigger of final fracture in such 

composites, or that the probabilistic criterion is more realistic than the deterministic criterion. 

Although the damage criterion may be open to discussion, in the present report we continue 

the numerical analysis based on the deterministic criterion Eq. (39) in the following section. 

 

5.   Analysis of composites containing various sized particles 



17 

5.1.  Numerical procedure 

Now, we consider composites containing various sized particles. It is assumed that 

distribution of particle size in a composite is given by probabilistic distribution p(d) 

represented by number frequency. In the micromechanics-based model, the particles are 

uniformly and randomly distributed in the matrix and the position of each particle is not 

recognized, while the disturbance of stress field in matrix caused by particles is considered. 

As the size of the region disturbed by particles is related to the particle size, it is reasonable to 

regard the composite containing various sized particles as an assemblage of unit cells 

containing one particle with a constant particle volume fraction as shown in Fig. 7. Therefore, 

the influence of particles on macroscopic properties of the composite is not described by the 

number frequency p(d), but volume frequency pv(d). The volume frequency of particle pv(d) is 

given by 

         ( )
( )

( )dpd
ddpd

dp 3
3v

d 
1

∫
=  . (41) 

Consequently, some values A, such as the stress, strain, particle volume fraction and so on, of 

the composite containing various sized particles can be obtained by the following equation, 

         ( ) ( )∫= ddAdpA d v , (42) 

where A(d) exhibits the values for a composite with constant sized particles of d. 

Numerical analyses were carried out to discribe the Lloyd’s experimental result [9] for 

composite (15vol%SiC/A356-T4). The material properties used in the analyses were the same 

as those in Section 4. To describe the particle size effects, ξ=1.8, η=0.4, ζ=2.0, γ=1.8 

and Γ=15.8N/m (KC=2.6MPa m ) were determined by the fitting procedure mentioned in 

Section 3. Number frequency of particles was assumed to follow the lognormal distribution, 
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where δ is the standard deviation and the mean particle diameter d  is given by 
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2δφd  . (44) 

In Eq. (43), δ was set as 0.55 and φ were determined as 1.864 so as to be d =7.5μm. Fig. 8 
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shows the distribution of p(d) and pv(d). It can be seen that pv(d) shifts toward larger particle 

side as compared with p(d) and d =18.3μm for pv(d). From Fig. 8, the composite was 

considered to contain the particles smaller than 70μm in diameter. In the numerical analysis, it 

was assumed that the composite contained the particles discreetly distributed in size from 

0.175μm to 69.825μm with an interval of 0.35μm according to the lognormal distribution. 

Incremental analyses of the composites with constant sized particles were simultaneously 

carried out to obtain A(d), and the values A of the composite with various sized particles were 

obtained by substituting the numerical results A(d) for each deformation stage into Eq. (42). 

5.2  Influence of particle size and debonding damage 

Fig. 9 shows the Lloyd’s experimental results [9] and the numerical results for the 

stress-strain relations of the composite and matrix material under uniaxial tension. Firstly, 

from the comparison between the experimental result and a conventional result without 

particle size effects and debonding damage (ID model), the experimental result shows higher 

stress-strain relation; this means that the particle size effects should be considered. Secondly, 

as compared the experimental result with the numerical result taking account of particle size 

distribution and no debonding damage (ID-PSE-SD), both results show a good agreement 

with each other in an early stage of deformation, but the stress in the numerical result 

becomes higher than that in the experimental result as the deformation progresses. In Fig. 9, 

the numerical results for the composites with constant sized particles of number average 

diameter 7.5μm and volume average diameter 18.3μm and no debonding damage 

(ID-PSE-7.5 and ID-PSE-18.3) are also shown. When these results are compared with the 

result for the composite with particle size distribution, it is found that the composite with 

particle size distribution are well described by the composite with constant sized particles of 

volume average diameter.  

As mentioned in Section 4.3, in the composite with constant sized particles the 

debonding damage controlled by Eq. (39) occurs simultaneously. On the other hand, in the 

composite with various sized particles the debonding damage occurs in turn from larger 

particles to smaller particles. For the composite with particle size distribution and debonding 

damage (ID-PSE-SD-DD) the stress-strain relation and progress of debonding damage 



19 

represented by void volume fraction are shown in Fig. 9. Finally, on the numerical result of 

ID-PSE-SD-DD, as the debonding damage progresses, the stress-strain relation shifts from the 

result of ID-PSE-SD to lower side of the stress and then describes well the experimental result. 

Consequently, it is found that the experimental stress-strain relation of the SiC/A356-T4 can 

be described by the present model taking account of the particle size effects, particle size 

distribution and debonding damage. However, it is necessary to discuss more about the values 

of the constants in Eq. (37) and Γ in Eq. (39) or KC in Eq. (40). 

Fig. 10 shows the influence of particle volume fraction on the stress-strain relations and 

progress of debonding damage of the composites with particle size distribution ( d =7.5μm 

and δ =0.55) and debonding damage. As shown in Fig. 10, in an early stage of deformation 

the reinforcing effect of intact hard particles is predominant and the stress-strain relation shifts 

upward with increasing particle volume fraction. However, with increasing deformation the 

stress-strain relation shifts downward due to the weakening effect of damaged particles, and 

this shift is more outstanding in the composite with higher particle volume fraction.  

In the uniaxial tensile tests of a round bar specimen, a ductile material exhibits a plastic 

instability by neck formation near the maximum load, and the nominal stress at this event is 

referred to as the tensile strength. If the material is incompressible and its response is 

rate-independent, the onset of instability can be described by applying the Considere criterion 

to a true stress vs. true strain relation. 

xx
xx

xx σ
ε
σ

=
d
d  (45) 

Because the fracture of specimen is liable to occur before satisfying the Considere criterion on 

less ductile materials, the stress and strain obtained by the criterion correspond to upper 

bounds of the tensile strength and ductility (fracture strain). Open circular symbols in Fig. 10 

show the points satisfying the Considere criterion on the stress-strain relations. It is suggested 

from Fig. 10 that with increasing particle volume fraction the tensile strength would increase 

slightly while the ductility would decrease considerably. 

 

6.   Conclusions 
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The incremental damage model of particulate-reinforced composites based on the 

Eshelby’s equivalent inclusion method and Mori-Tanaka’s mean field concept has been 

extended to consider the particle size effects by using the Nan-Clarke’s simple method. In 

composites containing constant sized particles, the particle size is smaller, the dislocation 

strengthening is more dominant and debonding damage is harder to occur. In composites 

containing various sized particles, the debonding damage occurs from larger particles to 

smaller particles and the stress-strain relation shifts to lower side of stress. Experimental 

results of SiC/Al composites can be described by the present model taking account of the 

particle size effects, particle size distribution and debonding damage.  

The present model can describe elastic to elastic-plastic deformation of 

particulate-reinforced composites taking account of debonding damage, particle size effects 

and particle size distribution, and is also applicable to composites containing particles and 

voids and porous materials. Furthermore, it can be easily introduced into the finite element 

method which would be useful on strength evaluation and design of structures made of the 

composites. 
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Figure Caption 

Fig. 1 Schematic illustrations of a composite in debonding damage process and a composite 

in micromechanics model. 

Fig. 2 States of a composite undergoing damage process before and after incremental 

deformation. dfp is a volume fraction of the particles debonded in the incremental 

process. 

Fig. 3 Particle size effects on stress-strain relation of the composites and comparison 

between the present model and Nan-Clarke's model. ID model shows 

Tohgo-Chou-Weng's model without particle size effects. 

Fig. 4 Influence of each term in dislocation plasticity on stress-strain relation of the 

composite with particle size of 0.5μm. 

Fig. 5 Composite stress and microscopic stresses of the particles and matrix as functions of 

composite strain on the composite with debonding damage. 

Fig. 6 Particle size effects on stress-strain relation of the composites with debonding 

damage. 

Fig. 7 Composite containing particles with size distribution. 

Fig. 8 Lognormal distribution for number frequency p(d) and volume frequency pv(d) of the 

particle size distribution. 

Fig. 9 Comparison of stress-strain relations between the predictions and Lloyd's 

experimental result for a composite (15vol%SiC/A356-T4).  

ID model: Tohgo-Chou-Weng's model.  

ID-PSE-7.5 and ID-PSE-18.3: models considering particle size effects for 

composites with particle size of 7.5μm and 18.3μm, respectively.  

ID-PSE-SD: a model considering particle size effects and size distribution.  

ID-PSE-SD-DD: a model considering particle size effects, size distribution and 

debonding damage. 

Fig. 10 Influence of particle volume fraction on stress-strain relations and progress of 

debonding damage of the composites with particle size distribution ( d =7.5μm and δ 

=0.55) and debonding damage. 
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Fig. 1 Schematic illustrations of a composite in debonding damage 
process and a composite in micromechanics model. 
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Fig. 2 States of a composite undergoing damage process before and after 
incremental deformation. dfp is a volume fraction of the particles 
debonded in the incremental process. 

Fig. 3  Particle size effects on stress-strain relations of the composites and 

comparison between the present model and Nan-Clarke's model. 

  ID model shows Tohgo-Chou-Weng's model without particle size effects. 
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Fig. 5  Composite stress and microscopic stresses of the particles and matrix 

as functions of composite strain on the composite with debonding 

damage.  

Fig. 4  Influence of each term in dislocation plasticity on stress-strain relation of 

the composite with particle size of 0.5μm.  
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Fig. 7  Composite containing particles with size distribution.  

Fig. 6  Particle size effects on stress-strain relation of the composites with 

debonding damage. 
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Fig. 8  Lognormal distribution for number frequency p(d) and volume frequency 

pv(d) of the particle size distribution.  
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Fig. 9  Comparison of stress-strain relations between the predictions and Lloyd's 

experimental result for a composite (15vol%SiC/A356-T4).  

ID model: Tohgo-Chou-Weng's model.  

ID-PSE-7.5 and ID-PSE-18.3: models considering particle size effects for 

composites with particle size of 7.5μm and 18.3μm, respectively.  

ID-PSE-SD: a model considering particle size effects and size distribution.  

ID-PSE-SD-DD: a model considering particle size effects, size distribution and 

debonding damage.  

0 0.02 0.04 0.06 0.08 0.1
0 0

100 0.03

200 0.06

300 0.09

400 0.12

500 0.15

fd

ID model

ID-PSE-SDID-PSE-7.5
ID-PSE-18.3 ID-PSE-SD-DD
Lloyd’s result

f d

St
re

ss
 σ

xx
(M

Pa
)

Strain  εxx

fp0=0.15

Matrix material

0 0.02 0.04 0.06 0.08 0.1
0 0

100 0.03

200 0.06

300 0.09

400 0.12

500 0.15

fd

ID model

ID-PSE-SDID-PSE-7.5
ID-PSE-18.3 ID-PSE-SD-DD
Lloyd’s result

f d

St
re

ss
 σ

xx
(M

Pa
)

Strain  εxx

fp0=0.15

Matrix material



31 

 

Fig. 10  Influence of particle volume fraction on stress-strain relations and progress of 

debonding damage of the composites with particle size distribution ( d =7.5μm 

and δ =0.55) and debonding damage. 

0 0.02 0.04 0.06 0.08 0.1
0 0

100 0.06

200 0.12

300 0.18

400 0.24

500 0.3

fd

f d

St
re

ss
 σ

xx
(M

Pa
)

Strain  εxx

fp0=0.3

fp0=0.3
0.25

0.2
0.15

0.1
0.05

0.25
0.2

0.15
0.1

0.05

Instability by 
Considere criterion

0 0.02 0.04 0.06 0.08 0.1
0 0

100 0.06

200 0.12

300 0.18

400 0.24

500 0.3

fd

f d

St
re

ss
 σ

xx
(M

Pa
)

Strain  εxx

fp0=0.3

fp0=0.3
0.25

0.2
0.15

0.1
0.05

0.25
0.2

0.15
0.1

0.05

Instability by 
Considere criterion


