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A constitutive model is developed for the complex rheology of rate-independent
granular materials. The closures for the pressure and the macroscopic friction
coefficient are linked to microstructure through evolution equations for coordination
number and fabric. The material constants in the model are functions of particle-level
properties and are calibrated using data generated through simulations of steady
and unsteady simple shear using the discrete element method (DEM). This model is
verified against DEM simulations at complex loading conditions.

Key words: granular media, rheology

1. Introduction

Dense granular materials are ubiquitous in nature and are widely encountered in
industrial processes, such as hopper discharge, chute flow, moving beds and standpipe
flow. Constituent grains (referred to as particles hereafter) in these materials touch
multiple neighbours for finite durations and the stress is largely transmitted through
force chains. We focus our attention on one important aspect of dense flow behaviour,
namely the rate-independent response, where the inertial effects associated with the
individual particle interactions are negligible and the stress is largely independent of
the deformation rate.

Many constitutive models have been developed in the literature for rate-independent
granular materials. Starting from the basic notion of an ‘ideal Coulomb material’,
where the granular materials are treated as rigid under increasing load until the load
reaches a yield point, the models have progressed in terms of incorporating more
and more underlying physics. Under a broad category of so-called plastic-potential
models (Hill 1950; Harris 2006), work hardening (Drucker, Gibson & Henkel 1957),
non-associated flow rules (Lade 1977) and critical state concept (Schofield & Wroth
1968) have been introduced for either rigid-plastic or elastic-plastic materials. Under
another category of the double-shearing model, models have been extended from
incompressible flows (Spencer 1964) to including dilatancy (Mehrabadi & Cowin
1978), work-hardening (Anand & Gu 2000) and fabric anisotropy (Nemat-Nasser
2000; Zhu, Mehrabadi & Massoudi 2006), which was motivated by the relations
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between stress and fabric as observed in experiments using photoelastic particles (Oda,
Konishi & Nemat-Nasser 1980; Subhash et al. 1991).

More recent experiments (Utter & Behringer 2004; Majmudar & Behringer 2005)
and discrete element method (DEM) simulations (Luding 2004, 2005; Aarons,
Sun & Sundaresan 2009) further revealed that stress evolution is correlated to
microstructure rearrangement during unsteady flow. The jamming transition in
dense granular systems profoundly modifies the dynamics and rheology close to
the transition (Hébraud & Lequeux 1998; Keys et al. 2007; Majmudar et al. 2007)
and may be related to the onset of rate-independent response. The jamming transition
has also been shown to depend on the particle friction coefficient (Song, Wang &
Makse 2008).

In this paper, we probe the relation between the rate-independent rheology and
the microstructure of a granular material under homogeneous simple shear using
DEM simulations, and construct a constitutive model. The main text describes a
simple model that neglects normal stress differences, and the extension to include
normal stress differences is presented in Appendix A. In this model, the pressure
and macroscopic friction coefficient are expressed in terms of microstructural internal
variables. Evolution equations are proposed for these internal variables. We correlate
the material constants in the model to particle-level properties, such as particle
elasticity and friction coefficient. We note at the outset that the present study focuses
exclusively on simple shear flows and that the application of this model to completely
constrained deformations, such as uniaxial or triaxial compression, will be deferred
to future publications.

After describing the DEM and simulation details in § 2, we present simulation
results for the evolution of the stress and the internal variables during unsteady shear
in § 3. We then detail the development and verification of the constitutive model in
§§ 4 and 5, respectively. We summarize the attributes of this model in § 6.

As for notation, we employ lightface italics for scalars, the boldface italic font for
vectors and the sans serif bold italic font for the second-order tensors.

2. Computational methods and simulation details

The DEM simulations were carried out using the large-scale atomic/molecular
massive parallel simulator (LAMMPS) developed at Sandia National
Laboratories (Plimpton 1995). In the simulations, particles interact only at contact.
Two spherical particles with position vectors {r i , rj } and radii {Ri , Rj } experience a
force, Fij = Fnij

+ Ftij , when δij = d−rij > 0, where d = Ri +Rj and rij = |r ij | = |r i −rj |,
nij is the contact normal unit vector pointing from the centre of particle j to that
of particle i, and t ij is a unit vector in the tangential plane. The force is calculated
using a spring–dashpot model, which has been tested and used in many other
studies (Cundall & Strack 1979; Silbert et al. 2001, 2007; Campbell 2002; Rycroft,
Kamrin & Bazant 2009). The normal and tangential components of the interaction
force acting on particle i for the Hookean contact model are

Fnij
= knδij nij − γnm

∗
vnij

,

Ftij = −kt utij − γtm
∗
vtij ,

}

(2.1a,b)

where kn,t and γn,t are the spring elastic and viscous damping constants, vnij
and vtij

are the normal and tangential component of particle relative velocity, respectively,
and m∗ =mimj/(mi + mj ) is the effective mass of spheres with masses mi and mj . The
corresponding contact force on particle j is simply given by Newton’s third law, i.e.
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Fji = − Fij . The tangential force at each contact is computed by keeping track of
the elastic shear displacement, utij , throughout the lifetime of a contact. The elastic
shear displacement is set to zero at the initiation of a contact and its rate is given by

dutij

dt
= vtij − (utij · vij )r ij

r2
ij

. (2.2)

The last term in (2.2) arises from the rigid-body rotation around the contact point
and ensures that utij always lies in the local tangent plane of contact. As the shear
displacement increases, the tangential force reaches the limit imposed by a static yield
criterion, |Ftij | � µ|Fnij

|, characterized by a local particle friction coefficient, µ. The
tangential force is then set to the limit value by truncating the magnitude of utij .

The contact force according to the Hertzian model is

FnHzij
=

√

δijR∗(knHzδij nij − γnm
∗
vnij

),

FtHzij
=

√

δijR∗(−ktHzutij − γtm
∗
vtij ),

}

(2.3a,b)

where R∗ = RiRj/(Ri + Rj ) is the effective radius. The normal and tangential elastic
constants in the Hertzian model are related to the particle material properties as

knHz = 4
3
E∗, ktHz = 8G∗, (2.4a,b)

where E∗ = ([(1 − ν2
i )/Ei]+[(1 − ν2

j )/Ej ])
−1 and G∗ = ([(2 − νi)/Gi]+[(2 − νj )/Gj ])

−1

with Ei,j , νi,j and Gi,j denoting particle Young’s modulus, Poisson ratio and shear
modulus, respectively. The value of the linear spring elastic constant is chosen to
be large enough to minimize particle overlap, yet not so large as to require an
unreasonably small simulation time step. In the Hookean model simulations, we set
kt = 2/7kn (Shäfer, Dippel & Wolf 1996) and γt =

1
2
γn, where γn is chosen to yield

a value of 0.7 for the normal restitution coefficient e = exp(−γnπ/
√

4kn/(m∗ − γ 2
n )).

In the Hertzian model simulations, the restitution coefficient depends on the initial
approaching velocity. Hookean model is used for all results presented except where
Hertzian model is explicitly indicated.

In order to maintain homogeneous deformation over large strain scales,
we performed the simulations in three-dimensional (3D) periodic domains
without gravity. Simple shear flow was induced via the Lees–Edwards boundary
conditions (Lees & Edwards 1972). Throughout this study, the x-, y- and z-directions
will refer to the flow, neutral (vorticity) and gradient directions, respectively. The
shearing motion induced by this boundary-driven algorithm takes time to develop
so that the flow would not be homogeneous immediately after a shear rate change,
which raises questions about the suitability of the algorithm to study homogeneous
time-dependent flows. This disadvantage can be greatly alleviated through the use
of the SLLOD algorithm (Evans & Morriss 1990). The SLLOD algorithm implies
that a change in the shear rate is not achieved by simply moving the boundaries
of the system faster or slower, but by applying a force to the entire system. Thus,
the SLLOD algorithm was applied to all the simulations presented in this paper.
However, we note that the SLLOD algorithm only affected dynamical behaviour at
very small strain scales (typically less than 10−3) after the deformation rate change
and did not alter the large strain scale dynamical behaviour in unsteady shear shown
in the next section. Thus, we would have obtained essentially the same model even if
the SLLOD algorithm was not employed.

Isochoric and dilatant simple shears have been simulated to probe the rheology of
the assembly. The isochoric flow was studied under a constant volume (CV) condition
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particular to the simulation scheme described above. Experiments of shearing dense
granular materials under CV are less common due to dilatancy – a densely packed
assembly will expand in volume under initial shear. A pertinent experiment would
be the undrained shear test on water-saturated sand, where the volume of the whole
specimen can be kept constant within experimental error range (Schofield & Wroth
1968). Since a good rheological model must capture the flow characteristics under
all kinds of tests, irrespective of whether such tests are easily implemented in the
laboratory or not, we avail the CV simple shear simulations in this study. Dilatant
simple shear was examined under constant pressure (CP) condition, where each
normal stress component was controlled individually to match that observed in a
steady CV simulation. This procedure produces rheological response that can easily
be compared to the CV simulations and is essentially the same as that in shear
experiments with either free surfaces (Mueth et al. 2000; Bocquet et al. 2001; Tardos,
McNamara & Talu 2003; Toiya, Stambaugh & Losert 2004) or controlled normal
loads (Nedderman 1992; Lu, Brodsky & Kavehpour 2007; Kheiripour Langroudi
et al. 2010) in Couette cells or Jenike shear cells.

Steady state is reached after an assembly is sheared over a large strain (of order unity
at least) and the stress and microstructural quantities cease to evolve. The macroscopic
rate of deformation tensor at the steady state then follows D = 1

2
γ̇ (e(x)e(z) + e(z)e(x)),

where e(x) and e(z) are unit vectors in the x- and z-directions, respectively, and γ̇ is the
flow velocity gradient (the shear rate). The type of unsteady flows studied here is shear
reversal flow, where the flow direction is reversed after the steady state is reached and
maintained for a certain strain. In this case, γ̇ changes its sign after reversal. The shear
rate is maintained low in the sense that the inertia number (MiDi 2004) (or Weis-
senberg number, Goddard 1986), I = γ̇ d/(

√
p/ρsφ), where p is a confining pressure,

ρs is particle density and φ is particle volume fraction, is smaller than 10−3, so that
the rate-independent response is guaranteed according to previous experimental and
simulation data (Campbell 2002; MiDi 2004; da Cruz et al. 2005; Aarons et al. 2009).

Homogeneous stress and strain can be extracted from this type of flows, which
facilitates constitutive modelling. The macroscopic stress is calculated as

σ =
1

V

∑

i

[

∑

j �=i

1

2
r ij Fij + mi(v

′
i)(v

′
i)

]

, (2.5)

where V is the total volume of the simulation domain and v
′
i is the fluctuating velocity

of a particle relative to its mean streaming velocity in the shear flow. The first and the
second terms on the right-hand side of (2.5) represent the contact force contribution
and the inertial effect associated with particle streaming, respectively. In all the results
presented, the second term was at least four orders of magnitude smaller than the
first term, consistent with the rate-independent response.

3. Unsteady shear rheology

In this paper, we present and analyse the results obtained in simulations of an
assembly of 2000 monodisperse spheres in a 3D periodic domain. The dependence on
system size, i.e. particle number, was tested using assemblies with particle numbers
varying from 1000 to 10 000 and it was found that a system size of 2000 particles
was sufficient to get stress and microstructural data that are independent of size. All
the results presented here are ensemble averages of 10–20 realizations with different
initial configurations.
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Figure 1. (Colour online available at journals.cambridge.org/flm) Evolution of (a) scaled
pressure pd/k (where k = kn), (b) stress ratio, (c) coordination number and (d ) Axz for an
assembly subjected to unsteady shear under the constant volume condition with φ = 0.60.
Blue square symbols denote the data from DEM simulations and the red solid curves are
the constitutive model results. The shearing was stopped during 1 < γ̇0t < 2. The interparticle
friction coefficient µ is 0.5 and the inertia number I ≈ 0.0003 at steady state.

An assembly with particle volume fraction φ of 0.6 was first sheared at a shear rate

of γ̇0 = 2|D0|, where |D0| is the modulus of the initial strain rate tensor (: =
√

1
2
D

T
0 : D0),

to reach a statistical steady state under the CV condition and the time t =0 was chosen
as an arbitrary state in this statistical steady state. The assembly was then subjected
to a specific shear pattern as described below. Figure 1 shows the variation of various
statistical quantities with accumulated shear strain γ̇0t . The shearing was stopped at
γ̇0t = 1, and hence the quantity γ̇0t within the range of 1< γ̇0t < 2 should be interpreted
as a non-dimensional time measure. The pressure scaled by particle diameter and
elastic spring constant, and the shear stress-to-pressure ratio are shown in figures 1(a)
and 1(b), respectively. They clearly exhibited a rate-independent response as the
stress level was retained during the no-shear period (1 < γ̇0t < 2) with little change
from the steady state. The rate-independent characteristic has also been verified by
collapsing the stress data from simulations at various values of shear rates; those
results add no significant information and are not shown in the figures. At γ̇0t =2,
the flow direction was reversed and the shear rate became γ̇ = −γ̇0. The pressure
and stress ratio exhibited significant variations over strain intervals of order unity
following the reversal. The pressure dropped to a lower value and slowly returned
to the steady state. As the volumetric strain was kept at zero, this behaviour rules
out volume fraction change as a necessary cause of the pressure variation. The
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Figure 2. (Colour online) Evolution of (a) volume fraction, (b) stress ratio, (c) coordination
number and (d ) Axz for an assembly subjected to unsteady shear under the constant pressure
condition. Blue square symbols denote the data from DEM simulations and the red solid
curves are the constitutive model results. The interparticle friction coefficient µ is 0.5 and the
inertia number I ≈ 0.0003 at steady state.

steady-state magnitude of the stress ratio is about 0.4, which was close to the measured
quasi-static value in a shear cell experiment using polystyrene beads (Savage & Sayed
1984). Upon shear reversal, the stress ratio slowly evolved to a new steady-state value
with the same magnitude as the initial state, but with an opposite sign. A similar
stress variation trend after shear reversal has also been observed in experiments with
dense granular materials (Toiya et al. 2004; Utter & Behringer 2004) and with dense
suspensions (Gadala-Maria & Acrivos 1980).

For the case in which the assembly was sheared under the CP condition, the volume
fraction and stress ratio (see figures 2a and 2b, respectively) manifested variations
after shear reversal at γ̇0t =1. The volume fraction increased at first (the assembly
compacted) and then decreased (the assembly dilated) back to the steady state after a
shear strain of about 0.5. The compaction behaviour was also reported in the Couette
shear cell experiment after shear reversal (Toiya et al. 2004). The stress ratio evolution
had a similar trend as that in the constant volume case.

To further investigate the mechanism of this variation due to shear reversal, we
studied the microstructure evolution during this unsteady shear. We quantified the
microstructure using two variables, the average (mechanical) coordination number Z

and the fabric tensor A. The average (mechanical) coordination number is defined
as the mean contacts per particle in the contact network, Z =2Nc/N , where Nc

is the total number of contacts (with non-zero contact forces) and N is the total
number of particles in the contact network (Zhang & Makse 2005). It characterizes
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the connectivity of a granular assembly. When the coordination number is equal to
a critical value Zc, the granular assembly is at an isostatic state, where the number
of degrees of freedom is matched by the number of constraints between particles.
Zc varies from 4 to 6 as particle friction coefficient changes from infinity to zero in
three dimensions (Song et al. 2008). Zc is a microstructural signature of the jamming
transition (O’Hern et al. 2003; Song et al. 2008), and can also be identified as a critical
point, above which rate-independent behaviour is found. In the computation of Z

from our DEM data, we neglect particles with zero (floaters) or one contact (rattlers)
as they do not participate in the contact network, consistent with the practice of other
researchers (Shundyak, van Hecke & van Saarloos 2007). In any case, floaters and
rattlers make up only a very small portion of total particles in our simulations. We
henceforth use the symbol Z2 to distinguish from those including floaters and rattlers
and we only used Z2 to calibrate our model constants.

The fabric tensor was used to characterize microstructure anisotropy. It can be
understood as a statistical moment with respect to the probability distribution function
of an orientational vector n. With different choices of the vector n and weighting
factors, there have been various definitions (Oda et al. 1980; Bathurst & Rothenburg
1990; Goddard 1998; Radjai et al. 1998; Azéma, Radjai & Saussine 2009). In this
paper we identify n as the unit contact normal vector pointing from centre to centre
of two spherical particles in contact. We define the fabric tensor as the symmetric
traceless second rank tensor

A =
1

Nc

Nc
∑

α=1

n
α
n

α − 1

3
I, (3.1)

where I is the unit tensor. Its eigenvectors give the principal directions of the mean
contact orientations. The eigenvalues, in turn, provide a measure of the extent to
which contacts are oriented in the principal directions. We may use the difference
between the largest (major) and smallest (minor) eigenvalues or the second invariant
as a measure of the anisotropy. That being said, the structural anisotropy can be
easily related to the shear (xz) component of the fabric tensor for simple shear flows;
our DEM data show that the numerical values of Axx and Azz are small in magnitude
compared to Axz, while Ayy , Axy and Ayz are essentially zero. The off-diagonal terms
Axz and Azx are larger than the diagonal terms by at least an order of magnitude,
and so the difference between the major and minor eigenvalues is very close to 2Axz

and the corresponding eigenvectors lie in the x–z plane at an angle of ±45
◦

to the
x-axis. Thus, we present below the magnitude of Axz as a measure of anisotropy and
the sign of Axz for the orientation of the principal direction in simple shear flows.

The evolution of Z2 and Axz is plotted in figures 1(c) and 1(d ) for the CV case.
It can be immediately recognized that Z2 and Axz have evolution patterns similar to
the pressure and stress ratio, respectively. The Z2 values held up during the no-shear
phase (1 < γ̇0t < 2)), decreased significantly after the shear reversal and returned to the
steady-state value after the same strain scale as the pressure did. The variation of the
coordination number after shear reversal indicates that the contacts were broken at
first and subsequently built up. The Axz variation shows that the microstructure lost
its anisotropy and then slowly re-established the anisotropy with a principal direction
rotated by 90◦ over a comparable strain scale as the shear stress-to-pressure ratio
did. The simultaneous evolution of the two variables revealed the microstructural
rearrangement after shear reversal, which involved both connectivity and anisotropy
changes and had a strain scale of ∼1. During the CP shear, large-scale microstructural
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Figure 3. (Colour online) Scaled pressure variations against coordination number for
simulations of steady and unsteady shear under both constant volume (CV) and constant
pressure (CP) conditions. The interparticle friction coefficient µ is 0.5.

rearrangement was also indicated by the evolution of Z2 and Axz in figures 2(c) and
2(d ). The Z2 increased a small amount after the shear reversal. Since the pressure
was maintained constant for the entire shearing process, this increase suggests that
pressure is influenced by the anisotropy in addition to the coordination number. The
evolution of Axz (see figure 2d ) again mirrors that of the stress ratio.

4. Constitutive model formulation and calibration

We will demonstrate that a simple model of the form

σ = pI − pηŜ, (4.1)

where Ŝ : =S/|D| and S is the deviatoric strain rate tensor (S = D − 1
3
tr(D)I) and

η is a scalar macroscopic friction coefficient, is enough to capture the dynamic
shear results, provided p and η are expressed in terms of Z2 and A, and suitable
evolution equations are postulated for these microstructural quantities. This stress
equation can be considered as a simplified version of a rate-independent rheological
model (Goddard 1984, 2006). It can also be derived from a plasticity model assuming
a pressure-dependent yield function and a co-axial flow rule (Schaeffer 1987). We
demonstrate in Appendix A how the model can be extended to include normal stress
differences present in shear flows.

4.1. The pressure and η relations

Granular pressure has been modelled as a function of particle volume fraction in
elasticity (Makse, Johnson & Schwartz 2000; O’Hern et al. 2003), or at the critical
state of plastic flow (Schofield & Wroth 1968). However, neither the elastic pressure
nor the critical state pressure relations can be generalized to unsteady flow, as is
evident from the pressure variation under CV or volume fraction variation under CP
in figures 1 and 2, respectively. By using coordination number as a state variable, we
are able to collapse the pressure data for steady and unsteady shear quite well with
smooth functional dependence as shown in figure 3. The small discrepancy between
the unsteady and steady shear data is attributed to the anisotropy variation during
shear reversal.
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Figure 4. (Colour online) (a) Scaled pressure variations against the coordination number for
isotropic compression and steady simple shear with open and filled symbols used for assemblies
with interparticle friction coefficient µ= 0.1 and µ= 0.5, respectively; the same variation for
(b) isotropic compression and (c) steady simple shear for assemblies with interparticle friction
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2 in
(d ). The symbols in the figures denote the DEM data; the solid lines in (b) show the fits
using pd/k = a1(Z2 − Zc)

2; the solid lines in (c) and (d ) indicate results from the model of
pd/k = (0.0073 + a2|A|)(Z2 − Zc)

2. The inset in (b) shows the variation of fitting parameter a1

versus µ.

According to these features, we model the pressure (attributed to contact force) as
a function of Z2 and A:

pd/k = (a1 + a2|A|)(Z2 − Zc)
α , (4.2)

where a1 and a2 are material parameters and α =2. The pressure in an isotropic state,
modelled by the a1(Z2 − Zc)

α term, was examined using stress-controlled isotropic
compression. (Details of the simulation protocol are presented in Appendix B.
Under isotropic compression, the pressure manifested a dependence on the packing
preparation history, e.g. on the initial volume fractions before compression (Song
et al. 2008). Details of our approach of modelling this history dependence and the
rationale of simplifying the relation are discussed in Appendix B.) The values of
pressure in both isotropic compression at the infinite compactivity limit and steady
simple shear are plotted as functions of Z2 for µ = 0.1 and µ = 0.5 in figure 4(a). It
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can be seen that the pressure starts to be measurable when Z2 is greater than Zc for
both isotropic compression and simple shear. Thus, Zc is identified as the transition
point above which granular systems exhibit dynamics dominated by their jammed
structures, and manifest rate independence when subjected to simple shear flows. The
pressure in simple shear flow is, however, higher than that in the isotropic state at
the same coordination number, which is reflected in (4.2).

We calibrate the a1 term on the right-hand side in (4.2) using the isotropic
compression data and the a2 term using the simple shear data. The variation of
pressure under isotropic compression with the coordination number is shown in
figure 4(b) for assemblies with µ ranging from 0 to 1. We determined the Zc values
by first extrapolating these DEM data to the zero pressure limits and then fine-
tuning them as a fitting parameter in the equation of pd/k = a1(Z2 − Zc)

2, which has
the same form as the critical scaling shown for frictionless particles near jamming
transition (O’Hern et al. 2003). The goodness of the fit in figure 4(b) indicates that
this scaling is essentially universal for frictional particles with fitting parameter a1

fluctuating in a small range as shown in the inset of figure 4(b). The weak dependence
of a1 on µ was also observed in 2D simulations of ploydisperse particles (Somfai
et al. 2007). In favour of simplicity of the model, a1 is approximated as a constant
independent of µ. Particle friction plays the role of shifting Zc, but does not affect
the scaling in any significant way. The critical coordination number Zc monotonically
decreases from 6 towards 4 for increasing finite µ values as indicated by our DEM
data (see figure 5a). We note that Zc should have numerical values of 6 and 4 at
µ = 0 and µ = +∞, respectively; these values are determined by the isostatic state at
jamming transition (Song et al. 2008). However, a fit with a plateau value slightly
higher than 4 is used to better represent our DEM data for µ in the range of 0–1.

The material parameter a2 was calibrated using the data from steady simple shear
DEM simulations, shown by symbols in figure 4(c). Fits of pressure against Z2 and
(Z2 − Zc)

2 using (4.2) with a fixed a1 are illustrated by solid lines in figures 4(c)
and 4(d ), respectively. The fitting parameter a2 increases monotonically with µ as
indicated by the increasing slopes in figure 4(d ). Simple shear data for µ = 0 had a
low confidence level due to the large fluctuations of coordination numbers observed
in the simulations of high volume fractions and are not shown in this figure. However,
the variation of a2 versus µ is clearly monotonic and can be fitted using a linear
function a2 = x1µ as shown in figure 5(b). The vanishing of a2 at the µ = 0 limit is also
consistent with the physics that the anisotropy contribution to pressure vanishes at the
frictionless limit, which can be inferred from the absence of dilatancy for frictionless
spheres observed in our simulations and also in the 3D simulations of Peyneau &
Roux (2008). The inference will become clear after we introduce the microstructure
evolution equation. The numerical values of a1 and the parameter x1 for a2 are listed
in table 1.

The scaling in (4.2) did depend on force models used in simulations. Accordingly,
for a physical particle assembly, this means that the elasticity of particles affects the
pressure scaling of the assembly. This can be seen from a micromechanical equation

σ ≈=
3φZ

2πd3
r̄

(

knδ̄n

1

Nc

∑

i

∑

j �=i

nn − kt δ̄t

1

Nc

∑

i

∑

j �=i

nt

)

, (4.3)

where r̄ , δ̄n and δ̄t are mean quantities. The pressure for particles with Hertzian
contact can then be shown to have a 3/2 power relation with that for particles with
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α a1 a2 a3 a4 b1 b2 Zc φc

x1 2 0.0073 −0.1 1.57 −6 −0.16 1.6 1.85 0.058
x2 −4.5 −2 −6 −6 −5 −5
x3 −1.7 6 0.16 −2.9 4.15 0.582

Table 1. Numerical values of α, a1 and x1–x3 in the fitting expressions, x1µ and x1e
x2µ + x3,

for the material parameters in the pressure and η equations, and the Z2 evolution equation.
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Figure 5. (Colour online) Variations of (a) the critical coordination number Zc , (b) the
material parameter, a2, in the pressure equation and (c) the critical volume fraction φc with
respect to the interparticle friction coefficient, µ.

Hookean contact, i.e.

pHz

kHz

∼
(

pHkd

k

)3/2

, (4.4)

where kHz and k are the normal elastic constants for Hertzian and Hookean contact
models, respectively. This power relation was confirmed by collapsing our DEM data
of pressure from the two models using this relation, as illustrated in figure 6.

The shear stress-to-pressure ratio in figures 1 and 2 was shown to have an evolution
pattern similar to the shear component of the fabric tensor Axz. Figure 7 shows a plot
of the stress ratio during a shear reversal under constant volume condition (the same
data as in figure 1b) against Axz. The data for unsteady shear under constant pressure
would collapse essentially onto the same curve and hence, for sake of brevity, is not
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assembly is subjected to unsteady shear under the constant volume condition with φ = 0.60
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plotted. The two branches show how the stress ratio evolved from one steady state
to the other and back. Figure 7 suggested a model for η,

η = b1 + b2A : Ŝ, (4.5)

where the b values are material constants. The stress ratios calculated from (4.5) are
plotted in (red) dashed lines and compared with the DEM data in figure 7. This
equation yields only linear approximation of the DEM results but captures most of
the stress ratio variation except immediately after shear reversal. A quadratic relation,

η = b̂1 + b̂2A : Ŝ + b̂3(A : Ŝ)2, (4.6)
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shown by (black) solid lines in figure 7 better approximates the stress ratio variation.
However, the strain extents where (4.5) and (4.6) differed significantly were very small.
We therefore employ (4.5) for the constitutive model in this paper as it has one less
fitting parameter.

The η value for steady shear was found to increase with µ and reach a plateau
value at large µ values as shown in figure 8(a). It does not vanish for frictionless
particles (µ = 0), indicating a non-zero macroscopic friction. This is consistent with
the findings of Peyneau & Roux (2008); the internal friction angle ϕ = arctan (η)
found in our study is about 5.7◦, which is close to the value 5.76◦ ± 0.02◦ reported by
them (Peyneau & Roux 2008). For µ = 0.5 or higher, η is about 0.4 (see figure 8a),
which is very close to the ratio of shear to normal stress for polystyrene beads in the
shear cell experiment reported by Savage & Sayed (1984). The η versus µ relation
is consistent with data from other experimental or computational studies (Thornton
2000; Suiker & Fleck 2004; Ketterhagen et al. 2009).

The correlations of the model parameters, b1 and b2, with the friction coefficient
µ were established using the simulation data (see figure 8b). A functional form
x1e

x2µ + x3 was employed for these correlations, the numerical values for which
are listed in table 1. Coefficient b1 was found to be essentially zero at µ = 0 within
numerical errors of the DEM simulations. The vanishing of b1 can also be understood
from the micromechanical stress (4.3): without particle friction, the tangential force
contribution to stress (the second term on the right-hand side of the equation)
disappears and the deviatoric stress is then proportional to the fabric (in the first
term on the right-hand side of the equation), to satisfy which b1 has to be zero in (4.5).
Physically, this means that anisotropy is the sole contribution to macroscopic friction
at the frictionless particle limit. In contrast, b1 is non-zero for frictional particles (see
figure 8b), which indicates that macroscopic friction exists even when anisotropy is
zero because tangential forces contribute to the deviatoric stress for frictional particle
assemblies.

4.2. Microstructure evolution equations

To complete the constitutive model, appropriate evolution equations for the
microstructural variables are required. Stress can then be evolved through
microstructural evolution for unsteady flow. On the basis of the DEM results for
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c1 c2 c3 d1 d2 d3 β1 β2

−0.52 −2.8 100 −45 5.6 −40 7.5 0.5

Table 2. Numerical values of the material parameters in the microstructure evolution
equations.

microstructure evolution, we model the rate of change of both A and Z2 as functions
of A and D. We postulate the following evolution equation for the fabric:

Å = c1S + c2|D|A + c3(A : S)A. (4.7)

Here, Å = Ȧ + A · W − W · A, where W is the spin tensor, W= 1
2
(∇v − (∇v)T), and Ȧ

denotes its material time derivative. It can be readily ascertained that this evolution
equation preserves rate independence and that the fabric evolves with strain extent.

An inspection of the simple shear flow results revealed a small (about 10 %), but

systematic decrease in the modulus of fabric, |A| =
√

1
2
A

T : A, with increasing volume

fraction for each µ value studied. For the purpose of the present modelling effort,
this variation is deemed unimportant and so we approximate the fabric as being
essentially independent of volume fraction. The values of |A| obtained at various
volume fractions were averaged to obtain a typical value for steady shear flow.
We have also assumed that |A| in the model is independent of µ as well, which
was confirmed to hold for µ > 0.1. Thus c1–c3 in (4.7) are simply constants; their
numerical values deduced from the shear reversal data are listed in table 2. (This
µ-independent A was used while determining the parameters a2 and b2 described
earlier for self-consistency.)

It should be noted that this evolution equation was not derived from first principles;
instead, it was devised to yield the desired response. The first term on the right-hand
side was introduced to recognize that shear induces anisotropy; the second term
(with c2 < 0) stabilises the system and allows a steady state to be established at large
strain. The third term plays a mixed role – following shear reversal, it is destabilizing
initially and plays a stabilizing role at later stages. This dual role permits a degree
of control over the response. Throughout this study, we tried to restrict the model
to include only A, |A|, D̂, |D̂| and AD̂; this was achieved for all the equations except
the A evolution equation where we added the third term on the right-hand side to
give an extra flexibility in capturing the transition. We solved (4.7) for homogeneous
simple shear and compared to the DEM results in figures 1(d ) and 2(d ). It can be
seen that (4.7) is able to capture quite well the steady state and the evolution of Axz.
Such comparisons were ascertained at several different values of µ and φ.

The need to evolve the coordination number has been recognized in the literature
earlier. For example, Gera, Syamlal & O’Brien (2004) proposed a heuristic evolution
equation for Z in the context of the two-fluid modelling of fluidized beds; while
Rothenburg & Kruyt (2004) postulated an evolution equation for planar granular
materials. We postulate the following rate-independent evolution equation for the
coordination number Z2:

Ż2 = d1(A : S − χ |S|) + d2|D|(f (φ) − Z2) + d3tr(D), (4.8)

where χ = −(c2 +
√

c2
2 − 8c1c3)/2c3 equals A : Ŝ for steady simple shear according

to (4.7) and d1–d3 are material constants. (As discussed in Appendix B this equation
is limited to deformations with |tr(D̂)| ≪ 1.) The first two terms and the fourth term
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Figure 9. (Colour online) Coordination number variations are plotted as (a) Z2 versus φ and
(b) Z2 −Zc versus (φ −φc)

1/2 from the steady simple shear DEM data (symbols) and fits (solid
lines). The equations used for the fits are Z2 − Zc = β1(φ − φc)

1/2 and Z2 − Zc = 7.5(φ − φc)
1/2

in (a) and (b), respectively. The inset in (a) shows the variation of β1 against µ with a line
indicating its mean.

vanish at steady simple shear and the relation between φ and Z2 at steady shear
in the third term drives coordination number to a steady value. The function f (φ)
dictates how the coordination number varies with volume fraction during the steady
shear. We found the scaling between Z2 and φ for frictional spheres under simple
shear to be essentially the same as the critical scaling near jamming transition for
frictionless (O’Hern et al. 2003) and frictional (Zhang & Makse 2005) particles, i.e.
Z2 − Zc ∼ (φ − φc)

1/2. This is confirmed by the good fits to the DEM simple shear
data using Z2 − Zc = β1(φ − φc)

1/2 for all the µ values studied as shown in figure 9(a),
where symbols denote DEM data and solid lines are used for the fits. The inset
of figure 9(a) shows that the fitting parameter β1 fluctuates in a small range about
its mean value of 7.5. Plotting Z2 − Zc against (φ − φc)

1/2, all DEM data collapse
onto a band centred around the line of Z2 − Zc = 7.5(φ − φc)

1/2 shown in figure 9(b),
which supports the use of a constant β1 to represent the variations for all µ values.
Therefore, the equation for f (φ) in our model takes the following form:

f (φ) = Zc + β1(φ − φc)
β2 , (4.9)

where model constants β1 = 7.5 and β2 =0.5. Figure 5(c) displays φc determined
through the curve fit above, and its correlation is listed in table 1. Constant numerical
values were found to be adequate for d1–d3 (to capture the evolution of Z2 through
(4.8) reasonably well) and are listed in table 2. The tr(D) term is used to take account of
the effects of compaction and dilatation on increasing and decreasing the coordination
number. Thus, the Reynolds dilatancy constraint is implicitly incorporated in (4.8),
which can be rewritten in an explicit form proposed by Goddard (2010), tr(D) = α|S|,
where the coefficient of dilatancy α = (1/d3)[ ˙(Z2/|S|) − d1(A : Ŝ − χ) − d2(f (φ) −
Z2)|D/S|], is dynamically changing according to the evolution of Z2 and A. The
computational results from (4.8) are compared to the DEM data in figures 1(c)
and 2(c). For both conditions, the Z2 magnitudes and its evolution strain scales after
shear reversal were correctly produced. The small quantitative discrepancies evident
in these comparisons do not affect the pressure calculation significantly, as will be
shown next.
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5. Model verification

Equations (4.1), (4.2), (4.5), (4.7) and (4.8) compose a constitutive model which
neglects normal stress difference. Admittedly, the model involves a number of
adjustable parameters; nevertheless, it is emphasized that the number of parameters
is not that many, considering that the model tracks the evolution of stress, fabric,
coordination number and volume fraction under both steady and unsteady conditions
for a range of particle friction coefficients. The present study is aimed at demonstrating
that the microscopic physics of jamming and anisotropy can indeed be incorporated
into a continuum constitutive model, at least at a semi-empirical level. A desirable
resulting attribute is that all the model parameters are linked to particle scale
properties.

5.1. Model self-consistency

The evolution of the pressure and stress ratio predicted by the model for shear flows
under the CV condition is shown in figures 1(a) and 1(b) and compared with the
DEM data. Although there are small quantitative differences between the model and
the DEM results, the model reproduces all the key features correctly. To simulate
simple shear under the CP condition, we allow tr(D) (in the Z2 evolution equation) to
vary while insisting that p remains invariant. The modelled evolution of the volume
fraction and stress ratio, as shown in figures 2(a) and 2(b), matched the DEM data
well. These comparisons reveal that the constitutive model is self-consistent and is
able to correctly describe the pressure and stress ratio evolution during steady and
unsteady flows of rate-independent granular materials. Similar model verification was
done at several µ values (details not shown).

5.2. Model predictions

We now demonstrate the model’s predictive capability by applying it to new unsteady
shear flow situations without re-calibrating any material constants and comparing
the predicted response with DEM data.

We subjected the assembly to a cyclic simple shear with small strain amplitude
in the first test. The shear rate was a square-wave function with a magnitude of γ̇0

and the maximum strain in each flow direction followed γA. Experimental studies on
cyclic shear of dense granular materials (Youd 1971; Wood & Budhu 1980; Toiya
et al. 2004) have found that the assemblies compacted when γA was small and a large
portion of the volume reduction occurred immediately after the shear reversal. The
DEM simulation illustrated in figure 10 was performed with γA = 0.5 and started from
a steady state where φ = 0.6. The volume fraction evolution is plotted using (blue)
squares in figure 10(a) against the accumulated strain γ̇0t . The φ increased from 0.6 to
about 0.61 after the first shear reversal at γ̇0t = 0.5 and then slowly increased to about
0.62 at γ̇0t = 4. Our model, without adjusting any of the model constants, predicts a
similar compaction behaviour as shown by the (red) solid line in figure 10(a), but
the final volume fraction is slightly higher than that of the DEM data. Figure 10(b)
shows that the model can also predict the shear stress ratio well. The microstructural
variables Z2 and Axz are shown in figures 10(c) and 10(d ), respectively. The predicted
Z2 values have slightly larger discrepancies than the Axz values.

For the second test, we studied the Reynolds dilatancy, i.e. the tendency of a
dense granular assembly to expand in volume upon initial shearing, which was first
revealed by Reynolds (1885). The Reynolds dilatancy is an essential constraint for
dense granular flow and has important influence on granular plasticity. As shown in
figure 11, we sheared an initially isotropic assembly at γ̇0 to a steady state under a
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Figure 10. (Colour online) Evolution of (a) volume fraction, (b) stress ratio, (c) coordination
number and (d ) Axz for an assembly subjected to small-amplitude oscillatory shear under
the constant pressure condition with pd/k ≈ 0.01. Blue square symbols denote the data from
DEM simulations and the red solid curves are the constitutive model results. The interparticle
friction coefficient µ is 0.5 and the inertia number I ≈ 0.0003 at steady state.

constant pressure. The DEM data indicate the dilatancy, i.e. φ decreased from about
0.612 to 0.602 (see figure 11a). We note that there was an initial densification before
the dilatation, which was also observed in experiments with sand (Okada & Nemat-
Nasser 1994). The shear stress ratio quickly reached the steady state in figure 11(b),
as did Z2 and Axz (see figure 11c, d ). Our model results denoted by the (red) solid
lines in figure 11 predicted the correct dilatancy behaviour and also the correct
trends for stress ratio and microstructural variables. The model also provides a
microscopic explanation for the Reynolds dilatancy. Since the shear flow increases the
anisotropy magnitude of the assembly, the coordination number has to decrease as
dictated by the pressure equation (4.2) to keep a constant pressure. The coordination
number evolution equation in turn requires a dilatation to achieve this decrease in
Z2. Therefore, shearing an initially isotropic assembly of frictional particles leads to
the Reynolds dilatancy. In contrast, shearing frictionless (spherical) particles does
not lead to measurable dilatancy, as the anisotropy does not affect the pressure for
frictionless particles (according to (4.2)).

6. Summary

We have proposed a constitutive model for the rate-independent rheology of dense
granular materials subjected to simple shear. It is suitable for flows where |tr(D̂)| ≪ 1



Constitutive model with microstructure evolution 607

0 0.5 1.0 1.5 2.0 2.5 3.0 0 0.5 1.0 1.5 2.0 2.5 3.0

0 0.5 1.0 1.5 2.0 2.5 3.0 0 0.5 1.0 1.5 2.0 2.5 3.0

0.600

0.605

0.610

0.615

 

 

DEM
Model

–0.45

–0.40

–0.35

–0.30

–0.25

–0.20

–0.15

–0.10

0.05

0

0.05

 

 

5.35

5.40

5.45

5.50

5.55

5.60

5.65

5.70

5.75

 

 

–0.05

–0.04

–0.03

–0.02

–0.01

0

0.01

 

 

φ

(a)

DEM
Model

DEM
Model

DEM
Model

Z
2

(c)

σ
zx

/p
A

xz

(b)

(d)

γ̇0t γ̇0t

Figure 11. (Colour online) Evolution of (a) volume fraction, (b) stress ratio, (c) coordination
number and (d) Axz for an assembly subjected to shear start from an isotropic condition under
the constant pressure condition with pd/k ≈ 0.01. Blue square symbols denote the data from
DEM simulations and the red solid curves are the constitutive model results. The interparticle
friction coefficient µ is 0.5 and the inertia number I ≈ 0.0003 at steady state.

(but need not to be zero), which includes a wide range of practical flow problems.
The model for stress (4.1) consists of a pressure term and a deviatoric term with
a macroscopic friction coefficient. The closures for the pressure and the friction
coefficient ((4.2) and (4.5)) are linked to two microstructural variables, namely the
fabric and the average coordination number (excluding floaters and rattlers), whose
evolution is modelled by (4.7) and (4.8). For the Hookean model, the pressure is given
by (4.2). The analogous form for a Hertzian model can be deduced from (4.4) as
pHz/kHz ≈ (a1 + a2|A|)3/2(Z2 − Zc)

3. The material constants in the model are functions
of particle-level properties and were calibrated using shear flow DEM data. We have
verified the model’s self-consistency by reproducing the steady and unsteady DEM
data used in the calibration. We have also demonstrated its predictive capability
through cyclic shear and Reynolds dilatancy tests.
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Figure 12. (Colour online) Scaled pressure varies with (a) volume fraction φ and (b)
coordination number Z2 during isotropic compression simulations starting from different
initial volume fractions φi . The same data in (b) are re-plotted against (Z2 − Zc)

2 in (c). The
variation of the pre-factor a∗

1 in the (pd/k)–(Z2 − Zc)
2 relation is plotted against jamming

volume fractions in (d ). The error bars for the standard deviations of φ and Z2 values resulted
from the three realizations performed are comparable to the symbol size and thus not plotted
in the figures. Particles in the assemblies have interparticle friction coefficient µ= 0.5.

Appendix A. Normal stress differences

We first identify the characteristics of a stress tensor during steady simple shear
by plotting the stress components scaled by pressure against volume fraction in
figure 13. It can be seen that scaled stress magnitudes are not very sensitive to the
volume fraction variation. Normal stress components are different from each other
with a deviation of 5%–10 % from the mean pressure (see figure 13a). It is also seen
that the magnitude of the first normal stress difference (Barnes, Hutton & Walters
1989), N1 = σxx −σzz, is about one third to that of the second normal stress difference,
N2 = σzz − σyy . Only the σzx ( = σxz) shear stress component is non-trivial while others
are very close to zero (see figure 13b). The parity plot of the shear stress components
in the inset to figure 13(b) shows that the stress tensor is approximately symmetric
for these homogeneous shear flows, although it could be asymmetric near walls or in
shear bands (Mohan, Rao & Nott 2002).

According to (4.1) in the basic model, the normal stress components are equal
under simple shear, i.e. σxx = σyy = σzz = p. This is not consistent with the normal
stress difference observed from our DEM simulation results (e.g. see figure 13) and
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Figure 13. (Colour online) (a) Normal and (b) shear stress components scaled by the pressure
are plotted against volume fraction φ during steady simple shear under both constant volume
and constant pressure conditions. The inset in (b) is the parity plot of the symmetric parts of
the shear stress components, such as σxz versus σzx . The interparticle friction coefficient µ is
0.5 and the inertia number I < 0.001.

experimental data (for example, reported by Savage 1979 for neutrally buoyant
suspensions). We now extend the basic model in two stages to capture the normal
stress differences: first, to capture the normal stress component with the largest
deviation from the mean pressure, i.e. σyy and represent σxx and σzz by their mean
value, σ̄13 = 1

2
(σxx +σzz); second, to further capture the difference between σxx and σzz.

In terms of the first and second normal stress differences, N1 and N2, we first model
1
2
N1 + N2 (since σ̄13 − σyy = 1

2
N1 + N2) and then model N1.

We first model σ̄13 and σyy components by augmenting the stress equation as

σ = pI − pηŜ + a3p
(

AŜ + ŜA − 2
3
(A : Ŝ)I

)

. (A 1)

The augmented equation (A 1) has the property that the pressure and the deviatoric
stress components derived from it are not altered from those in the basic equation (4.1)
as this additional term is traceless and the deviatoric parts in AŜ and ŜA cancel each
other for simple shear flows. Therefore, the material parameters determined in the
basic model need not be recalibrated for this augmented stress equation. For steady
simple shear flows, the normal stress components take the following forms:

σxx = σzz = σ̄13 = p
(

1 + 2
3
a3Axzsgn(γ̇ )

)

,

σyy = p
(

1 − 4
3
a3Axzsgn(γ̇ )

)

,

}

(A 2)

where sgn(γ̇ ) is the sign of shear rate. Therefore,

1
2
N1 + N2 = 2a3pAxzsgn(γ̇ ). (A 3)

According to (A 2), the difference between σyy and the mean pressure p is exactly
twice of that between σ̄13 and p, which will be shown to be supported by our DEM
data.

To calibrate the parameter a3, we used the steady shear DEM data. Figure 14(a)
compares the predictions of the augmented model of σ̄13 and σyy scaled by pressure
with the steady shear DEM data for assemblies of particles with µ = 0.5 and µ =0.1.
When applied to unsteady shear, the augmented model agrees with most of the
variation although the instantaneous values at shear reversal are overpredicted, as
shown in figure 14(b) for a reversal under the constant volume condition. The
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Figure 14. (Colour online) Normal stress components σ̄13 and σyy scaled by pressure are
plotted against volume fraction and shear strain for an assembly in (a) steady simple shear
and (b) unsteady shear under the constant volume condition, respectively. Symbols denote
data from DEM simulations and curves are the constitutive model results. In (a), solid
symbols denote particles with µ= 0.5 and open symbols denote µ= 0.1. In (b), particle
friction coefficient is 0.5 and volume fraction is 0.6.

overprediction is caused by the constant a3 used in the model. The prediction of
unsteady behaviour can be improved by making a3 vary with microstructure evolution,
which was not pursued in this paper.

The second stage of the extension aimed at modelling the first normal stress
difference N1 leads to

σ = pI − pηŜ + a3p
(

AŜ + ŜA − 2
3
(A : Ŝ)I

)

+ a4p
(

A − 1
2
(A : Ŝ)Ŝ

)

. (A 4)

The normal stress components take the following forms for simple shear flows:

σxx = p
(

1 + 2
3
a3Axzsgn(γ̇ ) + a4Axx

)

,

σzz = p
(

1 + 2
3
a3Axzsgn(γ̇ ) + a4Azz

)

,

σyy = p
(

1 − 4
3
a3Axzsgn(γ̇ )

)

.

⎫

⎪

⎬

⎪

⎭

(A 5)

As prescribed in the fabric evolution equation (4.7), Axx = − Azz and Ayy =0, which
is supported by our DEM data (Aarons et al. 2009). The first and second normal
stress differences are thus fully resolved as

N1 = σxx − σzz = a4p(Axx − Azz),

N2 = σzz − σyy = a3pAxzsgn(γ̇ ) + a4pAzz,

}

(A 6)

which implies that the first normal stress difference is caused by the difference
between the corresponding fabric normal components. As both Axx and Azz are small
in magnitude, the magnitude of N1 is also small, which is supported by our DEM
data shown below.

We used the DEM normal stress and fabric data of steady simple shear averaged
over a range of volume fractions to calibrate a4. We then compared the predictions of
the normal stress components scaled by pressure to the corresponding DEM data for
assemblies of particles with friction coefficients µ = 0.5 and µ =0.1 in figures 15(a)
and 15(b), respectively. It can be seen that both the first and second normal stress
differences are captured and agree well with the DEM data for both different µ values.
When applied to a shear reversal flow under constant volume condition, the further
augmented model captured most of the trends, but some quantitative differences
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Figure 15. (Colour online) Normal stress components σxx , σyy and σzz scaled by pressure are
plotted against volume fraction and shear strain for an assembly in (a) steady simple shear
with particle friction coefficient µ= 0.5, (b) steady simple shear with particle friction coefficient
µ= 0.1 and (c) unsteady shear under the constant volume condition, respectively. Symbols
denote data from DEM simulations and curves denote the constitutive model results. In (c),
particle friction coefficient is 0.5 and volume fraction is 0.6.

remain as shown in figure 15(c). The main difference is again the overprediction at
shear reversal caused by the constant a4.

The normal stress difference increases monotonically with increasing particle friction
coefficient µ. This trend is reflected by parameters a3 and a4 increasing in magnitude
as reported in figures 16(a) and 16(b), which can be fitted using the equations
a3 = 1.57e−4.5µ − 1.7 and a4 = −6.5e−2µ + 6.5, respectively.

The full model, consisting of (A 4) for stress, (4.2) for pressure, (4.5) for macroscopic
friction coefficient, (4.7) for fabric evolution and (4.8) for coordination number
evolution, can be simplified for steady simple shear flows as follows. For these
flows, the strain rate tensor D̂ takes the form sgn(γ̇ )(e(x)e(z) + e(z)e(x)) and Ŝ = D̂. The

expressions for steady state A : Ŝ, |A| and A · Ŝ, deduced by taking the corresponding
double-dot and dot products with the equation for steady state of the fabric evolution
(4.7), are

A : Ŝ = −c2 +
√

c2
2 − 8c1c3

2c3

:= χ , (A 7)
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|A| =

√ −c1χ

2(c2 + c3χ)
:= κ , (A 8)

and

A · Ŝ = − c1

c2 + c3χ
Ŝ · Ŝ := λŜ · Ŝ, (A 9)

respectively. In the deduction of (A 7) and (A 9), the rotational contribution in the
Jaumann derivative, i.e. A · W − W · A, was neglected, which implies zero normal
fabric components according to (4.7) and thus zero first normal stress difference. For
applications where the first normal stress difference is not of serious concern, one
can employ the following simplified version of the model. Substituting (A 9) to the
stress (A 4), (4.9) and (A 8) to the pressure (4.2) and (A 7) to the macroscopic friction
coefficient (4.5), we obtain the simplified stress, pressure and friction coefficient and
equations,

σ = pI − pηŜ + 2a3p
(

λŜ · Ŝ − 1
3
χ I

)

, (A 10)

pd/k = (a1 + a2κ)β2
1 (φ − φc) (A 11)

and

η = b1 + b2χ , (A 12)

respectively. The microstructural variables do not appear directly in this model as
there is no need to evolve them. One can further truncate this model, if adequate for
specific applications, by only retaining the first two terms on the right-hand side of
(A 10). This highly simplified model has a very familiar form (Savage 1983; Jackson
1986), but all the parameters are now linked to particle-scale properties.

Appendix B. Isotropic compression pressure data and model

We used the following protocol to prepare isotropic assemblies under different
levels of confining pressure. Particles were first treated as elastic, frictionless spheres
and thermalized and equilibrated over a broad range of volume fractions up to
φi = 0.63 in a cubic periodic domain. The particles were then assigned the desired
friction coefficient and inelasticity, and compressed isotropically at a very slow rate
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to a finite pressure level, at which mechanical equilibrium was maintained for a long
period of time (usually >107 DEM time steps). At this stage, jamming point, where
static pressure is zero, was crossed. Thus, the jamming point can be approached by
performing simulations for lower and lower final pressure. This protocol is analogous
to that used by Song et al. (2008), where the volume fraction after compression
was controlled instead of pressure. Many realizations with different disordered initial
configurations were performed for each φi value and each pressure level to achieve
good statistics.

Volume fractions and coordination numbers during the equilibrium states at
pressure levels ranging from pd/k = 10−5 to pd/k =3 × 10−2 are reported in
figures 12(a) and 12(b), respectively, for particle assembly with µ = 0.5. The jamming
points, φci and Zc, can be determined by extrapolating the results to the zero-pressure
limit using data in these two figures. It can be seen that pressure has a nearly linear
scaling with (φ − φci) and a quadratic scaling with (Z2 − Zc), which is consistent with
previous findings (using the Hookean contact model) of O’Hern et al. (2003). The
quadratic scaling is also indicated by the linearity between pd/k and (Z2 − Zc)

2 in
figure 12(c). A comparison of the results of simulations starting from eight φi values
(φi = 0.3, 0.4, 0.44, 0.48, 0.52, 0.55, 0.61 and 0.63) reveals that the critical volume
fraction for jamming, φci , is not unique; however, the critical coordination number
for jamming, Zc, is, which has also been reported in other studies (Song et al. 2008;
Chaudhuri, Berthier & Sastry 2010). The uniqueness of Zc is one of the reasons for
modelling the pressure as a function of Z2 instead of φ. Although the pd/k versus Z2

curves with different φi values appear to collapse onto a master curve at the vicinity
of Zc as reported by Chaudhuri et al. (2010), they diverge at higher pressure or larger
Z2 values. Simulations for different µ values were repeated with similar findings.

To take account of this history dependence on packing preparation, an additional
variable, compactivity X, needs to be introduced into the model. It may be interpreted
as a measure of the number of different ways of arranging the grains in the system into
a volume with certain degree of disorder. The two limits, X = 0 and +∞, correspond
to the most and least compact stable arrangements. Compactivity can be shown to
be a function of Z and φ and can be calculated using the statistical theory developed
by Song et al. (2008) and Briscoe et al. (2010). Using the compactivity and the scaling
observed in figure 12(c), the isotropic pressure can be modelled as

pd/k = (a1|(Xc→+∞) + g(Xc)tr(D̂)) ∗ (Z2 − Zc)
2 := a∗

1(Z2 − Zc)
2, (B 1)

where g(Xc) is a function of Xc, the compactivity at jamming point and tr(D̂) = −
√

6
for isotropic compression. The tr(D̂) term is zero in simple shear under the constant
volume condition and its order of magnitude is much less than one for most dynamical
systems involving significant deviatoric deformations. This term reflects the fact that
the dependence on packing preparation vanishes after shearing for a substantial strain
as shown in the text. To illustrate the functional dependence of a∗

1 on Xc without
an elaborate effort of calculating Xc, we plot a∗

1 against φci in figure 12(d ) as Xc

only depends on φci at a fixed Zc. It can be seen that there is a smooth functional
dependence and a∗

1 → a1 as Xc → +∞ at the lowest two φci values (corresponding to
φi = 0.4 and φi = 0.3).

Although the isotropic pressure can be represented formally using (B 1), for the
purpose of modelling of large-strain-scale flow behaviour, we simplify the equation
by retaining only the a1 term, which is the leading and asymptotic term. This
simplification is applicable to assemblies constructed with |tr(D̂)| ≪ 1 and is also
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consistent with the configurations of most granular assemblies in engineering practice
that are usually constructed from low volume fractions. This simplified equation is
used in the pressure equation (4.2) in the text.
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