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ABSTRACT

Random and structured noise both affect seismic data, hiding
the reflections of interest (primaries) that carry meaningful geo-
physical interpretation. When the structured noise is composed
of multiple reflections, its adaptive cancellation is obtained
through time-varying filtering, compensating inaccuracies in
given approximate templates. The under-determined problem
can then be formulated as a convex optimization one, pro-
viding estimates of both filters and primaries. Within this
framework, the criterion to be minimized mainly consists of
two parts: a data fidelity term and hard constraints model-
ing a priori information. This formulation may avoid, or at
least facilitate, some parameter determination tasks, usually
difficult to perform in inverse problems. Not only classical
constraints, such as sparsity, are considered here, but also
constraints expressed through hyperplanes, onto which the
projection is easy to compute. The latter constraints lead to
improved performance by further constraining the space of
geophysically sound solutions.

Index Terms— Optimization methods, Wavelet trans-
forms, Adaptive filters, Geophysical signal processing, Signal
restoration.

1. INTRODUCTION

Adaptive filtering techniques are meant to optimize coeffi-
cients of variable filters, according to adapted cost functions
working on error signals. Adaptive subtraction [1, 2] is at play
in seismic data recovery problems where approximate models
are adapted or matched to actual data, throughout adaptive
filters. These models are obtained from geophysical model-
ing, and known a priori. One such situation is the filtering of
secondary reflexions, or multiples. Geophysical signals of in-
terest, named primaries, follow wave paths depicted in dotted,
dashed and solid blue in Fig. 1. Since the data recovery prob-
lem is generally under-determined, geophysicists have devel-
oped pioneering sparsity-promoting techniques. For instance,
robust, `1-promoted deconvolution [3] or complex wavelet
transforms [4, 5] still pervade many areas of signal processing.
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Fig. 1. Principles of marine seismic data acquisition and wave
propagation. Towed streamer with hydrophones. Reflections
on different layers (primaries in blue), and reverberated distur-
bances (multiple in dotted and dashed red).

Although the contributions are generally considered linear,
several types of disturbances, structured or more stochastic,
affect the relevant information present in seismic data. Mul-
tiples correspond to seismic waves bouncing between layers
[6], as illustrated with red dotted and dashed lines in Fig. 1.
These reverberations share waveform and frequency contents
similar to primaries, with longer propagation times. From the
standpoint of geological information interpretation, they often
bedim deeper target reflectors. For instance, the dashed-red
multiple path may possess a total travel time comparable with
that of the solid-blue primary. Their separation is thus required
for accurate subsurface characterization. We suppose here that
one or several approximate templates of potential multiples are
determined, off-line, based on primary reflections identified
in above layers or wave-propagation modeling. Model-based
multiple filtering is similar to adaptive echo cancellation prac-
tice (see [7] for details), and is now considered as a geophysics
industry standard.

We propose a methodology for primary/multiple adaptive
separation based on these approximate templates. It addresses



at the same time structured reverberations and a more stochas-
tic part. Let n ∈ {0, . . . , N − 1} denote the time index for the
observed seismic trace z, acquired by a given sensor (here, an
hydrophone). We assume, as customary in seismic, a linear
model of contributions:

z(n) = y(n) + s(n) + b(n) . (1)

The unknown signal of interest (primary, in blue) and the sum
of undesired, secondary reflected signals (different multiples,
in red) are denoted, respectively, by y = (y(n))0≤n<N and
(s(n))0≤n<N . Other unstructured contributions are gathered in
the noise term b = (b(n))0≤n<N . We assume that J templates
(r

(n)
j )0≤n<N,0≤j<J for the disturbance signal are available,

which are related to (s(n))0≤n<N through an FIR (Finite Im-
pulse Response), possibly non-causal, linear model

s(n) =

J−1∑
j=0

p′+Pj−1∑
p=p′

h
(n)

j (p)r
(n−p)
j (2)

where h
(n)

j is an unknown impulse response (Pj tap coeffi-
cients) corresponding to template j and time n and where
p′ ∈ {−Pj + 1, . . . , 0} (p′ = 0 corresponds to the causal
case). It must be emphasized that the dependence w.r.t. the
time index n of the impulse responses implies that the filter-
ing process is not time invariant, although it can be assumed
slowly varying in practice.

The purpose of this work is to provide means to identify
y and hj , by imposing hopefully meaningful constraints onto
the above system.

2. RELATION TO PRIOR WORK

The separation of primaries and multiples is a classical issue in
seismic exploration. Most published solutions, tailored to spe-
cific levels of prior knowledge, are very dependent on seismic
data-sets. They generally rely on adapted transforms (Radon,
Fourier transforms) and some form of least-squares adaptive
filtering. Among the vast literature, we refer to [2, 8], for a
recent account on adaptive subtraction of multiples, including
shortcomings of standard `2-based methods. With weak pri-
mary/multiple decorrelation, poor data stationarity or higher
noise levels, traditional methods fail. Due to the parsimonious
layering [9] of the subsurface (illustrated in Fig. 1), spar-
sity promotion suggests the use of sparsifying transforms (e.g.
wavelet/curvelet frames [10, 11]), potentially combined with
robust norms (approximate `1 in [12]), quasi-norms or source
separation methods [13, 14]. To date, their genericity may
be limited by the number of possible penalties to constrain
feasible solutions, and the crucial issue of hyperparameter
determination in such methods.

In [7, 15], the authors incorporate plausible knowledge
via additional metrics. Prior multiple templates are supple-
mented with Gaussian noise assumptions, wavelet-domain

sparsity, smooth variations and energy concentration criteria.
Joint estimation of primaries and adaptive filters is performed
with a proximal algorithm. To alleviate the hyperparameter
estimation issue, we reformulate the previous approach as a
constrained minimization problem. This allows us to more
easily determine data-based parameters. We focus here on the
exploration of various constraint efficiency in wavelet frame
subbands for the primary signal. Interestingly, convex sets
defined as appropriate hyperplanes can outperform standard
`1-ball constraints.

The paper is organized as follows. In Section 3 we rewrite
the observation model and formulate the constrained optimiza-
tion problem. The definition of the constraint sets and the
adopted optimization strategy follows. Section 4 details the
simulation results. Finally, conclusions are drawn in Section 5.

3. CONSTRAINED FORMULATION

3.1. Observation model

Model (2) can be written more concisely as

s = Rh (3)

by appropriately defining R ∈ RN×Q, where Q = NP with
P =

∑J−1
j=0 Pj and h ∈ RQ [15]. On the one hand, the matrix

R contains the J templates for every time index n and tap
index p. On the other hand, the vector h is similarly defined as
the concatenation of all (unknown) time-varying filter impulse
responses. With this notation, the observed data z are given by

z = y +Rh+ b. (4)

Now, we turn our attention to solving the ill-posed inverse
problem of estimating y and h from the observation vector z.

3.2. Constrained problem formulation

Our objective here is to propose a variational approach aiming
at providing relevant estimates of the primary signal y and time-
varying filters h related to multiples. To this end, define an
objective function composed of two convex terms being related
to either y or h through functions ϕ : RN → ]−∞,+∞] and
ρ : RQ → ]−∞,+∞], respectively. We propose to solve the
following constrained minimization problem

minimize
y∈RN ,h∈RQ

αρ(h) + (1− α)ϕ(y)

subject to


ψ(z − y −Rh) ≤ 1

h ∈ C
Fy ∈ D

(5)

where α ∈ [0, 1], F ∈ RK×N , K ≥ N , models a (non neces-
sarily tight) frame operator [16], and C and D are nonempty
closed convex constraint sets that are defined hereafter.



3.3. Constraint set definitions

We discuss here the different choices that can be adopted for
the potential functions as well as the convex sets C and D.
These choices reflect some a priori knowledge one may have
on the variables to be estimated. The idea in addressing a
constrained formulation instead of a regularized formulation
is to avoid or, at least to facilitate, hyperparameter estimation.
This is detailed later on, in the simulation part.

3.3.1. Coupling constraint: function ψ

The seismic noise b is naturally assumed to be additive white
Gaussian with zero-mean and variance σ2. A natural choice for
ψ is thus to take ψ = ‖ . ‖2/(Nσ2). When the noise variance
is unknown, it can be easily and accurately estimated by using
classical techniques such as the median absolute deviation
(MAD) [17] wavelet estimator [18, p. 446].

3.3.2. Hard constraints on filters h: convex set C

As mentioned earlier, the filters are assumed to be time-varying.
However, real case study showed that those filters have smooth
variations along time index n. To ensure that this a priori
characteristic is satisfied for the estimated filters, we propose to
introduce the following upper bound on the impulse response
variations [15]:

∀(j, p, n), |h(n+1)
j (p)− h(n)j (p)| ≤ εj,p (6)

where εj,p ∈ ]0,+∞[.

3.3.3. Hard constraints on primaries y: convex set D

First of all, the primary signal y is assumed to be well rep-
resented onto a wavelet frame [16], whose analysis operator
is F ∈ RK×N . To further account for the wavelet analysis
frame coefficient properties, we propose to split the convex set
D as D1 × · · · ×DL. Indeed, the idea here is to construct L
partitions of {1, . . . ,K} denoted by {K` | ` ∈ {1, . . . ,L}}
where L corresponds to the number of subbands and K` is the
`-th subband. In this work, we investigate two kinds of convex
sets (D`)`∈{1,...,L}:

1. The first one is widely used in the literature and consists
of defining sets of the form: for every ` ∈ {1, . . . ,L},
D` = {(xk)k∈K`

|
∑

k∈K`
φ`(xk) ≤ η`}, where η` ∈

R, and φ` : R|K`| → ]−∞,+∞] is a proper lower-
semicontinuous convex function. For example, this
constraint set definition enables to incorporate sparsity
constraints on the wavelet frame coefficients in the opti-
mization problem, by choosing e.g. φ` = | · |.

2. The second one is more original and consists of defin-
ing hyperplanes: for every ` ∈ {1, . . . ,L}, D` =
{(xk)k∈K`

|
∑

k∈K`
φ`((FLz)k)xk = η`}, where L ∈

RN×N is an appropriate linear operator and φ` : R→
R. The simplest choice for L is to take the identity oper-
ator L = I. An alternative choice, which is reminiscent
of Wiener filtering, is

L = λ1 Diag
(
(1 + λ1 + λ2‖R(0)‖2)−1 , . . . ,

(1 + λ1 + λ2‖R(N−1)‖2)−1
)

(7)

where (λ1, λ2) ∈ ]0,+∞[
2 and for every n ∈ {0, . . . , N−

1}, R(n) denotes the n-th row of matrix R.

3.4. Optimization strategy

One can note that Problem (5) can be reexpressed as

minimize
y∈RN ,h∈RQ

f (y,h)+ιS

(
z − [I R]

[
y
h

])
+ιC(h)+ιD(Fy)

(8)
where f : RN × RQ → ]−∞,+∞] : (u, v) 7→ αρ(v) + (1−
α)ϕ(u), S =

{
w ∈ RN | ‖w‖2 ≤ Nσ2

}
and ιS is the indica-

tor function of the set S defined as

ιS(u) =

{
0 if u ∈ S
+∞ otherwise

(9)

(a similar notation being used for C and D). Such convex
optimization problems, involving the sum of 4 convex func-
tions and various linear operators, can be solved in an efficient
manner by using primal-dual approaches such as the Mono-
tone+Lipschitz Forward-Backward-Forward (M+L FBF) algo-
rithm [19] as well as the algorithm in [20], which was recently
extended in [21, 22]. The functional to be minimized being
composed of convex functions as well as indicator functions
of convex sets, the algorithm typically requires to compute,
in parallel, proximal operators and projections onto the dif-
ferent closed convex sets. Concerning proximity operators,
closed-form expressions for a wide class of convex functions
can be found in [23]. The projection onto C is explicit and
reduces to projections onto hyperslabs (after appropriate split-
ting). Similarly, when considering affine constraint for convex
set D (second case) the projection is explicit. For all the re-
maining cases, projections onto `p-ball are performed, some
of which can be computed explicitly (e.g. `2-ball or `∞-ball)
or iteratively (e.g. `1-ball [24]).

4. RESULTS

Simulation tests are performed on synthetic seismic data. From
realistic primary signal y and templates R where J = 2, we
generated observations according to model (4) where appro-
priate time-varying filters h are used with P1 = 6 and P2 = 6.
The primary signal as well as the observations with σ = 0.01
are represented Fig. 2. The criterion to be minimized is
defined by (5) where ϕ is chosen to be the `1-norm, and ρ
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Fig. 2. Observed signal z (red; σ = 0.01), original y (blue).
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Fig. 3. Estimated signal ŷ (magenta), original signal y (blue).
D is the intersection of two hyperplanes defined from the
identity and the sign functions.

is the squared `2-norm (see [7] for more extensive tests on
different choices for ρ). Concerning the constraint set defini-
tions, on the one hand, C is defined by (6) where, for every
p, ε1,p = ε2,p = 0.17. On the other hand, D is defined by
choosing F to be a (non tight) undecimated wavelet frame
with Daubechies wavelets of length 8 and 4 resolution levels.
We have considered the two possibilities described in Section
3.3.3 where, in the first case (inequality constraint), φ` ≡ φ
where φ is either the `1, `2 or the `∞-norm. In the second
case, φ` ≡ φ where φ is either the identity or the sign function;
furthermore, L is chosen according to (7) where λ1 = 0.02
and λ2 = 0.001. In this last case, both affine constraints have
also been considered jointly (intersection of the two constraint
sets).

Restoration results, using M+L FBF algorithm, for the
primary signal in the case when σ = 0.01, are displayed in
Fig. 3. The associated estimated multiples are plotted in
Fig. 4. From these two figures, one can note that the multiples
are quite well estimated and adequately separated from the
primary. The stochastic part is accurately removed, even if
some residual noise remains, for instance when the signal is
of small amplitude. Table 1 shows the signal-to-noise ratios
obtained for the estimation of y and s. Simulations have been
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Fig. 4. Estimated multiples ŝ (magenta), original multiples s
(blue). D is the intersection of two hyperplanes defined from
the identity and the sign functions.

σ 0.01 0.04
φ α SNRy SNRs α SNRy SNRs

0 0.4 23.98 15.79 0.9 15.03 9.60
`1 0.4 25.98 16.16 0.9 18.19 6.61
`2 0.6 25.59 16.02 0.8 17.84 9.20
`∞ 0.6 24.48 15.81 0.8 16.24 8.69
I 0.4 26.19 15.81 0.2 19.74 8.84

sign 0.3 24.43 14.73 0.1 14.75 4.58
I+sign 0.3 26.40 15.56 0.1 18.43 5.94

Table 1. SNR for the estimations of y and s (SNRy and SNRs,
resp.) in dB considering different convex constraint sets D
and two noise levels. Upper table part: “classical constraints”
and lower table part: hyperplane contraints.

run for different convex sets D and for two noise levels (with
standard-deviation σ = 0.01 and σ = 0.04). The notation
φ = 0 has been used in the case when no constraint is applied
to Fy. This allows us to evaluate the gain (up to 1.4 dB)
brought by the introduction of prior information on Fy through
a constrained formulation.

5. CONCLUSIONS

This paper focuses on the constrained convex formulation of
adaptive multiple removal. The proposed approach, based on
proximal methods, is quite flexible and allows us to integrate
a large panel of hard constraints corresponding to a priori
knowledge on the data to be estimated (i.e. primary signal and
time-varying filters). A key observation is that some of the
related constraint sets can be expressed through hyperplanes,
which are not only more convenient to design, but also eas-
ier to implement through straightforward projections. Since
sparsifying transforms and constraints strongly interact [7], we
now study the class of hyperplane constraints of interest as
well as their inner parameters, together with the extension to
higher dimensions.
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