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SUMMARY

In Hm optimal control the cost function is the maximum singular value of a transfer function matrix over
a frequency range. The optimization is over all stabilizing controllers. In constrained Hm control the
controllers typically have a fixed structure, perhaps conveniently parametrized in terms of a parameter
vector. Also, there may be functional constraints involving singular values representing, for example,
robustness requirements. Such problems are usually cast as non-smooth optimization problems.

In this paper we consider a general class of constrained Hm optimization problems and show that these
problems can be approximated by a sequence of smooth optimization problems, Thus each of the
approximate problems is readily solvable by standard optimization software packages such as those
available in the NAG or lMSL library. The proposed approach via smooth optimization is simple in terms
of mathematical content, easy to implement and computationally efficient.
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1. INTRODUCTION AND BACKGROUND

A method of linear multivariable control system design which is of current interest is Hm

optimal control. “2 The simplest class of such problems, for which elegant solutions exist, are
known as one-block problems, which can be formulated as

min IIT1l +T,2QT21\l~
QcRH”

(1)

Here Tij E Rp, the class of rational proper transfer function matrices, and RHm denotes the
class of such which are stable. Also, for continuous-time transfer functions X(s),

IIX ]Im= tllaX{a, [X(.S)],=jti) = max ti[X(U)] = [max i[X*(U)X(U)]] “2 (2)
l,U . .

where ui denotes the ith singular value, G the maximum singular value, ~ the maximum

eigenvalue and the superscript asterisk the conjugate transpose. For discrete time transfer
functions X (z), not dealt with explicitly here, there is an advantage that the frequency range

Iz I = 1 is finite.
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results in presenting a solution method for the constrained Hm optimization problem. The
details are given in Section 3.

In Section 2 we review stabilizing controller theory background material and define more

precisely the class of optimization problems of interest. In Section 3 the constrained Hm control

problem under consideration is approximated by a sequence of smooth optimization problems.
In Section 4 some aspects of the computational procedure are discussed and a design example
is considered to assess the merits of the approach.

2. STABILIZING CONTROLLER THEORY

Consider the feedback control schemes of Figure 1. In Figure l(a) there is a nominal plant with
transfer function matrix P E RJ, and controller K ~ R/,. It is known that the control 100P is well

posed and the controller K is stabilizing for G = P22 if and only if

[-: ‘~1-’ (4)

exists and belongs to RHm. The theory for the class of all stabilizing controllers of Reference
2 allows the parametrization of all stabilizing controllers K for G as a linear fractional map

‘a)‘=:22=’
w W(K) I
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(b)
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Figure 1. Stabilizing controller schemes
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Elegant optimization techniques for (1) are available.”4 Also, these apply with

modifications to the two-block and four-block problems, which are formulated as in (1) but

with Q constrained as [Q I O], [Q T O] or the Q block diagonal [Q], O) respectively. Such

methods fall short of dealing with other constraints, such as Q constrained as block diagonal

[QI, Q21or Q a constant.
In this paper we are concerned with the optimization task where additional constraints are

included in the Hm optimization. These additional constraints may be in such a way that the
controllers are of a fixed structure, perhaps conveniently parametrized in terms of a parameter
vector. Also, they may be functional constraints involving singular values representing, for

example, robustness requirements. Such problems cannot be solved by using the elegant
techniques of References 1–4. It is well known that with these additional constraints, more

complicated non-linear programming techniques must be employed and local minima are
obtained rather global minima.

A computational technique has been developed for solving singular value inequalities over
a continuum of frequencies. 5 The technique contains two parts: a master algorithm which

constructs an infinite sequence of finite sets of inequalities, and a non-smooth subalgorithm
which solves these finite sets of inequalities. When two singular values are close to being equal,
it becomes difficult to compute the corresponding singular vectors with any precision. The case
when two or more singular values are identical on an interval is excluded by assumption. In
Reference 6 an optimization problem is considered where a differentiable cost functional is
to be minimized subject to three kinds of constraints including singular value inequalities over
a continuum of frequencies. An improved algorithm which overcomes the difficulties caused

by singular vector computations is then proposed, 6 making use of outer approximations for
problem decomposition and concepts of non-smooth optimization. Mathematically, these two
papers are highly complex. Furthermore, they cannot make use of standard optimization
software packages such as are available in the NAG or IMSL library.

The key contribution of Reference 7 is to give a simple yet efficient approach for solving
functional inequality constrained optimization problems. The approach involves a new
constraint transcription together with a local smoothing technique. On this basis a sequence
of approximate optimization problems can be constructed. Each of these approximate
problems can be viewed as a conventional optimization problem. The approach is very simple
and can make use of existing optimization software packages. From numerical studies on
simple problems the computational effort appears to be considerably less than using the non-

smooth approach of References 8 and 9. It appears that gradient restoration algorithms ‘0”’
may also be used to solve problems of this type.

Our purpose in this paper is to demonstrate that, under reasonable assumptions, constrained
Hm control problems and optimization involving singular value constraints5’6 can be tackled

using existing smooth optimization software packages. This is achieved by using a well-known
idea in functional analysis (see Reference 12 and the references cited therein) to approximate
the objective functional (2) by

[!
l/2p

II 6[X(CJ)I IIP,[O,CI= ~c {~[X*(U)X(Q)] ]P d~
1

(3)

for an appropriate positive integer p and positive constant c. A simple proof is available for
the convergence of LP, Io,~I to L~, [o,~I as P + CO.’2 In Reference 7 a technique has been
developed to handle functional constraints in non-linear optimization. In this paper we use the
above-mentioned convergence result, extend this technique’ and develop a number of new
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3. REFORMULATION AS A SMOOTH OPTIMIZATION PROBLEM

We reformulate the constrained Hm optimization problem as a smooth optimization problem

in two steps. In step 1 we make a smooth approximation to the objective function using the

LP-norm. In step 2 the functional constraints are approximated by conventional constraints

using a technique similar to that given in Reference 7. To begin, let us assume that the
following conditions are satisfied.

(Al ) W (x,s) is strictly proper (zero for s = m) with no poles on the jti-axis.
(A2) W(x, .s) for each x has distinct singular values for almost all .s = jti with no ju-axis

poles.
(A3) W(x, .s) is continuously differentiable with respect to x for almost all s = ju.

Snrooth approximation of the objective function

Consider the objective function given by (8a). By (2) it may be written as

[ 1
1/2

minll W(x)\l~= min max{i(x, ti)]
Xcz X<E 0>0

where x(x, u) denotes the maximum eigenvalue of W* (x, ~)W(x, u).

(9)

Lelnma 1

LJnder assumption (Al), there exists an x* E E and an U* ~ [0, m) such that

Proof. By assumption (Al) it follows that for each x E E, maxtizo {X(X, o)) is attained at

some finite U. Let {x’] be a sequence in E such that

Since E is compact, {x’] has a convergent subsequence, denoted again by the original sequence,
which converges, say, to x* e E. By the above there exists some u * 6 [0, m ) such that

X(x’, u’) = max[i(x*, u))
ti>o

Since for all i= 1,2, . . . and for all u>O

it follows that for all i = 1, 2, . . .

Therefore, by virtue of the continuity of the function f,

X(X*, OJ*)< lim fi=l
,4’X

This in turn implies the conclusion of Lemma 1.
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K(Q) in terms of arbitrary Q ~ RHM (see Figure l(b)). The matrix J c RP (non-unique) is readily

calculated from G and any stabilizing proper controller K for G. From P and J of Figure l(b)
a T E RP can be constructed allowing Figure l(b) to be re-organized as in Figure l(c). A key

property, namely T22 = O, ensures that closed transfer functions are affine in Q. The

stabilization theory tells us that

(K stabilizes P] s {Q stabilizes T} (5)

Now, again referring to Figure 1, let us denote the transfer function matrix from the
disturbance w to the disturbance response e as W. Since this transfer function is K- or
Q-dependent, we also use the notation W (K ) or W (Q) as appropriate. A standard formulation
of the Hm optimization task is

min IIW(K)llm (6)
stabilizing K for P

The equivalent task under (5) and the relationships

T22 = O, W(K) =W(Q)=T11+T12QT21 (7)

is the derivative task (l), for which elegant solutions exist. It turns out that with P having
McMillan degree rz, the optimal Q leads, via the linear fractional map K(Q), to a controller
of degree n – 1.4 Since W(Q) is affine in Q but W(K) is not, performing H- designs using
constrained optimization techniques as proposed in this paper would be simplified by working
with W (Q) rather than W(K) formulations. Certainly, this is the viewpoint taken in the Q

design methods by Boyd et al. ‘3 and in the adaptive Q methods by Tay and Moore. “”s We

stress, however, that the techniques of this paper apply equally well to W(K) formulations as
to W(Q) formulations.

In practice the controller class may be specified with more restrictions than merely that K
is stabilizing for P. Let us consider the case when the structure of K is specified in terms of

parameters x < E with E a compact subset of R’. It may be that the parametrization is on Q
and thereby on K since K(x) = K [Q(x)] Also, in practice there may be frequency domain
constraints on the closed-loop system behaviour other than mere stability. They may involve
functional constraints on singular values. These motivate for us the following class of

constrained Hm optimization problems.

Constrained Hrn optimization problem

minll W(x)ll~, W(x)ER” (8a)
\EE

subject to the constraints

(i) lrJ(x) <o, j= 1,2, . . ..N (8b)

(ii) max @j(x, u) <O, j=l, . . ..M
tic{]

(8c)

where fl = [0, m) and hi: R’ -+ R, @j: R’ x R + R. Notice that frequency domain constraints

such as stability constraints, robustness constraints or frequency response constraints can be
handled by (8c). These constraints can involve singular values in multivariable problems. 4 For

convenience, let the constrained Hrn optimization problem (8) be referred to as Problem P.
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Combining (12), (14) and (16) gives

(17)

for all x { E and all u z a = 1 + 2@=The constants a, ~ and a all depend on the values of i and

j. However, if we define

*
a =max[cx], (l”= min[fl], Z=max{fi]

i,J ;,J 1,J

then from (11) and (17)

tr[W*(x, u) W(x, ti)) <
4q*(a*)*(t7+ 1)2

/32u2
(18)

for all x E E and all u > E. This proves Lemma 2.

Theorem I

Under assumptions (Al) and (A2) there exists a c: (O, m), independent of x c E, such that

max (i(x, u)} = max [X(x, ~)] (19)
U>() ()<m<c

for each x < E.

Proof. Clearly

X(x, 0) < tr{W*(x, cO)W(x, cO)]

By Lemma 1 and assumption (A2) we note that

min max{i(x, co)] =i(x*, o*) >0
\EE ~.>(l

Let

x(x*, u*)=cl (20)

Hence by Lemma 2 there exist positive constants x and F such that

for all 0> j and x { ~. With c defined by

c= max{F, ~(x/a)) (21)

we than have

X(x, u) < c1 (22)

for all u > c and x { E. Combining (20) and (22), we obtain the conclusion of Theorem 1.

Following from Theorem 1, we now consider the problem

(J

c

)

l/2p

min II U(X)CO)II P, IO,CI = min fi(X, CJ)]” dw
X(E X65 o

(23a)

subject to the constraints

(i) hj(x) <O, j= 1,2, . . ..N (23b)
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Lemma 2

Under assumptions (Al) and (A2) there exist positive constants x and F such that

tr[W*(x, O)W(x, 0)] < M/u2

forallti>iandx <E.

Proof. Let w,, (x, Q) be the (ijj) entry of the q x q matrix

,) <,

(lo)

W(x, o). Then

tr{W*(x, ti)W(x, O)] = ~ ~ I w,,,(x, ti)12 (11)
,cI ,j=l

remembering that for each x and u the Wlj(x, m) are complex numbers.

Choose arbitrary i and j with 1 < i < q and 1 < j < q. By assumption (Al) it follows that
there exists positive integers n and m, with m > n + 1, and coefficients (a;] Y.o and {b, ]~Lo, with

b,,, # O and bo # O, such that
)1–Ia,,s”+ an-IS + . . . + als+ ao

W,J(X,@)=
h’” + b,,,- 1s’”- ‘ + .,. + b,s + bo

(12)

where .s = jti and the coefficients {a;] ~.. and {bj) ~10 are functions of X. NOW

I ans” + an-is”- ‘ +... +als+aol <la,,l+la, ,a,, - llu’z-l +... +lallti+laol (13)

Since ~ is a compact set, there exist positive constants Ct’k,k = O, 1, . . . . rr, such that I Qkl < O!k

for all x { Z. Let
~ = max (CYk]

O<k<n

Then for u z 1 and all x f E

I a,,s~+ a,, -,s”-’ + . . + als+ aol <a(n+ l)u” (14)

Also

I b,,,s’” + b,,, - ,.s’l’- ‘ +... +bs+bOlOl > Ib,,,lti’”– Ib,,, -]lti’’’-’ -... -l b]lti– Ibol

(= Ib,,,l u’” 1 -~u’’-..-~ u-’’’+’- ~u-’”) (15)
I?1 I b,,, I I b,,,l

Now, b,,, # O and so there exist constants ~ >0 and ~1 >0, I = O, 1, . . . . m – 1, such that for all
X(E

M
Ib’’’lz P and lb,,,l <p” ~= O’I’”””’ m-l

Let

F = max {/3/]
0</</71– 1

Then from the above

I b,,,s’” + b,,,- ,s”l- 1 + . +bls+bOl ~@’”[1 –~(u-l+ ti-z+... +t”)]”)]

‘“”’’’i’ -+)

> ; pu ‘“ (16)
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We shall establish conclusions (ii) and (iii) together. Recall that

Furthermore, it is clear that @D(i)(xP(’))~ @(x*) as i~co. Hence

Iim @p(i)(Xp(’))>m
f-m

But

lim I$fl(;)(xp(’))<m
{+.=

Thus we obtain

lim @p(l~(xp(’)) =@(x*)=nr
,*CC

335

x* ~ .X. Thus @(x*) > m.

This in turn implies conclusions (ii) and (iii). Hence the proof of Theorem 2 is complete.

Let

!fp(x)= “ (~(X, CIJ))p dco (25)
o

fp(x) can then be considered as the objective function for Problem Pp. The function x(x, u)
is a non-differentiable function of x with the points of non-differentiability corresponding to

two or more eigenvalues coming together. This has often led to the development of specialized
non-smooth optimization algorithms for minimizing functions of this type. By assumption
(A2) it follows that the eigenvalues of W“(X, CJ)W (x, u) are distinct except possibly at discrete
values of O. Therefore the functions fp(x) are differentiable functions for all x c E. This means

that standard optimization software can be used to minimize fp(x). The gradient of fp(x) is
given by

f

c

Vxfp = p {~(X, u))p-*v,~(X, w) du
o

(26)

where

VX~= 2Re(C*W*VXWv) (27)

with V being the right singular vector corresponding to the maximum singular value 6 of
W(x, ti).

For the non-generic case when assumption (A2) fails to hold, it appears that subgradient
optimization techniques must be employed as in generalizing Reference 5 to Reference 6. Non-
genetic cases are of mathematical interest and for coping with possible ill-conditioning when
singular values are close over a frequency range. These will be the subject of another paper.

Approximation of functional constraints

Consider the functional constraints (23c). Clearly they are equivalent to

Gj(X) =
f

gj(x,~) dm, j= 1,..., A4
n

where

,gj(X, ~) = max[dj(x,m),ol

and fl = [0, m). Since Gj(x) is non-smooth in x, standard routines would have difficulty coping
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(ii) max Oj(x, u) <O, j= 1,2, . . ..A4 (23c)
Wcf)

where p is a positive integer and c is a positive constant, both to be defined later.

For brevity, let Z be the subset of ~ such that the constraints (23b) and (23c) are satisfied.

With this abbreviation the problem (23) may be restated as: find a parameter vector x E ,Y such

that the objective function (23a) is minimized over .% This restated problem will be referred
to as Problem PP.

Theorem 2

Let assumptions

as in (21). Define

where

(Al) and (A2) be satisfied and let the

mP = min OP(X)
hc.F

constant c in Problem P~, be defined

[!
l/2.u

o.(x) = c fi(X, U)]p do
() 1

(24)

Furthermore, for each positive integer p let Xp c .Zbe such that mp = @p(x”). Then there exists

a subsequence {p(i):i = 1,2, . ..] of the sequence {p:p = 1,2, . ..] such that

(i) Xp(i)+ *x asi+w
(ii) x* is an optimal parameter of Problem P

(iii) mP(i) 1 m as i ~ m, where

m= min ~(x)
Xc. i

with

@(x)= max[i(x, ti)] = max {X(x, ti)]
ti>o ()<ti<c

Proof. By Theorem 1 we have

max{~(x, o)) = max {i(x, ti)]
0>0 O<m<c

for each x < ,1. Now we note that @p(x) t ~(x) as p - m for each x { F, where .x is a compact
subset of R’. Thus by Dini’s theorem we have 4P(x) t ~(x) as p ~ m uniformly with respect
to x E Z Furthermore, for all x c F and for all positive integers p, @p(x) < 4(x).

For each p let XPE .F be such that

min @P(x) = @p(xP)
xc.F-

Then @fl(xp) < O(x) for all x c ,X and for all positive integers p. Therefore @IP(Xp)< m. Next
we recall that ,Fis compact. Thus there exists a subsequence {p(i): i = 1, 2, . ..} of the sequence
(p:p= 1,2, ...] such that

lim xP(; )
= x*

i-m

with x* E ,1. This implies conclusion (i).
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represent singular values. Then the relaxed constraint conditions (C)–(E) hold

assumptions (A1)–(A3) are satisfied.

Proof. It is straightforward to show that (C) @ (Al), (D) + (A2) and [(D) and (E)] @ [(A2)

and (A3)] , For the nongenetic case when (E) fails, as for the function fP(x) defined in (25),
it appears that subgradient-based optimization techniques must be employed. 5’6

4. COMPUTATIONAL ASPECTS AND AN EXAMPLE

Consider initially Problem P in which there are no functional constraints. As described in the
previous section, we choose a sequence of positive integers, p, and solve (approximate)
Problems PP which are

[x I“2Pmin II6(x,co)IIP,10,C1= min @p(x) = min fp(x) (30)
x x

with &(x) defined by (25) as

sfp(x)= c fi(X, @))p dw
o

(31)

The point at which each minimum is attained will be denoted by Xp and so the minimum value
of the corresponding objective function will be @p(xP). The solution procedure for Problem
P consists of the following steps.

(I) Choose a positive integer P(1) (a suggested value is P(1) = 5) and a value of c. Set i = 1.
(II) Use a standard optimization algorithm to solve Problem PP(i) and obtain XP(’). For

each value of x the objective function fp(x) and its derivative with respect to x can be
calculated by the following procedure.
(a) For each u { [0, c] calculate the value of x(x, u) and V,~(x, o) by

(i) using a complex singular value decomposition to obtain the singular values
and right singular vectors of W (x, o)

(ii) calculating i(~, a) = [6(X, 0)) 2

(iii) calculating VA(X, ~) from equation (27).
(b) Use numerical integration to calculate ~p(x) and V~P(x) from (25) and (26).

(111) Choose a value of p(i + 1) > p(i) and use Xp(;) as the initial point in the next
optimization. Set i = i + 1 and go to step (II).

Remarks

(i)

(ii)

If a complex singular-valued decomposition is not available, then an alternative
procedure is to form W“(X, CJ)W(X, CJ) and compute its eigenvalues to obtain x(x, o).
The eigenvectors of W’(X, w)W(X, u) are then the right singular vectors of W (x, u).
In practice we usually have a fairly good idea what to chose for the value of c in step

(I). For example, if X(O, jco) is computed, then since X(O, jo) ~ O as u + m, the likely
interval of interest should be apparent. Thus we should not need to iterate on the finite
approximation to the infinite frequency range. Normally a value of c = 10 will suffice,

although this does depend on the particular problem. In the discrete-time case the
frequency range Iz I = 1 is finite so that this issue does not arise. In fact, as pointed out
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with these constraints. However, by using the smoothing technique suggested in Reference 7,

and

Notice that

lim g~,f(X,u) = gj(x, ~) lim Gj,C(X) = Gj(x)
C+o c-o

Let ,;,,7 be the subset of E defined by the constraint (23b) together with

Gj,c(x ) < T

With these definitions a further approximation to Problem PP can be

(28)

the constraint

(29)

defined as: find a
parameter vector x c ,x such that the objective function (23a) is minimized over .7,,,. For each
c > 0 and ~> O let the coi-responding approximate problem be denoted by Problem Plj,~,,.

In reference 7 it is assumed that the following conditions are satisfied.

(A) ~ is a compact interval in R.
(B) @j(x, u) is continuously differentiable in x and OJfor all j.

In applying the techniques of Reference 7 to achieve a solution to the constrained Hrn

optimization task, it is important to note that the proofs used there can be trivially generalized
to allow a relaxation of conditions (A) and (B) to the following.

(C) jog~,4x, u) dti exists for all x and for each j.
(D) d@j(x, co)/c3ti is piecewise continuous in u f fl for each x and j.
(E) @j(x, U) is continuously differentiable with respect to x for almost all u and all j.

Under the constraint conditions (A) and (B) it is proposed in Reference 7 that approximate
problems parametrized in terms of e and r be solved for decreasing c and 7 until a suitable

approximation to the optimal x is found. The following theorem shows that the key theoretical
result in Reference 7 remains valid under the relaxed constraint conditions (C)–(E).

Theorem 3

Consider Problem PP for a particular positive integer p. Then under the relaxed constraint
conditions (C)–(E) an arbitrarily close approximation to the optimal XP for Problem PP is

achieved by solving Problem PP,,,, for c and r suitably small. Moreover, for each .s >0 the
approximate solution satisfies the constraints Gj,F(x) < T for ~ >0 suitably small. (There
exists a 7(.s) >0 such that for all O <7< ~(.c) the approximate solution is feasible. )

Proof. See the relevant parts of Reference 7.

Note that if @j(x, U) represents singular values, then @j(x, co) is not continuously
differentiable in x and u when multiple singular values occur, so that the constraint condition
(B) can fail.
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the steady state estimator gain matrix for the plant is given by

[

– 3.0843 –2.7837
H= O“9002 –0”8184

1“3711 –0”3416 1

Thus the LQG regulator for the plant is given as

K= FIsI–(A +BF+HC+HDF)]-’(– H)

i.e.

[

A+ BF+HC+HDF ; –H
K= . . . . . . . . .

F od

339

[

[

2“2435

::~:~~ +i~l ‘ [~:: ~~!
0.4476

–3”4051
—— – 12”4143

. . . . . .

[

. . .
–4”1399 3.2740 1–1”9588 :

0.3212 –3.2691 –2”4968 “
o 1

The problem of achieving maximally input sensitivity recovery via a Q c RHM feeding back
the estimation residuals can be formulated as the following standard Hm optimization
problem: ‘G

min IITII + TIzQTzIll~
QcRH”

where

[

5“0s5+174.4s4 +670” 7s3–2222.3s2 –612.9s +36.6

SG+23.3S5+ 173.74 +588.4s3+ 101207s2+ 83601 s+ 225.5
T,, =

–12.0s5– 148.8s4– 511.5s3+ 1224.0s2+ 831.4s– 152.3

SG+2303S5+ 173.7 s4+588.4s3+ 1012” 7s2+836.1s +22505

4“8s5+131.7s4 +413.7s3– 1697.3s2+ 232.2s +214.3

SG+23”3S5+ 173”7S4+ 588.4S3+ 1012” 7S2+836”1S +225.5

–8”0s5– 100”4s4– 298” 1s3+956”4s2 –995”3s +41.0

S6+2303S5+ 173”7S4+ 588”4S3+ 1012” 7S2+836”1S +225.5 1
[

S3+7”5989S2– 14”8430s–3”0578 –4.6724s2+ 15.3487s +5.6400 -

S3+ 15.6564s2+ 35.4320s+ 13.6191 S3+ 15.6564s2+ 35.4320s+ 13.6191
T,2= –

–4”6724s2+ 5.8158s– 9.4676 S3+5.0576S2 –12.2951S–0” 3528

S3+15”6564S2 +35”4320S+ 13.6191 S3+ 15.6564s2+ 35.4320s +13.6191
L

rS3+4.6741S2– 11 ”3723s+ 8.1171 –2.4653s2– 20”9025s– 0.1737 -

S3+706586S2 +18.3219S+ 16” 5548 S3+7.6586S2 +18.3219S+ 16.5548
T*1 =

1

6“0347s2+ 6”1714s–4”9359 S3+ 11”0845s2+ 18” 1915s+ 7.8557

S3+7.6586S2 +18.3219S+ 16. 5548 S3+7”6586S2 +1803219S+ 16”5548

The singular values of Tll(jti) are shown in Figure.
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by a reviewer, it might be useful to use a bilinear transformation to convert the infinite

frequency range in continuous time to the finite one associated with discrete time.
Details on this are omitted.

Typically only two or three different values of p will be required. For example,

[p(i)] = [5, 20, 1001 will usually give a good result. It is a relatively simple task to
compute the m-norm for a particular value of XP, i.e. @(xP), and compare it with the
value of the corresponding p-norm, @P(xP). By Theorem 2 the value of @P(xp) and

hence @(xP) converges to the solution of Problem P as p ~ m.
For larger values of p the integrand in (31) will need to be scaled so as to avoid

numerical overflow. One means of accomplishing this is to scale the integrand by the

square of @(xP), where XP is the previous solution point. Then

[J[Op(,)(x) = o(x~(’- ‘)) c 11X(x, cd) p do 1’2P
() [@(x“(’” ‘)))2

(32)

where @(xP(0)) is set to unity. The integrand in (32) now has a maximum of
approximately unity and so overflow is avoided.

In the several examples we have tried the previously described computational procedure
works extremely well. Admittedly we have yet to solve any particularly complicated problems,

but we do not anticipate any severe difficulties, The following example shows the application
of the procedure to control system design. The details of the LQG design can be found in
Reference 16.

Example: Hrn sensitivity recovery based on LQG design

Consider the following state-space description of a linear plant:

x= Ax+Bu

y= Cx+Du

where

which quadratic performance index

J
.

(XT@X + UTR,U) dt
o

Given that

[

5.00 –0”80 6.00
QC=CTC= -().8() 1“01

1

0.30 and R. = I

6“00 0“30 9“00

the steady state feedback gain matrix obtained from the LQ design is

F=
[

–4”1399 3“2740 – 1“9588

0“3212 –3”2691 – 2.4968 1
Associated with

Q,=] and R,=l
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If the controller K [Q(x)] is further required to be able to stabilize internally the perturbed

plant (1 + K)P for all scalar unimodular p 6 RHm satisfying IIp II < a, we need to impose the
following additional constraint on Q(x) E RHrn:

IIT, +Q(x)T211m < l/u (34)

where

T, =

13”030ss +207.55s4 + 860.72s3 +407.54s2 + 82.558s+ 281.94

SG+23.315S5+ 173.66s4+588.38s3+ 1012.7 s2+836.09s +225.46

1-7"3569s5- 88"996S4- l19.33S3+ 848.86s2+ 612. O6s-2l9.69

S6+23.315S5 +173.66S4 +588.38s3+ 1012.7s2+ 836.09s +225 .46

9.5139s5+ 79.365s4–110.40s3 +203. 16s2+383.42s –3.7723

S6+23”315S5+ 173.66s4+588.38s3+ 1012.7s2+ 836.09s+ 225.46 1
2“6342s~+107”33s4 +634.93s3+665.76s2 +493s27s+ 303.07

S6+23.315S5 +173.66S4 +588 .38s3+ 1012.7s2+ 836.09s+ 225.46 1

20.242s5+ 141 .72s4+380.54s3+ 131 .88s2–33.997s+ 179.91

S6+23.315SS+ 173.66s4+588.38s3+ 1012.7s2+ 836.09s +225.46

5“2929s5+ 104.35s4+645.93s3+ 1315 .3s2+895. 18s– 86.059

.s6+23.315s5+ 173”66s4+588.38s3+ 1012.7s2+ 836.09s+ 225.46

–3.2070s5– 27.069s4–149.96s3 –14.159s2+ 140.05s– 40.002

S6+23.315S5+ 173.66s4+588.38s3+ 1012.7s2+ 836.09s+ 225. 46

29.490s5+256.57s4 +747.83s3+ 1097.0s2+ 894.73s+ 387.17

S6+23”315SS +173.66S4 +588 .38s3+ 1012.7s2+ 836.09s+ 225.46

Note that if the constraint (34) is satisfied, then the closed-loop system composed ofG(the
plant transfer function) and K[Q(x)] has again margin of at least (l+cx)/(1-cY).

If we use the optimal Qof the form (33) fortheunconstrained Hm optimization problem,
then we obtain

llT1+Q(x)T211m =5043

which corresponds to a=O.198 in (34) and a gain margin of at least 1.493. We will now
improve the robustness of the controller by solving the constrained H@ optimization problem

with CY=O.5 in the constraint (34). This would correspond to a gain margin of at least 3.
Thevalues of the LP-and L~-norms of W(xp) resulting from the optimization are displayed

in TableII along with thevaluesofxP forp=5, 20, 100 and 200. Figure3 shows the singular

Table [1. Values of the L,)- and L~-norms of W(x, ju) for the constrained case

P x“ @LI(x”) Cp(xp)

5 –18.61 2.38 14.65 –11.05 5.21 4.09
20 –20.04 2.02 15.95 –10.87 4.19 4.04

100 –20.41 1.95 16.24 –10.77 4.05 4.04
200 –20.79 1.86 15.91 –1086 4.04 4.04
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4 -

2

0 ● (l)

5 10 15 20

Figure 3, Singular values of W(X, jm) for optimal x = [ – 20.79, 1.86, 15.91, – 10. 86] ‘ for the constrained problem

o~.
5 10 15 20

Figure 4. Singular values of Ti(ju) + Q(x. jti)Tz(jo) for optimal x for the constrained problem

values of W (xP, ju) corresponding to p = 200. The optimal value obtained for IIW (x)ll~ is

4,03, which is only marginally worse than the value of 3028 obtained in the unconstrained

case. The singular values of T] (jco) + Q(x, jo)T2 (j~) are also illustrated in Figure 4.

5. CONCLUSIONS

We have demonstrated a practical successive approximation method for performing

constrained Hm optimization and an associated convergence theory. The method is attractive
because it is based on smooth optimization theory and standard software optimization
routines. Theory has shown that the results of the method approximate arbitrarily closely
optimal results. The proposed method is easy to implement and, in our limited numerical

experience, appears to be highly reliable and efficient. Since the constraints permitted can be
of functional form, robustness measures can be treated in an Hm-based control system design.
The application of this method has been illustrated in a non-trivial design example.
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