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Abstract

In this paper, we propose a constrained least squares

approach for stably computing Laplacian deformation with

strict positional constraints. In the existing work on Lapla-

cian deformation, strict positional constraints are described

using large values of least squares weights, which often

cause numerical problems when Laplacians are described

using cotangent weights. In our method, we describe strict

positional constraints as hard constraints. We solve the

combination of hard and soft constraints by constructing

a typical least squares matrix form using QR decomposi-

tion. In addition, our method can manage shape deforma-

tion under over-constraints, such as redundant and conflict-

ing constraints. Our framework achieves excellent perfor-

mance for interactive deformation of mesh models.

1 Introduction

Mesh deformation is useful in a variety of applications

in computer graphics and computer-aided design. In re-

cent years many discrete deformation techniques based on

Laplacian mesh representation have been published [20].

They can support interactive work by encoding differential

properties and positional constraints in a linear system.

In most existing work [17, 21], Laplacian operators are

described by the uniform weighting method. This approach

is numerically stable, but may produce distorted shapes

when triangles in the mesh are not uniformly constructed.

Meyer et al. [16] showed that the mean curvature can

be approximated using Laplacians with cotangent weights.

Their work illustrates that the uniform weights preserve the

mean curvature at each vertex only when the mesh consists

of conformal and uniform triangles. Obviously the cotan-

gent weights are better than the uniform weights. However,

the cotangent weights may cause numerical problems be-

cause typical linear solvers fail to solve linear systems for

badly shaped meshes. To solve Laplacians with cotangent

weights, Botsch and Kobbelt [5] remeshed the mesh mod-

els so that the Voronoi area was nearly equal at each vertex.

This approach is useful, but it is difficult to faithfully pre-

serve the details of shapes by automatic remeshing.

We propose a novel constrained least-squares approach

in this paper. This method allows us to stably solve a linear

system of Laplacians defined by cotangent weights with-

out remeshing. In our method, positional constraints are

described as hard constraints. Then a combination of hard

and soft constraints is converted to a typical least squares

system using QR decomposition. This method computes

vertex positions that preserve differential properties stably

and efficiently.

A well-known problem of hard constraints is over-

constraints. If over-constraints are involved, the solver halts

the computation. We show how our framework resolves

over-constrained situations, which include redundant and

conflicting constraints.

In addition to stability, our method satisfies positional

constraints precisely. In the existing methods, posi-

tional constraints are approximately solved by placing large

weights in the least squares system. As the values of

weights become increasingly large, the solver satisfies posi-

tional constraints more strictly, but it becomes numerically

more unstable. satisfied.

In the following section, we review the related work on

3D shape deformation. In Section 3, we describe our mesh

deformation framework with hard constraints. In Section 4,

we evaluate the stability and performance of the proposed

method through experiments. We conclude the paper in

Section 5.

2 Related Work

Interactive mesh editing techniques have been inten-

sively studied [20]. Such research aims to develop model-

ing tools for intuitively modifying free-form surfaces while

preserving the geometric details.



In typical interactive mesh editing, the user first selects

the region to be fixed, and then the vertices to be used as

the manipulation handle. When the user drags the positions

of handle vertices on the screen, the surface is deformed

according to the handle manipulation.

There are several types of approach for mesh editing:

free-from deformation (FFD), multiresolution mesh editing,

and partial differential equation (PDE)-based mesh editing.

FFD methods are very popular approaches. They modify

shapes implicitly by deforming 3D space in which objects

are located [6, 15, 19]. However, it is difficult to manage

geometric constraints defined on vertices, edges and faces,

because FFD does not directly work on geometric shapes.

Multiresolution approaches [8, 10, 11, 12, 27] decom-

pose a surface into a base mesh and several levels of de-

tails. Mesh editing can be performed at various resolutions.

Botsch et al. [4, 5] applied this technique to interactive

mesh editing. A mesh model is decomposed into two-level

resolutions and the smooth base is interactively deformed

using energy minimization techniques. Geometric details

are then recovered on the modified smooth shape.

PDE-based approaches directly deform the original

mesh so that the differential properties are preserved. The

positions of the handle and fixed vertices and the differen-

tial properties of the surface are treated as boundary con-

ditions during the editing processes. Laplacians are most

commonly used to represent differential properties.

PDE-based approaches are categorized as non-linear and

linear methods. Non-linear methods solve Laplacian or

Poisson equations using non-linear iterative solvers [2, 7,

18, 22, 24]. These methods produce fair surfaces, but they

are time-consuming and it is difficult to deform shapes in-

teractively.

Linear PDE-based approaches encode Laplacians and

positional constraints in a linear system and obtain the de-

formed shapes by solving the linear system [4, 21]. A dis-

crete Laplacian is defined at each vertex by the weighted

sum of difference vectors between the vertex and its ad-

jacent neighbors. When the weights in the sum are rep-

resented using the Voronoi area and cotangents [16], the

Laplacian vector approximates the mean curvature at the

vertex.

Yu et al. [25] introduced a similar technique called Pois-

son editing, which manipulates the gradients of the coordi-

nate functions (x, y, z) of the mesh. The vertex positions

are calculated by solving discrete Poisson equations. Zhou

et al. [26] proposed volumetric Laplacians to preserve the

volumetric properties for large deformations. Nealen et al.

[17] introduced a sketch-based interface on the Laplacian

framework.

Since Laplacian vectors are defined in the local coordi-

nate systems [1, 21], one or more vertices must be specified

in the global coordinate system to determine all vertex posi-

tions. Therefore, the total number of Laplacian vectors and

positional constraints is greater than that of the unknowns.

Sorkine et al. [21] solved this over-constrained problem ap-

proximately as a least squares system.

Several authors have discussed methods for rotating

Laplacian vectors according to the deformation of surfaces.

Lipman et al. [13] estimated the local rotations on the

underlying smooth surface. Sorkine et al. [21] approxi-

mated rotations as linear forms and solves them using the

least squares method. Lipman et al. [14] also proposed

a rotation-invariant method. They encoded rotations and

positions in two separate linear systems, in which the lo-

cal frame on each vertex was represented as the differences

between the local frame and adjacent ones, and the vertex

positions as relative coordinates on the local frames.

3 Framework with Hard Constraints

3.1 Preliminaries

Let M = (V,E, F ) be a given triangular mesh with n

vertices. V , E and F are the set of vertices, edges and

faces, respectively. Each vertex has a three-dimensional

coordinate pi = (pxi,pyi
,pzi). A discrete Laplacian

δi = (δxi, δyi
, δzi) is defined as:

δi =
∑

j∈N(i)

wij(pi − pj), (1)

where N(i) = {j|(i, j) ∈ E} is the set of immediate neigh-

bors of vertex i.

We can represent (1) as a matrix equation:

Lp = δ. (2)

We can describe positional constraints as linear equations.

Constraints on the position of a vertex, a point on an edge

and a point on a face can be shown in (3), (4) and (5), re-

spectively:

pi = u (3)

tpi + (1 − t)pj = u′ (4)

spi + tpj + (1 − s − t)pk = u′′, (5)

where u, u′, u′′ ∈ R
3 are certain constant positions.

In addition, we introduce vectorial constraints as fol-

lows:

pi − pj = v, (6)

where v ∈ R
3 is a certain constant vector. This type of

equation constrains the relative positions of vertices. For

example, when the relative positions are defined on edges



of a triangle, the mesh is deformed so that the triangle has

the same shape.

When all of these constraints are defined as soft con-

straints, they are solved by a least squares method, such as:

AT Ax = AT c, (7)

where x = p, A =

[

L
...

]

and c =

[

δ
...

]

. The positions of the

handle vertices are contained in the vector c.

Since AT A is a sparse symmetrical positive definite ma-

trix, (7) can be very efficiently solved using Cholesky fac-

torization [3, 20, 23]. After the matrix is factorized once,

x is repeatedly calculated according to the positions of the

handle vertices.

The method for determining wij is important for numer-

ical stability and quality. A simple method is the following

uniform weights approach:

wij =
1

|N(i)|
. (8)

When badly shaped long triangles do not exist and the sizes

of triangles are nearly equal, the uniform weights work well.

However, this weighting method does not produce good re-

sults in general cases.

The following cotangent weights approach is a better ap-

proximation, because δi approximates the local normal di-

rection and the local mean curvature [22]:

wij =
1

2Area(i)
(cotαij + cot βij), (9)

where Area(i) is the Voronoi area of a vertex i ∈ V , and

αij and βij are the angles opposite to edge (i, j)[16].

However, when the mesh contains triangles that are too

long or too small, Laplacians constructed by cotangent

weights may cause numerical problems. Figure 2 shows

such an example. Since this mesh has many badly shaped

triangles, the linear solver fails to calculate deformed shapes

that preserve Laplacians with cotangent weights. We need

to remove this side effect of cotangent weights. One solu-

tion is to remesh models so that each triangle has the same

Voronoi area [5]. However, remeshing is not always useful,

because it may change the details of shapes.

Therefore, we introduce hard constraints in the de-

formation framework and solve them using the equality-

constrained least squares method. We observe that the

reason why this instability occurs is that relatively large

weights need to be specified on positional constraints. By

treating them as hard constraints, the numerical calculation

is stabilized. In addition, since hard constraints are pre-

cisely satisfied, our framework is suitable for applications

in which positional constraints should be precisely satisfied.

(a) (b)

(c) (d)

Figure 1. Comparison of weighting. (a,b) The

original model subdivided unsymmetrically.
(c) An example of uniform weighting. (d) An

example of cotangent weighting.

Figure 2. An example of a mesh that causes

numerical problems.



3.2 Constrained Least Squares

We define hard constraints as follows:

Bx = d. (10)

Our mesh deformation framework with hard constraints

can be formalized as (11) and can be solved using the

equality-constrained least squares method [9].

min
Bx=d

‖Ax − c‖2, (11)

where A ∈ R
l×n, B ∈ R

m×n, c ∈ R
l, d ∈ R

m, m ≤ n ≤
l.

For clarity, we assume that both A and B have full rank.

Then BT is decomposed by QR factorization [9] as follows:

BT = QR, (12)

where Q ∈ R
n×n is an orthogonal matrix, and R ∈ R

n×m

is an upper triangular matrix.

We rewrite these as follows:

Q =
[

Q1 Q2

]

m n − m
(13)

R =

[

R1

0

]

m

n − m
(14)

QT x =

[

y

z

] m

n − m

.

(15)

Thus, (11) is expressed in the following form:

min
RT

1
y=d

‖AQ1y + AQ2z− c‖2. (16)

Since y is determined by the constraint equation RT
1 y = d,

z is obtained by solving the following unconstrained least-

squares problem:

min
z

‖AQ2z− (c− AQ1y)‖2. (17)

By solving this least squares system, we obtain:

(AQ2)
T AQ2z = (AQ2)

T (c− AQ1y). (18)

Finally, we can obtain x as follows:

x = Q

[

y

z

]

. (19)

We can solve (18) very efficiently using Cholesky factor-

ization, because (AQ2)
T (AQ2) is a symmetrical positive

definite matrix and its size is smaller than A.

Figure 3. An example showing the detection

of rank deficiency in the matrix. After the 3rd
column is processed, the diagonal and lower

elements in the 4th column become zero, and
then all the elements in the 4th Householder

vector become zero, which implies rank defi-
ciency.

3.3 Conflictions of Constraints

In our framework, hard constraints are strictly satisfied

in the solutions. Therefore, if conflicting or redundant con-

straints are involved, they lead to the rank deficiency in B,

and the solver halts the computation.

We can resolve both redundant and conflicting con-

straints by detecting and removing the deficiency of the rank

during the processes of QR decomposition.

We compute QR decomposition BT = QR by House-

holder factorization [9]. Each column of BT represents a

hard constraint. In the process of Householder factoriza-

tion, each column is processed sequentially. Vertices have

n degrees of freedom (DoF) at the beginning of decomposi-

tion, and they have n − i DoF when the column i has been

processed. If BT has no redundant constraint, vertices have

n − m DoF after QR decomposition.

If column j in BT is a redundant constraint, we can-

not decrease the degree of freedom by processing column

j, because the diagonal and lower elements of column j are

equal to zero after the previous j−1 columns are processed,

as shown in Figure 3. Therefore, we can detect the redun-

dant constraints.

After the column of a redundant constraint is detected,

it is skipped and then the next column is processed. By

removing all the redundant constraints, a unique solution is

determined using the unconstrained least squares method.

Then (13), (14) and (15) are substituted with (20), (21)



and (22):

Q =
[

Q1 Q2

]

r n − r
(20)

R =

[

R1

O

]

r

n − r
(21)

QT x =

[

y

z

] r

n − r

,

(22)

where r is the rank of the hard constraint matrix B. The

number of skipped constraints is shown as n − r.

After detecting all redundant constraints, we examine

whether each constraint satisfies the solution. If a redun-

dant constraint is consistent with the solution, it is ignored.

If it conflicts with the solution, we can send out a warning

message to correct the specification.

4 Experimental Results

In this section, we show some results of deformation

based on the equality-constrained least squares method.

Figure 4 shows examples of deformed shapes. This

mesh has badly shaped triangles, as shown in Figure 2.

Our method can produce good results using cotangent

weights, because we can represent Laplacians using cotan-

gent weights, even when the mesh consists of non-uniform

triangles.

Figure 5 shows sample models that are commonly used

for evaluation in computer graphics. We solve the linear

systems constructed by these models using TAUCS [23],

which is a well-known solver of Cholesky factorization.

Table 1 shows the numerical stability. When all con-

strains are treated as soft constraints and their matrix is con-

structed using cotangent weights, the solver fails to calcu-

late the Bunny and Dragon models. Our method can suc-

cessfully calculate both cases.

Figure 6 shows the mesh model with conflicting con-

straints. In Figure 6b, all constraints are described as soft

constraints and a compromised shape is generated. In this

case, it is difficult to detect which constraints are conflict-

ing. Figure 6c shows that our method resolves the conflict-

ing constraints by detecting and removing them.

Our method consists of three phases: set-up, precompu-

tation and solution. In the set-up phase, we construct the

matrices for hard and soft constraints. In the precomputa-

tion phase, we obtain the least squares systems by QR de-

composition and factorize them. In the solution phase, we

compute the positions of vertices. After the matrix is factor-

ized once in the set-up and precomputation phases, the ver-

tex positions are repeatedly calculated in the time spent on

the solution phase. A longer computation time is required

(a) (b)

(c) (d)

Figure 4. Examples of the opening and clos-
ing of the mouth of a dragon. The red ar-

eas consist of constrained vertices: (a) is the
original shape and (b), (c) and (d) are varia-

tions of deformation.

in the set-up and solution phases than in the solution phase.

Figure 7 compares the total time for the first two phases.

The calculation time was measured on a laptop computer

with 2.0-GHz Pentium M CPU, with 1.0 GB of RAM and

Windows OS. The result shows that our method with hard

and soft constraints is as fast as the method with only soft

constraints.

It is possible to add various types of constraints, as well

as vertex positions. In Figure 10 and Figure 11, we add vec-

torial constraints that fix the relative positions of vertices.

These constraints are strictly satisfied in our framework.

Figure 9 shows the computation time for these cases. When

we constrain many relative positions, the computation time

for calculating the least squares matrix (AQ2)
T (AQ2) in-

creases, because the matrix AQ2 becomes less sparse. In

the current implementation, we deal with AQ2 on the as-

sumption that it is sparse matrix, which causes inefficiency.

Thus, there is room for improving the computation times.

5 Conclusion

In this paper, we show a constrained least squares ap-

proach for stably computing Laplacian deformation with

strict positional constraints. Our experimental results for

mesh models, which are commonly used for evaluation in

the computer graphics community, show that our method is



Table 1. Comparison of stability against numerical problems with some samples. (× indicates that

numerical problems arise.)

Only soft constraints Soft & hard constraints

using constrained least squares

Weighting Uniform Cotangent Uniform Cotangent

(a)Armadillo (Figure 5c) © © © ©
(b)Bunny (Figure 5d) © × © ©
(c)Dragon (Figure 4) © × © ©

(a) (b)

(c) (d)

Figure 5. Examples of deformed models. (a) and (b) are deformed to (c) and (d), respectively.



(a) (b) (c)

Conflicting constraints Merged constraints Removed constraints

Figure 6. Management of conflicting constraints. The red areas consist of constrained vertices.
(a) The original model and constraints including conflicts. (b) A result for the case in which all

constraints are soft. (c) A result for the case in which conflicting constraints are managed.

Figure 7. Comparison of precomputation time for different methods. In the case of only soft con-
straints, we convert hard constraints to soft constraints. All the soft constraints are Laplacian coor-

dinates, and all the hard constraints are to fix vertex positions.



Figure 8. Breakdown of precomputation time.
All hard constraints are to fix vertex posi-

tions. Preparation is to solve RT
1 y = d and

to compute c − AQ1y and AQ2.

Figure 9. Breakdown of precomputation time
for various hard constraints. Preparation is

to solve RT
1 y = d and to compute c − AQ1y

and AQ2.



(a) (b)

Figure 10. An example of vector-preserved

deformation. (a) An original mesh. The red
areas consist of constrained vertices. The

white arrow is a constrained vector. (b) A de-
formed mesh. The relative position between

the mouth and the nose is preserved.

(a) (b)

Figure 11. An example of feature-preserved
deformation. (a) An original mesh. The red

areas consist of constrained vertices. The
white areas consist of vertices constrained

by each other. (b) A deformed mesh. The left
eye is preserved in its original shape and the

right eye is stretched.

more stable than existing least-squares methods. In addi-

tion, we show a method for resolving redundant and con-

flicting constraints. The performance of our method is as

good as that of the method that manages only soft con-

straints. Since our method can strictly satisfy hard con-

straints, it can be applied to applications that require precise

positional constraints.

In future work, we need to improve the performance

when many vectorial constraints are added. Since our im-

plementation is not optimized yet, we will be able to tune

the solver for QR decomposition and matrix multiplica-

tions.
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