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Abstract

In this paper, LCP is converted to an equivalent nonsmooth nonlinear equation system
H(x, y) = 0 by using the famous NCP function–Fischer-Burmeister function. Note that
some equations in H(x, y) = 0 are nonsmooth and nonlinear hence difficult to solve while
the others are linear hence easy to solve. Then we further convert the nonlinear equation
system H(x, y) = 0 to an optimization problem with linear equality constraints. After that
we study the conditions under which the K–T points of the optimization problem are the
solutions of the original LCP and propose a method to solve the optimization problem.
In this algorithm, the search direction is obtained by solving a strict convex programming
at each iterative point. However, our algorithm is essentially different from traditional
SQP method. The global convergence of the method is proved under mild conditions. In
addition, we can prove that the algorithm is convergent superlinearly under the conditions:
M is P0 matrix and the limit point is a strict complementarity solution of LCP. Preliminary
numerical experiments are reported with this method.
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Key words: LCP, Strict complementarity, Nonsmooth equation system, P0 matrix, Super-
linear convergence.

1. Introduction

Consider the following linear complementarity problem (LCP)

y = Mx+ q,
x ≥ 0, y ≥ 0, xT y = 0, (1)

where M ∈ Rn×n, x, y ∈ Rn and x ≥ 0 (y ≥ 0) means that xi ≥ 0 (yi ≥ 0). In this paper,
we assume that the solution set of (1) is nonempty. Let X denote the solution set of (1). For
convenience, we sometimes use w = (x, y) for (xT , yT )T .

LCP has many applications in economic and engineering, see [11, 16, 23] for survey. A lot of
experts studied the problem. At present, numerous algorithms were proposed for the problem,
for example, interior method (see [33] and references therein), nonsmooth Newton method (see
[13, 15, 19, 21, 27]) and smoothing method (see [3, 4, 6, 28] and [8] for survey).

Since the work by Mangasarian [25] it has been well known that by means of a suitable
function φ : R2 → R, the system

a ≥ 0, b ≥ 0, ab = 0 (2)
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can be transformed into an equivalent nonlinear equation

φ(a, b) = 0. (3)

In this case, function φ is named as NCP-function. Then (1) can be reformulated as the
following equivalent nonlinear equation system

Φ(x) =

⎛
⎜⎝

φ(x1, (Mx)1)
...

φ(xn, (Mx)n)

⎞
⎟⎠ , (4)

or

H(x, y) =

⎛
⎜⎜⎜⎝

φ(x1, y1)
...

φ(xn, yn)
y = Mx− q

⎞
⎟⎟⎟⎠ . (5)

Many methods have been proposed to solve (4) or (5) or to minimize their natural residual

Ψ1(x) =
1
2
‖Φ(x)‖2 or Ψ2(x, y) =

1
2
‖H(x, y)‖2,

see [13, 18, 17, 20, 15, 14]. In this paper, we are concerned about formulation (5). Generally
speaking, (5) is nonsmooth and nonlinear, hence it is not easy to solve. However, in (5),
the first n components are nonsmooth and nonlinear and difficult to solve while the last n
components are linear and easy to handle. Therefore, it is reasonable to handle the first part
which consists of the n nonsmooth components and the second part which consists of the n
linear equations separately. Based on this idea, we transform further (5) into the following
equivalent minimization problem

min(x,y)∈R2n Ψ(w) = Ψ(x, y) = 1
2

∑n
i=1 φ(xi, yi)2

s.t. y −Mx− q = 0. (6)

Then we propose an SQP(Sequential Quadratic Programming) type method to solve (6). How-
ever, the method is different from the traditional SQP methods. The search direction is obtained
by solving the following convex programming at each iterative point

mindw∈R2n θ(dw) = 1
2‖V dw + φ(x, y)‖2

2 + 1
2µ‖dw‖2

2,
s.t. (−M, In)dw = −y +Mx+ q,

(7)

where dw = (dx, dy) and V T ∈ ∂φ(x, y), which is a generalized Jacobian of φ(w) = φ(x, y) =⎛
⎜⎝

φ(x1, y1)
...

φ(xn, yn)

⎞
⎟⎠ at w and µ = ‖H(w)‖δ (δ = (0, 2]) and In ∈ Rn×n is the identical matrix. The

motivation of using (7) to generate search direction is from the recent results in [12, 30]. Note
that (7) is a strict convex quadratical programming, it has the unique solution. Throughout
the paper, we shall only use the famous Fischer-Burmeister function defined by

φ(a, b) =
√
a2 + b2 − a− b, (a, b ∈ R). (8)

It has many promised properties and attracted the attention of many researchers [17, 13, 15, 2],
see [18] for a survey of its applications.
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The paper is organized as follows. In Section 2, we state the algorithm model and its global
convergence. in Section 3 we analyze the local convergence properties of the algorithm. In
Section 4, Numerical results on some problems are reported. In Section 5, some discussions and
conclusions are given.

2. Algorithm Model and Global Convergence

As mentioned in Section 1, we exploit the famous Fischer-Burmeister function defined as

φ(a, b) =
√
a2 + b2 − a− b. (9)

Then (1) can be converted to the following equivalent nonlinear equation system

H(w) = H(x, y) =

⎛
⎜⎜⎜⎝

φ(x1, y1)
...

φ(xn, yn)
y −Mx− q

⎞
⎟⎟⎟⎠ = 0. (10)

For φ(a, b) and H(w), we have the following lemmas.

Lemma 2.1 [18,19]. Function φ has the following properties:

(1) φ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0;

(2) φ is Lipschitz continuous with modulus L = 1 +
√

2, i.e., |φ(ω) − φ(ω′)| ≤ L|ω − ω′| for
all ω, ω′ ∈ R2;

(3) φ is directionally differentiable;

(4) φ is strongly semismooth on R2;

(5) φ is continuously differentiable on R2\(0, 0);

(6) The generalized gradient ∂φ(a, b) of φ at (a, b) ∈ R2 equals to

∂φ(a, b) =
{ {(a/√a2 + b2 − 1, b/

√
a2 + b2 − 1)} if (a, b) 	= (0, 0),

{(ξ − 1, ζ − 1)} if (a, b) = (0, 0),

where (ξ, ζ) is any vector satisfying
√
ξ2 + ζ2 ≤ 1.

Lemma 2.2. H(w) has the following properties:

(1) H(x∗, y∗) = 0 ⇐⇒ (x∗, y∗) solves (1);

(2) H(w) is Lipschitz continuous on R2n, i.e., there exists L1 > 0 such that

‖H(w) −H(w′)‖ ≤ L1‖w − w′‖, ∀w,w′ ∈ R2n;

(3) H(w) is strongly semismooth on R2n;

(4) If X 	= ∅, then there exists c1 > 0 such that

dist(w,X) ≤ c1‖H(w)‖, ∀w ∈ B(X, 1),

where dist(w,X) = min{‖w − w′‖, w′ ∈ X}, and B(X, 1) = {w|dist(w,X) ≤ 1}.
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Proof. (1)–(3) follow from Lemma 2.1 and (4) follows from Theorem 2.4 in [18].
If we defined ψ : R2 → R and Ψ(x, y) : R2n → R as follows

ψ(a, b) =
1
2
φ(a, b)2, a, b ∈ R;

Ψ(x, y) =
1
2

n∑
i=1

φ(xi, yi)2, x, y ∈ Rn,

then we have the following lemma

Lemma 2.3 [19, 20]Functions ψ and Ψ are continuously differentiable on R2, R2n respectively.
Moreover, the following properties are valid for all a, b ∈ R :

(i) ∇1ψ(a, b) = ∇2ψ(a, b) = 0 ⇐⇒ ψ(a, b) = 0;
(ii) ∇1ψ(a, b) = ∇2ψ(a, b) = 0 ⇐⇒ ∇1ψ(a, b)∇2ψ(a, b) = 0;
(iii) ∇1ψ(a, b)∇2ψ(a, b) ≥ 0.

As pointed out in Section 1, we are interested in solving problem

min(x,y)∈R2n Ψ(x, y)
s.t. y −Mx− q = 0. (11)

Obviously (x∗, y∗) solves (1) if and only if (x∗, y∗) solves (11). However, the algorithm we
proposed in this paper converges to a K–T point of (11). The first question needed to be
answered is what conditions guarantee that a K–T point of (11) is a global solution of (11).
First, we have the following lemma.

Lemma 2.4 [19]. Let M be P0 matrix. Furthermore, let vectors v, u ∈ Rn such that uivi ≥ 0
for all i = 1, . . . , n and uivi = 0 implies ui = vi = 0 for all i = 1, . . . , n. Then

u+Mv = 0 if and only if u = v = 0.

Lemma 2.5. If M is P0 matrix, then

w∗ = (x∗, y∗) solves (1) ⇐⇒ w∗ is a K–T point of (11).

Proof. If w∗ is a solution of (1), then w∗ is a global minimal of (11). Hence w∗ is a K–T
point of (11).

Conversely, if w∗ = (x∗, y∗) is a K–T point of (11), then there exists λ ∈ Rn such that

∇Ψ(x∗, y∗) +
( −MT

In

)
λ = 0, (12)

y∗ −Mx∗ − q = 0, (13)

here ∇Ψ(x, y) denotes the gradient of Ψ at (x, y).
Note that

∇Ψ(x∗, y∗) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∇1φ(x∗1, y
∗
1)

...
∇1φ(x∗n, y

∗
n)

∇2φ(x∗1, y
∗
n)

...
∇2φ(x∗n, y

∗
n)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
( ∇1Ψ(x∗, y∗)

∇2Ψ(x∗, y∗)

)
,
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therefore (12) implies that
λ = −∇2Ψ(x∗, y∗). (14)

It follows from (12) and (14) that

∇1Ψ(x∗, y∗) +MT∇2Ψ(x∗, y∗) = 0.

By Lemma 2.3 (ii)(iii) and Lemma 2.4, we have

∇1Ψ(x∗, y∗) = ∇2Ψ(x∗, y∗) = 0. (15)

Then follows from Lemma 2.3 (i), (15) and the structure of ∇1Ψ(x, y) and ∇2Ψ(x, y) that
Ψ(x∗, y∗) = 0. By (13) and Lemma 2.1 (i), we know that (x∗, y∗) solves (1).

Now we propose an SQP(Sequential Quadratic Programming) method to solve (11). Note
that the constraints in this problem are linear and it is easy to obtain a feasible solution. Hence
the initial point is a feasible point. Moreover, each iterative point wk = (xk, yk) is kept feasible.
In addition, the search direction at iterative point wk is obtained by solving that following
convex quadratic programming:

mindw∈R2n θk(dw) = 1
2‖V kdw + φ(xk, yk)‖2 + 1

2µk‖dw‖2

s.t. dy −Mdx = 0, (16)

where dw = (dx, dy), φ(w) = φ(x, y) =

⎛
⎜⎝

φ(x1, y1)
...

φ(xn, yn)

⎞
⎟⎠, V kT ∈ ∂φ(xk, yk) is a generalized

Jacobian of φ(w) at wk = (xk, yk) and µk = ‖H(wk)‖δ = ‖φ(wk)‖δ (δ ∈ (0, 2]). Clearly,
problem (16) is a strict convex quadratic programming. Therefore, it has the unique solution.
Furthermore, dwk = (dxk, dyk) is the solution of (16) if and only if there exists λk ∈ Rn such
that

(V kT
V k + µkI2n)dwk +

( −MT

In

)
λk = −V kT

φ(wk) = −∇Ψ(wk), (17)

dyk −Mdxk = 0, (18)

where I2n ∈ R2n×2n, In ∈ Rn×n are identical matrices.
Now we state our algorithm formally.

Algorithm 2.1.
step 0. Choose parameters γ ∈ (0, 1), α ∈ (0, 1), β ∈ (0, 1), δ ∈ (0, 2] and initial point

(x0, y0) satisfying y0 = Mx0 + q. Set µ0 = ‖H(x0, y0)‖δ and k:=0;
step 1. Solve (16) to obtain dwk = (dxk, dyk). If dwk = 0, stop;
step 2. If

‖φ(wk + dwk)‖ ≤ γ‖φ(wk)‖ (19)

holds, then wk+1 = wk + dwk, go to step 4. Otherwise, go to step 3;
step 3. Let mk be the smallest nonnegative integer satisfying the following formula

Ψ(wk + βmkdwk) − Ψ(wk) ≤ αβmk∇Ψ(wk)T dwk.

Set wk+1 = wk + βmkdwk;
step 4. Set µk = ‖H(wk)‖δ, k := k + 1, go to step 1.

Remark. (i) It follows from the definition of the algorithm that yk = Mxk + q for all k =
1, 2, . . . .
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(ii) If Algorithm 2.1 stops at iterative point wk, then wk is a K–T point of (11) by (17) and
Remark (i). Hence wk = (xk, yk) is a solution of (1) if M is P0 matrix.

(iii) Since

∇Ψ(wk)T dwk = −
(

(V kT
V k + µkI2n)dwk +

( −MT

In

)
λk

)T

dwk

= −dwkT ((V kT
V k + µkI2n)dwk

≤ −µk‖dwk‖2 < 0,

Algorithm 2.1 is well defined in step 3.
(iv) By [18], the sequence wk = (xk, yk) generated by Algorithm 2.1 is bounded if X 	= ∅

and M ∈ R0.
In the remainder of this section, we prove that the algorithm is convergent globally. To this

end, we assume that the sequence {wk} generated by Algorithm 2.1 is infinite and bounded.

Theorem 2.1. Suppose that the sequence {wk} is generated by Algorithm 2.1, then any cluster
point of {wk} is a K–T point of (11).

Proof. By Remark (iii) and step 2, step 3, we know that {Ψ(wk)} is a monotonically
decreasing sequence. Note that µk = ‖H(xk, yk)‖δ = ‖φ(xk, yk)‖δ = (Ψ(xk, yk))

δ
2 , then {µk}

is monotonically decreasing and bounded from below. Hence it is convergent. If µk → 0, then
H(wk) → 0. Therefore any limit point w∗ of {wk} is a solution of (1). So it is a K–T point of
(11). If limk→∞ µk = µ̄ > 0, then we have

∇Ψ(wk)T dwk = −
(

(V kT
V k + µkI2n)dwk +

( −MT

In

)
λk

)T

dwk

= −dwkT ((V kT
V k + µkI2n)dwk

≤ −µ̄‖dwk‖2 < 0.

It is similar to the standard arguments that we can prove that dwk → 0. So let w∗ be a cluster
point of {wk} and {wk}k∈K converge to w∗. It follows from Lemma 2.1 (6) that {V k}k∈K is
bounded. Without loss of generality, let limk→∞,k∈K V k = V ∗. The problem

mindw∈R2n θ(dw) = 1
2‖V ∗dw + φ(x∗, y∗)‖2 + 1

2 µ̄‖dw‖2

s.t. dy −Mdx = 0,

has the unique solution dw∗ = 0. Hence there exists λ∗ ∈ Rn such that
( −MT

In

)
λ∗ + V ∗Tφ(w∗) = 0. (20)

From [10], we know that V ∗T ∈ ∂φ(w∗). So

V ∗Tφ(w∗) = ∇Ψ(w∗). (21)

It follows from yk −Mxk − q = 0, ∀k that

y∗ −Mx∗ − q = 0. (22)

(20)-(22) imply that w∗ = (x∗, y∗) is a K–T point of problem (11).

3. Local Convergence

In order to analyze the local convergence properties, we need the following assumption:
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Assumption 3.1. {wk} → w∗, where w∗ is a solution of (1) and satisfies strict complement
condition, i.e., x∗i + y∗i > 0, for all i = 1, . . . , n.

By Assumption 3.1, we know that there exists positive integer K0 > such that

xk
i + yk

i > 0, ∀i = 1, . . . , n,

and
(xk, yk) ∈ B(X, 1)

for all k ≥ K0. Hence follows from Lemma 2.1 (5), Lemma 2.2 (4), Assumption 3.1 and the
definition of φ(x, y) that we have for all k ≥ K0

∂φ(xk, yk) = {∇φ(xk, yk)}, (23)

and
dist(wk, X) ≤ c1‖H(wk)‖ = c1‖φ(wk)‖. (24)

Therefore
V kT

= ∇φ(xk, yk). (25)

In what follows, we assume that k ≥ K0.
Let w̄k denote a vector such that

‖wk − w̄k‖ = dist(wk, X), w̄k ∈ X. (26)

Note that such w̄k always exists even though the set X is nonconvex. It follows from Lemma
2.1 (4) and the structure of φ(w) that φ(w) is strongly semismooth, i.e., there exists L2 > 0
such that

‖φ(w′) − φ(w) − V (w′ − w)‖ ≤ L2‖w′ − w‖2, ∀V T ∈ ∂φ(w′). (27)

First we give several lemmas.

Lemma 3.1. Suppose that Assumption 3.1 holds and {wk} is generated by Algorithm 2.1. If
wk ∈ N

(
w∗, 1

2

)
= {w|‖w − w∗‖ ≤ 1

2}, then

‖dwk‖ ≤ c2dist(wk, X),

‖V kdwk + φ(wk)‖ ≤ c3(dist(wk, X))1+
δ
2

where c2 =
√
cδ1L

2
2 + 1, and c3 =

√
Lδ

1 + L2
2,

Proof. Note that w̄k − wk is a feasible solution of (11), then

θk(dwk) ≤ θk(w̄k − wk). (28)

Since wk ∈ N(w∗, 1
2 ), then

‖w̄k − w∗‖ ≤ ‖w̄k − wk‖ + ‖wk − w∗‖ ≤ 2‖wk − w∗‖ ≤ 1. (29)

So w̄k ∈ B(X, 1). By Lemma 2.2 (2) (4) and (26), we know

µk = ‖H(wk)‖δ ≥ 1
cδ1
‖w̄k − wk‖, (30)

µk = ‖H(wk)‖δ = ‖H(wk) −H(w̄k)‖δ ≤ Lδ
1‖wk − w̄k‖δ. (31)
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From the definition of θk and (27), (28)–(31), we have

‖dwk‖2

≤ 2
µk
θk(dwk)

≤ 2
µk
θk(w̄k − wk)

= 1
µk

(‖V k(w̄k − wk) + φ(wk)‖2 + µk‖w̄k − wk‖2)
= 1

µk
(‖φ(wk) − V k(wk − w̄k) − φ(w̄k)‖2 + µk‖w̄k − wk‖2)

≤ 1
µk

(L2
2‖w̄k − wk‖4 + µk‖w̄k − wk‖2)

≤ (cδ1L2
2 + 1)‖w̄k − wk‖2.

Let c2 =
√
cδ1L

2
2 + 1, then the first equation is obtained.

Now we prove the second equation. It is similar to the first equation we can prove that

‖V kdwk + φ(wk)‖2 ≤ θk(dwk)
≤ θk(w̄k − wk)
≤ L2

2‖w̄k − wk‖4 + µk‖w̄k − wk‖2

≤ (L2
2 + Lδ

1)‖w̄k − wk‖2+δ.

Let c3 =
√
L2

2 + Lδ
1, we obtain the second equation.

Lemma 3.2. Suppose that Assumption 3.1 holds. If wk, wk+dwk ∈ N(w∗, 1) = {w|‖w−w∗‖ ≤
1}, then

dist((wk + dwk), X) ≤ c4(dist(wk, X))1+
δ
2 .

Especially, there exists a constant b3 > 0 such that

dist(wk, X) ≤ b3 ⇒ dist((wk + dwk), X) ≤ 1
2
dist(wk, X).

Proof. Since φ(w) is twice continuously differentiable at wk for k ≥ K0 by Assumption 3.1
and Lemma 2.1, there exist K1 ≥ K0 and L3 > 0 such that

‖φ(wk + dwk) − φ(wk) −∇φ(wk)Tdwk‖ ≤ L3‖dwk‖2, ∀k ≥ K1. (32)

From Lemma 3.1 and (25), we know that for all k ≥ K1

‖dwk‖ ≤ c2dist(wk, X), (33)

‖φ(wk) + ∇φ(wk)Tdwk‖ = ‖V kdwk + φ(wk)‖ ≤ c3dist(wk, X)1+
δ
2 . (34)

Then by Lemma 2.2 (4), (32)–(34), we have

1
c1
dist((wk + dwk), X) ≤ ‖H(wk + dwk)‖

= ‖φ(wk + dwk)‖
≤ ‖φ(wk) + ∇φ(wk)dwk‖ + L3‖dwk‖2

≤ c3dist(wk, X)1+
δ
2 + L3c

1+ δ
2

2 dist(wk, X)1+
δ
2

≤ (c3 + L3c
1+ δ

2
2 )dist(wk, X)1+

δ
2 .

Let c4 = c1(c3 + L3c
1+ δ

2
2 ), we know that the conclusion holds.

Lemma 3.3. Suppose that Assumption 3.1 holds. Then there exists a positive integer K̄ ≥ K1

such that (19) holds for all k ≥ K̄, i.e., the iteration formula is as follows

wk+1 = wk + dwk.
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Proof. Let r = min
{

1
2(1+c2)

, 1
2c4

}
. Since w∗ satisfies φ(w∗) = 0 and φ(w) is continuous,

there exists a positive integer K̄ ≥ K1 by Assumption 3.1 such that

‖φ(wK̄)‖ δ
2 ≤ γ

c4L1c
1+ δ

2
1

, (35)

and
‖wK̄ − w∗‖ ≤ r. (36)

Now we prove that the following statements hold for all k ≥ K̄:
(i) (19) holds;
(ii) wk, wk + dwk ∈ N(w∗, 1);
(iii) wk+1 = wk + dwk.

We prove these conclusions by induction.
When k = K̄, since

‖wk + dwk − w∗‖ ≤ ‖wk − w∗‖ + ‖dwk‖
≤ r + c2dist(wk, X)
≤ r + c2‖wk − w∗‖
≤ (1 + c2)r
≤ 0.5,

(ii) holds.
Let ŵk ∈ X such that

‖(wk + dwk) − ŵk‖ = dist(wk + dwk, X).

It is similar to (29) that we can prove that ŵk ∈ N(w∗, 1). Then by Lemma 3.2, Lemma 2.2
and (35), we have

‖φ(wk + dwk)‖ = ‖H(wk + dwk)‖
= ‖H(wk + dwk) −H(ŵk)‖
≤ L1dist(wk + dwk, X)
≤ L1c4dist(wk, X)1+

δ
2

≤ L1c4c
1+ δ

2
1 ‖H(wk)‖1+ δ

2

= L1c4c
1+ δ

2
1 ‖φ(wk)‖1+ δ

2

≤ γ‖φ(wk)‖.

(37)

So (i) holds. Therefore (iii) holds by the definition of the algorithm.
Now we assume that (i) (ii) (iii) hold for k = K̄, K̄ + 1, . . . , l. We need prove that (i) (ii)

(iii) hold for k = l+ 1.
Obviously, wk+1 ∈ N(w∗, 1), ∀k = K̄, K̄ + 1, . . . , l. From assumption, (ii) (iii) and Lemma

3.2, we know that for all k = K̄, K̄ + 1, . . . , l

dist(wk, X) ≤ c4dist(wk−1, X)1+
δ
2 ≤ . . . ≤ c

(1+ δ
2 )k−K̄−1

4 ‖wK̄ − w̄K̄‖(1+ δ
2 )k−K̄

≤ c
(1+ δ

2 )k−K̄−1
4 ‖wK̄ − w∗‖(1+ δ

2 )k−K̄ ≤ r(1
2 )(1+

δ
2 )k−K̄−1.

Hence, by Lemma 3.1, we have that for all k = K̄, K̄ + 1, . . . , l

‖dwk‖ ≤ c2dist(wk, X) ≤ c2r(
1
2
)(1+

δ
2 )k−K̄−1.
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Then we have

‖wl+1 + dwl+1 − w∗‖ ≤ ‖wK̄ − w∗‖ +
∑l+1

k=K̄ ‖dwk‖
≤ r + c2r

∑l+1
k=K̄(1

2 )(1+
δ
2 )k−K̄−1

≤ r + c2r
∑∞

k=1(
1
2 )(1+

δ
2 )k−K̄−1

≤ (1 + c2)r
≤ 1

2 .

Then (ii) holds.
Since {‖φ(wk)‖} is monotonically decreasing,

‖φ(wl+1)‖ ≤ . . . ≤ ‖φ(wK̄)‖ ≤ γ

c4L1c
1+ δ

2
1

.

It is similar to (37) that we can prove that

‖φ(wl+1 + dwl+1)‖ ≤ γ‖φ(wl+1)‖.
Hence (i) holds. So (iii) holds by the definition of the algorithm.

Combining Lemma 3.2 and Lemma 3.3, we have the following theorem.

Theorem 3.1. Suppose that Assumption 3.1 holds and {wk} is generated by Algorithm 2.1.
Then {dist(wk, X)} converges to 0 superlinearly. If δ = 2, then {dist(wk, X)} converges to 0
quadratically.

Proof. By Lemma 3.3, for all k ≥ K̄, iteration formula is as follows

wk+1 = wk + dwk,

and
wk, wk + dwk ∈ N(w∗, 1).

The conclusion follows from Lemma 3.2.

4. Implementation and Numerical Experiments

In this section, we test our algorithm’s efficiency on some typical test problems. The program
was written in MATLAB and runs in MATLAB 6.0 environment. However, we do not solve
directly problem (16) to obtain the search direction. We consider the following equivalent
unconstrained convex optimization

min
dx∈Rn

0.5dxT

(
(In,M)(V kT

V k + µkI2n)
(
In
M

))
dx+ φ(xk)V k

(
In
M

)
dx. (38)

Note that (38) equals to the following equation
(

(In,M)(V kT
V k + µkI2n)

(
In
M

))
dx+ (In,M)V kφ(xk) = 0, (39)

we solve equation (39) to obtain dx, then let dy = Mdx. In this way, we obtain the search
direction. At each iterative point, we obtain the search direction by solving a system of linear
equations. Since the system of linear equations is symmetric positive definite, the computation
is less. The parameters are chosen as follows γ = 0.9, α = 0.1, β = 0.5, δ = 1. The stop
criterion is ‖dw‖ ≤ 10−10. The numerical results are summarized in Table 1 and the test
problems are introduced as follows.
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LCP1: M =
(

1 1
1 1

)
, q = (−1,−1). This problem is given in Cottle et [11], the initial

point is (0, · · · , 0).

LCP2: M =

⎛
⎝ 0 −1 2

2 0 −2
−1 1 0

⎞
⎠, q = (−3, 6,−1). This problem is given in Cottle et [11],

the initial point is (0, · · · , 0).

LCP3: M =

⎛
⎜⎜⎝

0 0 10 20
0 0 30 15
10 20 0 0
30 15 0 0

⎞
⎟⎟⎠, q = (−1,−1,−1,−1).This problem is given in Cottle

et [11], the initial point is (0, · · · , 0).

LCP4: M =

⎛
⎜⎜⎜⎜⎜⎝

1 2 2 · · · 2
0 1 2 · · · 2
0 0 1 · · · 2
...

...
...

. . .
...

0 0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎠

, q = −e, n = 16.This linear complementarity problem

is one for which Murty has shown that Lemke’s complementary pivot algorithm is known to
run in a number of pivots exponential in the number of variables in the problem (see [26]). The
initial point is (0, · · · , 0).

LCP5: M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 2 2 · · · 2 2
0 1 2 · · · 2 2
0 0 1 · · · 2 2
...

...
...

. . .
...

...
0 0 0 · · · 1 2
0 0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, q = −(1, · · · , 1, 0). This problem is given in Chen

and Ye [7], the initial point is (0, · · · , 0).

LCP6: M =

⎛
⎝ 4 −1 0

−1 4 −1
0 −1 4

⎞
⎠, q = (1, 0,−1). This problem is from Yamashita, Dan and

Fukushima [31]. The initial point is (0, · · · , 0).

LCP7: M =

⎛
⎝ 0 0 0

0 4 −1
0 −1 4

⎞
⎠, q = (0,−1, 0). This problem is from Yamashita, Dan and

Fukushima [31]. The initial point is (0, · · · , 0).

LCP8: M =

⎛
⎜⎜⎝

4 2 2 1
2 4 0 1
2 0 2 2
−1 −1 −2 0

⎞
⎟⎟⎠, q = (−8,−6,−4, 3). This problem is from Yamashita

and Fukushima [32]. The initial point is (0, · · · , 0).

LCP9: M =

⎛
⎜⎜⎝

4 −1 0 0
−1 4 −1 0
0 −1 4 −1
0 0 −1 4

⎞
⎟⎟⎠, q = (0, 0, 0, 0).This problem is from Yamashita and

Fukushima [32]. The initial point is (1, · · · , 1).

LCP10: M =

⎛
⎝ 0 1 0

0 0 1
0 −1 1

⎞
⎠, q = (0, 0, 1). This problem is from Chen and Ye [7]. The

initial point is (1, · · · , 1).
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Table 1: Dim. is the dimension n of the problem, No. of the iter. is the number of the iterations and
Residual is ‖φ(x, y)‖.

Problem Dim. No. of Iter. Residual

LCP1 2 8 1.2e-13
LCP2 3 7 5.8e-15
LCP3 4 9 7.9e-15
LCP4 16 35 1.1e-12
LCP5 100 26 2.7e-13
LCP5 300 42 1.3e-14
LCP6 3 8 1.6e-14
LCP7 3 8 2.7e-19
LCP8 4 20 1.3e-14
LCP9 4 30 5.2e-12
LCP10 3 10 4.0e-12
LCP11 3 10 4.3e-17
LCP12 300 19 3.8e-13
LCP12 500 22 1.1e-11
LCP13 300 21 2.1e-17
LCP13 500 24 1.3e-11

LCP11: M =

⎛
⎝ 0 1 0

0 0 −2
0 2 1

⎞
⎠, q = (0, 0, 1). This problem is from Zhao and Li [34]. The

initial point is (1, · · · , 1).

LCP12: M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

4 −2 0 · · · 0 0
1 4 −2 · · · 0 0
0 1 4 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 4 −2
0 0 0 · · · 1 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, q = −e. This problem is from Ahn [1]. The

initial point is (0, · · · , 0).

LCP13: M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

4 −1 0 · · · 0 0
−1 4 −1 · · · 0 0
0 −1 4 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 4 −1
0 0 0 · · · −1 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, q = −e. This problem is from Geiger

and Kanzow [20]. The initial point is (0, · · · , 0).

From Table 1, we note that the algorithm can solve these problems. For some problems,
for example LCP 5, LCP 12 and LCP 13, the method solves them fast. However, for some
problems, the algorithm is worse. For example, for LCP 4, the method in [22] is very efficient
while our method solves the problem with the number of the iterations as twice as the dimension.
During the experiment, we observe that the algorithm converges fast even though the solution
is degenerate. However, there is no common knowledge on the choice for δ. For some problems,
the lager δ is, the better the algorithm performs, whereas for other problems, the smaller δ is ,
the better the algorithm performs.
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5. Conclusion

In this paper, we propose a new method for LCP. The conditions guaranteeing the global
convergence of the algorithm are mild. Furthermore, we prove that the algorithm is superlin-
early convergent under the condition that M is P0 and one of the cluster points of sequence
generated by the algorithm is strict complementarity. We know that Yamashita and Fukushima
in [29] obtained the same results. Our algorithm is different from the algorithm in [29]. Here we
use Fischer–Burmeister function, which performs efficiently in practice. The essential difference
between our algorithm and algorithm in [29] is that they applied LMM to (4) directly while we
convert (5) into equivalent constrained optimization (11). Furthermore, we report numerical
results. Numerical experiments show that the performance of the algorithm is notable.
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