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Abstract. A method of lowest-order constrained variation previously applied by us to 
asymmetric nuclear matter is extended to include electrons and muons making the nuc- 
leon fluid electrically neutral and stable against beta decay. The equilibrium composition 
of a nucleon fluid is calculated as a function of baryon number density and an equation 
of state for beta-stable matter is deduced for the Reid soft-core interaction. 

In a series of publications Owen et a1 (1976a, b, 1977) have developed a lowest-order 
constrained variational (LOCV) method for calculating the equations of state for 
nuclear and neutron matter. The basis of the method is to take a Jastrow-style trial 
wavefunction, make a cluster expansion of the expectation value of a Hamiltonian 
composed of a one-body kinetic energy term and a two-body interaction term, then 
to terminate the cluster expansion at the two-body term and carry out a functional 
variation with respect to the two-body correlation function subject to a constraint. 
In the case of a fermion fluid, the constraint adopted has been one which requires 
the correlated two-body wavefunction to be normalised, or equivalently that the one- 
body density d1)(r1)  should be related to the two-body density d2)(r1, r 2 )  by the 
familiar relation 

This work was extended by Howes et a1 (1978) to derive the equation of state 
of a nucleon fluid with an arbitrary proton to neutron ratio and the symmetry par- 
ameter for the semi-empirical mass formula was deduced for the case of the Reid 
(1968) soft-core interaction. 

In the present Letter we extend the work of Howes et al to include electrons 
and muons and we investigate the composition and equation of state of an equilib- 
rium mixture of neutrons, protons, electrons and muons which is electrically neutral 
and at absolute zero temperature. The nucleons are assumed to interact through 
the Reid soft-core potential; the requirement of charge neutrality means that we 
can ignore the electromagnetic interaction and the weak interactions are neglected. 
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The total baryon number density nB is the sum of the proton and neutron number 
densities 

n B  = n p  + n, (2) 

(3) 

and the condition of electrical neutrality requires 

np = It, + rill. 
The leptons form two highly relativistic, degenerate Fermi seas. The contribution 

to the energy per baryon arising from these Fermi seas is 

m4c5 
E L = J  ~ [xi(l + ~ ? ) " ~ ( 2 x ?  + 1) - sinh-' x i ]  

& = e , ,  8n2h3nB (4) 

where 

xi = hki/mic ( 5 )  

and ke and k, are the electron and muon Fermi momenta respectively. These Fermi 
momenta are not independent, but are related through the condition of beta stability, 
i.e. 

(6) p - p  = p  = 
n 4 e &  

where pi is the chemical potential of the ith species of particle. This implies that 

which determines the muon to electron abundance. 
Our approximation to the free energy per nucleon for beta-stable matter is thus 

where k ,  and k, are the neutron and proton Fermi momenta and E2 is the two-body 
cluster energy calculated by our LOCV method (Owen et al 1977, Howes et al 1978). 

The equilibrium configuration of beta-stable matter is obtained at each total 
baryon number density nB by minimising F with respect to the two-body correlation 
functions and the proton abundance np/nB subject to the constraints of equations 

In figure 1 we plot our calculated number densities as a function of the total 
baryon number density. We see that the proton abundance exhibits a peak at nB 
-0.45 N 'fm-3 where it reaches 7% of the baryon abundance. This is due to the 
system taking advantage of the strong T = 0 tensor components in the Reid interac- 
tion as observed by Pandharipande and Garde (1972). 

We have limited our calculations to the range 0.05 Nfm-3 to 0.85 Nfm-3.  At 
lower densities our LOCV equations become numerically unstable. At higher densities, 
a non-relativistic treatment of the nucleons become extremely questionable. At ex- 
tremely low densities the two-body energy E 2  becomes insignificant and we are left 
with three degenerate Fermi gases. At very low densities, - 5 x Nfm-3, the 
proton abundance starts to grow again and by - 5  x lo-' Nfm-3  the protons are 
dominant. Of course this is unrealistic because before this happens the nucleons 

(0, ( 4 ,  (3) and (6). 
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Figure 1. Calculated number densities for protons, electrons and muons as a function 
of total baryon number density in beta-stable matter. The broken curve represents the 
relative proton abundance. 

will have taken advantage of the attractive long-range components of the N-N inter- 
action to cluster into nuclei which at the same time will minimise their Coulomb 
energy by forming a lattice, e.g. a neutron star crust (Irvine 1978). 

In figure 2 we present our calculated equation of state and compare it with that 
for pure neutron matter. We see that the extra degree of freedom offered by beta 
decay leads to a slight softening of the equation of state, as we would expect. 

A very early estimate of the proton abundance in beta-stable matter was given 
by Salpeter (1960); this gave a maximum of 6% proton abundance but badly overesti- 
mated the symmetry energy. Later calculations were based on the Bethe-Brueckner- 
Goldstone approach. Amongst the earliest of such calculations are the works of 
Sprung and collaborators. Originally Nemeth et aE (1967) obtained a maximum pro- 
ton concentration of 0.8% near to the nuclear saturation density nH c 0.17 Nfm-3.  
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Figure 2. The full curve is our calculated equation of state for beta-stable matter. The 
broken curve represents our results for pure neutron matter. 
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These results, however, are extremely sensitive to  the dependence of their G-matrix 
elements on the relative proton to neutron abundance which they took from a simple 
linear interpolation between the G-matrix elements for neutron matter and nuclear 
matter. Ellis and Sprung (1972), in an extension of the work of Nemeth and Sprung 
(1968), attempted to examine the sensitivity of their results to the G-matrix elements 
at higher densities. They used the forces G-0 and G-1 of Sprung and Banerjee (1971), 
which they adjusted by two different methods to yield nuclear matter saturation 
at a binding energy of 165MeV and density 0.17Nfm-3. Ellis and Sprung then 
considered the spread in their results arising from the two different interactions and 
the different renormalisation procedures to be a measure of the uncertainty arising 
from the Brueckner approach. At densities greater than 0.1 Nfm-3 we are in good 
agreement with their results, especially those obtained with the force G-1. The Sprung 
calculations were all based upon the Reid potential. Buchler and Ingber (1971) have 
also carried out Brueckner calculations based on Ingber’s potential (Ingber 1968, 
Ingber and Potensa 1970). They obtain a 10.8% proton abundance at 
nB = 0.35 Nfm-3. However this is not a peak value, but is the highest density they 
consider. The proton abundance is still rising at this point. 

We would conclude by pointing out that we have carried out a calculation of 
the equation of state and composition of beta-stable matter using techniques which 
we believe to  be more reliable than low-order Brueckner calculations, especially at 
higher densities nB 2 0.2 Nfm-3, and which is free from the uncertainties associated 
with effective interactions obtained by interpolating between nuclear matter and neu- 
tron matter results. 

We are grateful to J C Owen for supplying us with the original nuclear matter 
and neutron matter LOCV codes, and to A M Green for his comments. One of us 
(CH) acknowledges the receipt of an SRC research studentship during the period 
of this work. 
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