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Abstract. A lowest-order constrained variational technique previously used by us to de- 
scribe the bulk properties of neutron and nuclear matter is extended to the case of 
a nucleon fluid with arbitrary proton to neutron ratio. Calculations with the Reid soft-core 
potential are performed and a value of the symmetry coefficient in the semi-empirical 
mass formula is obtained. Inclusion of the saturating effect of the A(1236) described by 
Green and collaborators is shown to improve this value. 

In a previous series of papers (Owen et a1 1976a, b, c, 1977) we have developed and 
applied a lowest-order constrained variational method for calculating the energy- 
density curve for homogeneous quantum fluids. We have used this technique, with 
the constraint that the correlated wavefunction should be properly normalised, to 
calculate the nuclear matter saturation curve with realistic NN potentials (Owen 
et al 1977). For the Reid soft-core potential (Reid 1968) we obtained a binding energy 
per nucleon of 23 MeV at a saturation density corresponding to a Fermi momentum 
k ,  = 1.64 fm-’, which may be compared with the volume coefficient, a, z 16.5 MeV, 
in the semi-empirical mass formulae, and the central density of heavy nuclei which 
corresponds to k ,  z 1.36 fm-’. 

In this work we now consider a general infinite fluid of nucleons at a density 
p = p N  + pz ,  where the proton to neutron ratio r = p z / p N  is allowed to vary. In 
this case we have two distinct Fermi momenta, for neutrons and protons: 

pi = k?/3n2 i = N , Z .  (1) 
We now follow exactly the procedure described by Owen et al (1977) except for 
two changes, namely (i) we sum separately over the distinct neutron and proton 
Fermi seas and (ii) our two-body correlation functions, which previously carried the 
labels CI (E ( J ,  S, T ) ,  respectively the total angular momentum, spin and isospin of 
the pair) and i (equal to 1 for the channels not coupled by the tensor force and 
equal to 2,3 for the two channels L = J k 1 coupled by the tensor force, in the 
notation of Owen et al (1977)) only, now acquire the additional label M T ,  the third 
component of the isospin, to allow for a difference in the n-n, p-p and n-p correlation 
functions. In our earlier nuclear matter work (Owen et a1 1977) each of the correlation 
functions was required to heal to the Pauli function h(kFr): 

( 2) 
0305-4616/78/0004-9081 $01.00 @ 1978 The Institute of Physics L8 1 

h(x) = [l - ~(j l (x) /x)2]-”2* 
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In the present calculations we continue to require that each of the correlation func- 
tions heals to the same Pauli function H(r) ,  which in the case of unequal numbers 
of neutrons and protons is readily seen by the methods of Owen et al (1977), modified 
by the above changes, to be given by 

In another work we shall examine the sensitivity of our results to this restriction 
that each of the correlation functions heals to the same ‘averaged’ Pauli function, 
and in particular we shall examine the effect of allowing the n-n, p-p and n-p 
correlation functions to heal separately. We do not, however, believe this to be an 
important effect. 

In figure 1 we present the results of our calculations for nucleon matter with 
the Reid (1968) soft-core potential at various values of the proton to neutron ratio 
r .  From the semi-empirical mass formulae we expect the energy of infinite nucleonic 
matter at a fixed density p to be given by 

(4) 
where a is the asymmetry parameter, U = (1 - r)/(l + r ) .  From figure 1 we obtain 
the value of the volume coefficient a, = 22.8 MeV at a saturation density 

E ( p , r ) / A  = -a, + asa2 
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Figure 1. Lowest-order variational calculations with a normalisation constraint of the 
energy per particle as a function of density for a nucleon fluid with a proton to neutron 
ratio r = O.O(O.2)l.O. 
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Table 1. Values of deduced from pairs of curves with different proton to neutron 
ratio r in figure 1. The asymmetry parameter a = (1 - r)/(l + r).  Values above the major 
diagonal are at the calculated saturation density of p = 0.297 fm-3; values below the 
major diagonal are at the empirical saturation density of p = 0.17 fm-3. 

\ x 2  0.0 0,01235 0.0625 0.1837 0,4444 1.0 

0.8 0.6 0.4 0.2 0.0 

0.0 1.0 . . .  35.64 35.52 35.88 36.52 38.25 
0,1111 0.8 25.1 1 . . .  35.49 35.84 36.54 38.28 
0.25 0.6 25.92 26.12 . . .  35.90 36.68 38.43 
0.4286 0.4 2613 26.21 26.24 . . .  37.01 38.78 
0,6667 0.2 26.69 26.73 26.81 27.07 I . .  39.64 
1.0 0.0 27.48 27.51 27.58 27.78 28.12 . . .  

p = 0.296 fm-3 for nuclear matter. At a fixed density p ,  any pair of energy curves 
in figure 1 will also give us a value of the symmetry coefficient a,. In table 1 we 
present the matrices of values of a, so determined for both the calculated saturation 
density of 0.296 fm-3 and the empirical saturation density of 0.17 fm-3 for nuclear 
matter. The spread in the values of a, may be taken as an indication of how good 
the assumption of equation (4) is. We see that for p = 0.296 fm-3 there is a range 
of values of a, from 35-40 MeV with an average of 37.0 MeV. The low values are 
all clustered in the top left-hand corner of the matrix, which correspond to small 
values of CI. For p = 0.17 fm-3 the range of values is from 25 to 28 MeV with an 
average of 26.8 MeV, and again the lower values tend to be concentrated in the 
upper left corner. Since the symmetry term was designed to describe the realm of 
finite nuclei, all of which have a < 0.2, we would like to use the values in the top 
left-hand corner of the matrix in table 1 to define q. However, these elements are 
the most uncertain since they are obtained by taking small differences in large energies 
and dividing by small values of a2. Thus an error of - 1% in the binding energy 
of the r = 1 or r = 0.8 curve can change the estimate of a, in this regime by -20%. 

Brueckner-calculation estimates of the symmetry coefficient have been made by 
Brueckner et a1 (1968), who give a value of 28 MeV, by Ellis and Sprung (1972) 
who reanalysed Siemens’ (1970) calculations to obtain 29.3 MeV, and again by Ellis 
and Sprung who obtain 30MeV, and by Haensel and Haensel (1976) who obtain 
23.1 MeV, all of which may be compared with the semi-empirical mass formulae 
fits of -32MeV. The proton to neutron ratios used by these workers are given 
by values of CI = 0.0, 0.2 and 0.4, corresponding to r = 1.0, 0.67 and 0.43 respectively, 
and hence they avoid the sensitive upper left-hand corner of the matrix in table 
1. If we were to restrict ourselves to these values of r we would obtain a spread 
of less than 1% in our estimated values of a,, and would obtain a, = 35.7MeV 
at the calculated nuclear matter saturation density of 0.296fm-3 and a, = 26.1 MeV 
at the empirical density of 0*17fm-3. 

A number of authors (and see Ellis and Sprung (1972)) have also estimated the 
deviations of the symmetry coefficient from a constant value, assuming, instead of 
equation (4), the form 

E(p,r ) /A = -a ,  + @a2(1 + Ax2). (5) 
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Using the whole of table 1 we find that 0.0 < 3, < 0.62 at p = 0.17 fm-3 and 
-0.09 < A < 0.12 for p = 0.296 fm-3, which may be compared with the various esti- 
mates from Brueckner calculations which yield -0.67 < A < 0.24. The only safe con- 
clusion that may be drawn is that our calculations are compatible with A = 0 but 
seem to favour a small positive value, in agreement with the most recent estimates. 
It appears to us unlikely that calculations will ever be sufficiently precise to determine 
A accurately with any high degree of confidence. 

Giving the scatter of results in table 1, it is slightly difficult to make precise 
statements about the value of the symmetry parameter 4, but it is clear that at 
the calculated saturation density of 0,296 fm-3 it is too large, while at the empirical 
saturation density of 0.17fm-3 it is too small, compared with the empirical best- 
fit value of 32 MeV. The most obvious and far worse failure, however, is in the 
prediction of the saturation density at 0.296 fm-3 with a volume coefficient of 
22.8 MeV compared respectively with the empirical values of 0.17 fm-3 and 16.5 MeV. 

However, Green and Haapakoski (1974), Green and Niskanen (1975) and Day 
and Coester (1976) have argued that phenomenological interactions, like the Reid 
interaction we have used, which fit the two-nucleon data will inevitably overestimate 
the binding of nucleon matter because of the two-meson exchange process depicted 
in figure 2(a), wherein one of the intermediate nucleons has been excited to a A(1236) 
resonance. Such amplitudes are presumably included in the phenomenological poten- 
tials, which are, of course, employed unchanged in nuclear matter calculations, but 
where in reality in nucleon matter the intermediate nucleon must be excluded from 
the nucleon Fermi sea (Pauli effect) and the intermediate N and A move in the 
mean field generated by the nucleon background (dispersion effect). Since the process 
depicted in figure 2(a) contributes essentially to the attractive region of the internuc- 
leon potential, such a process treated properly will lead to a loss of binding energy 
for nucleon matter compared with a pure potential calculation. It turns out, however, 
that this loss of binding energy is to some extent compensated for by the three- 
nucleon force also mediated by two-meson exchange, whose amplitude is depicted 
in figure 2(b). In our previous work (Owen et a1 1977) we added the estimates of 
Green and Niskanen, and Day and Coester, for the effect of the amplitude of figure 
2(a) to our constrained variational nuclear matter curve, and this had the effect of 
reducing the binding energy in both cases to 14.7 MeV per particle at saturation 
densities corresponding to kF = 1.41 fm-I and 1.45 fm-' respectively. The amplitude 
of figure 2(b) was originally estimated by Green et a1 (1973) to yield an additional 
1-2 MeV binding energy per particle without significantly altering the saturation 
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lo1 Ib )  
Figure 2. (a) A A contribution to the N-N interaction. (b) The three-nucleon force 
mediated by two-meson exchange. 
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density. This is supported by the most recent work of McKellar (1978) in which 
the 'best' result is given as 1.8 5 0.3 MeV. 

For nuclear matter, Green and co-workers (Green and Niskanen 1975, Green 
et al 1973) quote for the saturation effect of the A resonances an additional energy 
per particle of 

6E(A)/A = (-  8.5 p5 /6  + 138 p1  957)MeV, (6) 
with p measured in units of fm-3, and where the two terms come from the amplitudes 
of figures 2(b) and 2(a) respectively. For neutron matter Green and Haapakoski (1974) 
suggest that the effect of the amplitude of figure 2(a) can be taken into account 
by multiplying the contribution to the total energy from the ' S o  channel by a factor 
of (1 - 4.0 p1 ") with p in units of fmW3. The effect of the three-body amplitude 
of figure 2(b) in neutron matter is expected to be much smaller than in nuclear 
matter because of the 'absence of the strong triplet-even tensor potential which plays 
an important role in nuclear matter' (Green and Niskanen 1975), and with the lack 
of detailed calculations in this case we consequently feel justified in ignoring it. Adding 
these effects to our nuclear matter ( r  = 1) and neutron matter (r = 0) curves in figure 
1, we obtain the modified curves of figure 3. We see that for nuclear matter our 
calculated volume coefficient is now 16.9 MeV and the predicted saturation density 
of 0:20 fm-3(k, = 1.44 fm-') is also greatly improved. From the two curves in figure 
3 we obtain values of the symmetry coefficient of a, = 35.1 MeV at the calculated 
saturation density of p = 0.20 fm-3 and = 31.3 MeV at the empirical value of 
p = 0.17 fm-3, which are in satisfactory agreement with the best-fit value of 32 MeV. 
From our calculations it therefore appears that while the Reid interaction is by 
itself unable to give a good description of nuclear matter, the inclusion of the saturat- 
ing effects of the A(1236) resonance simultaneously brings each of the three parameters 
av, and the equilibrium density into much closer agreement with their empirical 
values. 

p 1 f m-31 
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Figure 3. The energy per particle in (A) neutron matter and (B) nuclear matter as a 
function of density, taken from figure 1 and modified for the effects of the amplitudes 
in figure 2. Note that the energies should be read as negative for ,.uclea; matter and 
positive for neutron matter. 
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A detailed study of the role of the A(1236) resonance in nucleon matter at arbitrary 
proton to neutron ratio is in progress. 

We are grateful to  John Owen for supplying us with the original nuclear matter 
and neutron matter variational codes. One of us (CH) acknowledges receipt of an 
SRC research studentship for the duration of this work, and JMI would like to 
thank the Chalk River Nuclear Laboratories of AECL for their hospitality during 
the final stages of this work. 
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