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ABSTRACT

A  C O N S T R A IN T -B A S E D  F R A M E W O R K  F O R  C O N F IG U R A T IO N

by

D ANIEL SABIN 
University of New Hampshire, September, 1999

The research presented here aims at providing a comprehensive framework for solving 

configuration problems, based on the Constraint Satisfaction paradigm. This thesis is ad

dressing the  two main issues raised by a configuration task: modeling the problem and 

solving it efficiently. Our approach subsumes previous approaches, incorporating both sim

plification and further extension, offering increased representational power and efficiency.

M odeling

We advance the idea of local, context independent models for the types of objects in the 

application domain, and show how the model of an artifact can be built as a composition of 

local models of the constituent parts. O ur modeling technique integrates two mechanisms 

for dealing w ith complexity, namely composition and abstraction. Using concepts such as 

locality, aggregation and inheritance, it offers support and guidance as to the appropriate 

content and organization of the domain knowledge, thus making knowledge specification 

and representation less error prone, and knowledge maintenance much easier.

There are two specific aspects which make modeling configuration problems c h a llen g in g : 

the complexity and heterogeneity of relations that m ust be expressed, manipulated and
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maintained, and the  dynamic nature of the configuration process. We address these issues 

by introducing Composite Constraint Satisfaction Problems, a  new, nonstandard class of 

problems which extends the classic Constraint Satisfaction paradigm.

Efficiency

For the purpose of the work presented here, we are only interested in  providing a guaranteed 

optimal solution to a  configuration problem. To achieve this goad, our research focused on 

two complementary directions.

The first one led to a powerful search algorithm called Maintaining Arc Consistency 

Extended (MACE). By m a in ta in in g  arc consistency and taking advantage of the problem 

structure, MACE turned out to be one of the best general purpose CSP search algorithms 

to date.

The second research direction aimed a t reducing the search effort involved in proving the 

optimality of the proposed solution by m ak in g  use of information which is specific to indi

vidual configuration problems. By adding redundant specialized constraints, the algorithm 

improves dramatically the lower bound computation. Using abstraction through focusing 

only on relevant features allows the algorithm to take advantage of context-dependent in

terchangeability between component instances and discard equivalent solutions, involving 

the same cost as solutions that have already been explored.

xii
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CHAPTER 1

INTRODUCTION

It is no longer a question o f whether A I  technologies will have an impact on man
ufacturing, but one of better understanding and exploiting the broad potential o f A I  
in this domain. New manufacturing concepts and philosophies [ . . .  J  place increas
ing emphasis on the need for more intelligent manufacturing systems, and there is 
general consensus that A I  technologies will play a key role in the manufacturing 
enterprise o f the future.

Call for Papers for the
1996 Artificial Intelligence and M anufacturing Research Planning Workshop

Configuration systems have a long history in  AI, of almost two decades, starting with 

the landmark R l/X C O N  system (McDermott 1982), used in the configuration of computer 

systems at Digital Equipment Corporation. Since then, many configuration systems have 

been built for configuring computers, communication networks, cars, trucks, operating sys

tems, buildings, circuit boards, keyboards, printing presses, insurance policies, etc. This 

work has lead to techniques for representing and solving configuration problems.

Based on the information we have from both, industry and research groups, current 

configurators either fail to address some of the issues raised by configuration problems, 

or their performance in doing so is inadequate. We propose to develop a constraint-based 

configuration framework which overcomes these limitations. Our goal is to provide the basis 

for a faster and more flexible configuration system.

1
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1.1 Sample Configuration Problem

We present in  this subsection paxt of a hypothetical configuration problem. Our goal is 

to introduce the reader to the issues raised by configuration tasks and present the type of 

problems the work presented in this thesis focuses on. The problem is neither complete nor 

real. It is inspired from a set of real specifications, but due to the proprietary nature of 

the information, the actual architecture and values have been slightly modified. However, 

the problem preserves the structure and main characteristics specific to real configuration 

problems.

The task is to configure customized server systems. All server systems share the same 

generic architecture. Two other pieces of knowledge complete the specification of a  server 

system: the set of functional features and properties, which identify the system and its 

constituent parts, and the set of relations among components and/or their features and 

properties. The system architecture is presented in Figure 1-1

Structurally, a  SERVER s y s t e m  consists of a set of racks, in  which we plug servers and 

disk arrays, a  system console, and optionally, a server console and a laser printer. The type 

of a particular server system is specified by the value of the type property, which can take 

the value M ini or Super. T he values for the number of racks, rack-count, and the number of 

servers, server-count, are determined functionally. The type of the system defines for both 

properties a m in im u m  value required and a maximum value allowed. For a  M ini system, 

rack-count =  1 and 1 <  server-count < 3. For a  Super system, 1 <  rack-count < 3, 2 

<  server-count <  4. Choices for the country property axe US, UK, France, Europe and 

WorldWide. Country selections restrict certain other product selections, such as power 

supply, system and server consoles.

Each RACK contains 9 drawers, numbered from bottom  to top starting a t 1. According

2
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Server SERVERSYSTEM
CPU slots

System console
CPU

Server ConsoleSIMM slots
Memory

Laser printer
Bays

f  "Storage-  \  
' Media ■"

Racks
Drawer 9 
Dra wer £Software

OS Drawer 7 
Drawer t

r  Graphics '  
1. Processor J
Bus slots

Drawer 5 
Drawer A
Drawer 3 
Drawer 2
Drawer 1

Disk Array
Bays

Power supplyDisk

Cache

Figure 1-1: Generic server system architecture

to their height, there are two types of rack available: tall and short. An uninterrupted 

power supply takes always the bottom drawer. Either servers or disk arrays can be plugged 

in any of the other drawers. A Mini server requires one ta il drawer, while a Super server 

requires two adjacent drawers, one tail and one short. F irst server takes drawer(s) 7(8). 

Additional servers take drawers 5(6), 3(4), 9, in this order. Disk arrays take drawers 2, 4, 6, 

8, in that order. In a M ini system with more than  4 disk arrays, move the server in drawer 

5 (if any) to drawer 7 from the next rack. In a Super server with more than 2 disk arrays, 

move the server in drawers 5(6) (if any) to drawers 7(8) from the next rack.

3

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



A s e r v e r  provides several sets of resources: CPU slots, S IM M  slots, bus slots, and 

bays. The type of a server is required to be the same as the type of the system. Each type 

requires mim'mnTn values for the number of CPUs, GPU-count, and  to ta l amount of internal 

memory, memory-size. At the same time, the type dictates the lower and upper bounds on 

the number of bays and different slot categories: bay-count, CPU-count, SIMM-count and 

bus-count. Server resources are used both by constituent parts and by other components 

in the system to which the server connects. Each CPU consumes one CPU slot, and each 

m e m o r y  board requires one SIMM slot.

Property type of type d i s k - a r r a y  identifies one of the two types available, DA-1300 

and DA-2900. The maximum number of servers supported, server-count, is 4 for both 

models, and the required m in im u m  number of servers connected is 1, independent of the 

boolean value of daisy-chained. Additional features are the num ber of bays, bay-count, 

the amount of disk space, disk-size, and the amount of cache memory, cache-size provided, 

as well as SCSI-type, which can be either mono-SCSI or dual-SCSI. The number of d i s k  

a r r a y  units a server can connect to is limited by the number o f bus slots it has available. 

A mono SCSI disk array consumes one bus slot, while a dual SC S I  disk array requires two 

bus slots. Disk arrays also consume resources provided by racks. A daisy chained disk array 

consumes two drawers in a rack, and a  not daisy chained one consumes one drawer. The 

type of the disk array restricts the amount of cache memory and  disk size, as well as the 

number of bays. For model DA-1300, 3 <  bay-count < 10, disk-size > 12.6 Gb, cache-size 

€  { 0, 32Mb }. For a  DA-2900, 5 <  bay-count <  15, disk-size >  21 Gb, and cache-size € E  

{ 0, 32Mb, 64Mb }.

The types of m e m o r y  boards available are 64Mb, 128Mb, 256Mb, 512Mb and 1024Mb. 

Each board consumes one SIMM slot. There are two d is k  models, one providing 4.2 Gbyte

4
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and the other one 9.1 Gbyte. Each of them consumes 1 bay.

In addition to the generic architecture of the  artifact and a detailed description of the 

components available, the specifications for a  configuration problem contain also several 

optimization criteria tha t will guide the search for a particular solution. The optimization 

criterion can be expressed locally, a t the level of a  component or group of components, as well 

as globally, a t the level of the entire artifact. Given the total amount of internal memory 

for a server, the number and type of memory boards selected must provide the memory 

required while minimizing the number of memory slots used. Similarly, in determining the 

individual disk drives required to provide the toted disk size selected, the number of disks 

will be minimized. Finally, the total price of the  system, calculated as the sum of the price 

for each of its constituent parts, has to be minimal.

The configuration of a particular instance of server system is based on a  set of needs 

and preferences specified by the user. Some of the input categories and possible choices are 

the following:

• Total number of users tha t will have access to the system: <  100, 100-250, 251-500,

> 500;

•  User storage quota: <  50 Mb, 5-100 Mb, > 100 Mb;

•  Industry selling information: Financial, Industrial products, High Technology, Aerospace, 

Automotive;

• Budget, <  $100,000, > $100,000;

•  Enterprise software packages (select all th a t apply): Oracle ERP, BA AN, Peachtree 

Accounting, CISC, SAP;

5
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•  Groupware software: Lotus Notes, Microsoft Exchange;

•  . . .

1.2 Thesis Contribution

The original contribution of this thesis is twofold, addressing the main issues raised by a 

configuration task: modeling the  problem and solving it efficiently. Our approach subsumes 

previous approaches, incorporating both simplification and further extension, offering in

creased representational power and efficiency.

M odeling

The solution we propose is based on the idea of local, context independent models for 

the types of objects in the application domain. We build the model of an artifact as a 

composition of local models of the constituent parts. P art of the type description is a  well 

specified interface through which specific requirements, imposed on particular instances by 

the context in which these are used, can be expressed. All the specific aspects of using 

the constituent parts in the particular context of a  component /product are specified in the 

model of th a t component/product.

Finding a suitable representation for these models is difficult for two reasons. One is the 

complexity and heterogeneity of relations tha t m ust be expressed, manipulated and main

tained. Inheritance, aggregation, producer-consumer or compatibility are just a  few of the 

relationships among object types, while combinations of specific instances can be restricted 

by arithmetic, geometric or structural constraints. The second aspect is the dynamic na

ture of configuration tasks. Information controlling the evolution of the model, as well as 

mechanisms for enforcing it, m ust be contained in  the  model as well. We address these is-

6
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sties by introducing Composite Constraint Satisfaction Problems, a  new, nonstandard class 

of problems which extends the classic Constraint Satisfaction paradigm. Generalization 

and aggregation are captured directly by the definition of a  composite CSP, while relations 

among instances are expressed through port variables. T he dynamic aspect is handled 

through the set of constraints posted on port variables and the instantiation mechanism.

Another critical requirement for the knowledge representation mechanism used in config

uration is the ability to cope with the high rate of change of the domain knowledge. Changes 

in a component type specification should not propagate across the knowledge base, affect

ing other component types. Adding or eliminating component types should be handled 

without any disruption and should not require any special user intervention. Our modeling 

technique integrates two mechanisms for dealing with complexity, namely composition and 

abstraction. Using concepts such as locality, aggregation and inheritance, it offers support 

and guidance as to the appropriate content and organization of the domain knowledge, thus 

making knowledge specification and representation less error prone. Furthermore, based 

on a declarative paradigm, our framework provides complete separation between domain 

knowledge and control strategy, and this makes knowledge maintenance much easier.

Efficiency

For the purpose of the work presented here, we are only interested in complete search 

methods, that produce a  guaranteed optimal solution to a configuration problem. To achieve 

this goad, our research focused on two complementary directions.

The first one led to a powerful search algorithm called Maintaining Arc Consistency 

Extended (MACE). By maintaining arc consistency and taking advantage of the problem 

structure, MACE turned out to be one of the best general purpose CSP search algorithms

7
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to date.

The second research direction aimed at reducing the search effort involved in proving 

the optimality of the proposed solution by making use of information which is specific to 

configuration problems. O ur strategy in achieving this goal was to make the algorithm 

automatically time up the model based on the information already available in the speci

fications, without putting any additional burden on the user. First, by adding redundant 

specialized constraints, the algorithm improves dramatically the lower bound computation. 

Using abstraction through focusing only on relevant features allows the algorithm to take ad

vantage of context-dependent interchangeability between component instances and discard 

equivalent solutions, involving the same cost as solutions that have already been explored. 

Experimental evaluation shows large increase in performance when both techniques sire 

combined together.

1.3 Thesis Overview

The thesis consists of three parts. The first part, Chapters 2 and 3 present background 

information. Chapter 2 introduces the motivation for this work and gives an overview of 

existing approaches to representing and solving configuration problems. Chapter 3 makes 

a  brief presentation of the CSP paradigm, defining concepts and algorithms relevant to 

our work. Our original contribution is presented in the rest of the thesis. The second part, 

Chapters 4 and 5, discusses main aspects involved in modeling configuration tasks. Chapter 

4 identifies issues to be solved, and provides a powerful and intuitive composite model for 

representing configuration problems. Chapter 5 introduces a new class of nonstandard CSPs, 

composite CSPs, and shows how we implement configuration models as composite CSPs. 

The last part, Chapters 6 and 7, presents the algorithms tha t we use in our framework.
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Chapter 6 presents the MACE algorithm- In  Chapter 7 we show how by adjusting the model 

dynamically we can improve overall efficiency when searching for optim al solutions. Both 

chapters offer experimental evidence supporting our claims. Chapter 8 contains concluding 

remarks.

9
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CHAPTER 2

CONFIGURATION BACKGROUND

The place o f configuration. Comparison with other reasoning tasks. Problem descrip
tion. Problem specification. Current solutions. Rule-based systems. Model-based 
reasoning. Logic-based approaches. The resource-based approach. Constraint-based 
approaches.

Today’s business environment is competitive on a global scale. To compete effectively 

on the rapidly changing market, manufacturers must differentiate their products by focus

ing on individual custom er needs. To face this challenge, companies must move into a  new 

manufacturing paradigm. The classic paradigm, mass production, achieves economies of 

scale by reducing the  unit costs of nearly identical products by using high-volume manu

facturing techniques. In  custom manufacturing, at the other end of the spectrum, products 

are tailored according to specific customer requirements.

Mass customization aims at combining the previous paradigms, in achieving economies 

of scale of mass production while offering the flexibility of custom manufacturing a t the 

same time. The im pact of this strategy on organizations is twofold, affecting bo th  the 

product realization process and the order realization process.

At the product realization level, using a mass-customization strategy translates into 

having a new perspective on design. The goal of design has to shift &om designing individual 

products towards designing families of products. The solution to a design problem must 

thus produce a generic product architecture, which represents a  set of different specific
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product architectures. The generic product architecture is described in  terms of generic 

parts, which refer to sets of alternative components. The variety required by customers is 

achieved by “plugging in” various parts, implementing different functionality, in the generic 

architecture. In particular this means establishing standard interfaces between parts, such 

that different components could be combined systematically in order to cover the desired 

range of possible functions. Designing a  product family can thus be seen as the process 

of capturing multiple product variants within a single data  model (Mannisto, Peltonen, & 

Sulonen 1996). And the same principle applies recursively at the parts  level.

At the order realization level, the requirement is to understand accurately the customer’s 

needs and to create a complete description of a  product variant th a t meets those needs. 

This is the configuration step. Given a  set of customer requirements and a product family 

description in the form of the generic product architecture, the task  of configuration is 

to find a valid and completely specified product structure from among the alternatives 

described by the generic architecture.

A side effect of using flexible product lines, which can involve hundreds or thousands 

of configurable parts, is the increased possibility for errors. The configuration step thus 

becomes crucial for the success and efficiency of the entire enterprise. Errors made during 

this early phase, when requirements are captured, functional specifications axe created and 

the appropriate architecture is selected, create major problems in meeting the schedule 

and lead to costly iterations that occur in later phases downstream. The later the error 

is discovered, at assembly time, at testing time, or by the customer, the higher the costs 

associated with it are.

This explains the renewed industrial interest in configuration and the large number of 

configuration related research projects in the past decade, which lead to techniques for
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representing and solving configuration problems.

2.1 Comparison w ith Other Reasoning Tasks

Configuration is a  special case o f a reasoning task. Reasoning tasks can be classified in 

several ways (Parunak, Kindrick, & Muralidhar 1988) and (Queyranne 1990). Based on the 

type of the outcome, reasoning tasks can be divided in two classes, synthesis and analysis, 

as presented in Figure 2-1. In  synthesis, the task is to derive the structure of a system 

starting from a set of specifications and requirements. In contrast, in  analysis the structure 

of the system is known and, based on it, we predict the behavior of the system (simulation), 

or compare the expected behavior with the actual one (diagnosis, monitoring).

reasoning tasks (|

synthesis |

structure

behavior

analysis

design

time independent 

time dependent

planning |§<C

selection

layout

parametrization |  nominal*

configuration

creative design

sequencing I ordinal*

scheduling S interval*

prediction simulation

interpretation
monitoring

diagnosis

* view o f time

Figure 2-1: Reasoning tasks hierarchy

If time is taken into account, synthesis tasks can be further refined in design and plan-
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ning. Design tasks do not reason about time: the specifications describing the artifact 

(structure, behavior) do not imply any time dependency. The solution to a  design problem 

must satisfy all the  requirements simultaneously, and its structure and composition do not 

change over time. On the other hand, planning involves imposing a  (partial) order over time 

on a set of steps or events. If the duration and the distance between two steps or events is 

not important, the  planning task is a sequencing task, where if we consider duration and 

distance, we have a scheduling task.

2.2 Problem Description

A configuration can be defined informally as a  special case of design activity, w ith the 

following key features (Mittal & Frayman 1989):

• the artifact being configured is assembled from instances of a  fixed set of well-defined 

component types, and

• components interact with each other in predefined ways.

Selecting and arranging combinations of parts which satisfy given specifications is the 

core of a configuration task. During this process, no new component types can be created 

and the interface of the existing component types cannot be modified. The solution has to 

produce the list of selected components, and, as important, the structure and topology of 

the product.

According to this definition, besides the activity of creating technical products, config

uration fits a broad set of everyday tasks: developing a therapy as a  composition of repair 

actions, synthesizing problem solving strategies, or composing qualitative models to explain 

a  phenomena. All these tasks can be reduced to the generic task of “assembling” some “ar-
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tifact” from a fixed set of available “building blocks” : actions in  therapy, knowledge sources 

in problem solving synthesis, or models in qualitative reasoning.

2.2.1 Specification

The specification of a configuration task involves a t least two distinct phases: the descrip

tion of the domain knowledge., and the specification of the desired product. The domain 

knowledge describes the types (classes) o f objects available in  the  application domain and 

the relations among object instances. The specification of the  desired product includes 

requirements th a t must be satisfied by the product, a description of the environment in 

which the product has to operate, and, possibly, the optimization criteria that should be 

used to guide the search for a  solution.

There are several aspects which differentiate between configuration tasks and other 

problem solving activities. T he most important ones, with deep implications from both the 

representational and algorithmic point of view, axe pointed out below.

Closed-world A ssum ption

Selecting and arranging combinations of parts which satisfy given specifications is the core 

of a configuration task. D uring this process, no new component types can be created and 

the interface of the existing component types cannot be modified. The implication of this 

assumption is twofold. First, configuration problems are well-structured and completely 

specified: the description of all the components is complete and all the relations and con

straints among different components can be stated  explicitly. Second, components have a 

well-defined internal structure, which cannot change during the  search for a  solution.
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Hierarchical Organization

Each application object is uniquely identified within the application universe by the set of 

its properties, which characterize its function and performance. I t is a  common practice 

to organize application objects in an abstraction/generalization hierarchy. The hierarchy 

contains both  abstract and physical entities. The physical entities are concrete parts, or 

components, available in  the application domain. By generalizing the properties of a class 

of physical parts we develop abstract parts. During this process, common structure and 

functionality are factored out, while specific aspects are identified.

Dynamic Nature

According to a recent survey (Stefik 1995), most of the reported configuration systems rely 

on the previous characteristics, and work through well-defined phases: user specifications 

lead to an abstract configuration, where goals are represented in terms of the desired func

tions the system has to provide. This abstract solution then undergoes an expansion and 

refinement process until a  complete, detailed configuration is obtained. This process is dy

namic in nature. During the search for a solution new components will be created and added 

to the current configuration as needed for maintaining consistency w ith the requirements l .

Exactly what is am abstract configuration depends on the representation choice, ranging 

from a set of desired functions the system has to provide to a minimal set of required parts, 

both abstract and concrete. Examples are presented in  the following sections.

1 We emphasize here the difference between a component type and its instances. Although the number 
of component types is fixed, there is no predefined limit on the number of instances of a component type 
that can be created.
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2.3 Current Solutions

As we have already pointed out, configuration systems have a  long history in AI, starting 

with the R l/X C O N  system from Digital, and  continuing w ith a  long list of systems devel

oped by other organizations. Currently, there axe four main approaches to configuration. 

One of them uses heuristic reasoning, while the  other three are model-based.

2.3.1 R ule-B ased System s

This type of system, also known under the generic name of expert system , uses production 

rules as a uniform mechanism for representing both  domain knowledge and control strategy. 

The first expert system in daily use in industry (McDermott 1981), (McDermott 1982), 

(Bachant & McDermott 1984), XCON became a  typical example of successful application 

of expert systems technology.

XCON uses OPS5, a production rule programming language. Prior to XCON, Digi

tal attem pted to  tackle the configuration task  using traditional procedural p rogra m m in g  

languages, but without success. Procedural languages, with their commitment to predeter

mined sequences of activities with limited branching, did not provide the flexibility a t run 

time that is needed to cope w ith two key aspects of configuration tasks:

• what actions need to be performed to obtain a valid configuration, and

• when can an  action appropriately occur in relation to o ther actions.

The production rule programming paradigm explicitly provides the dynamic, run-time 

decision making tha t is essential for coping w ith the above characteristics.

The fundamental activity of any program w ritten in OPS5 is the execution of the rec

ognize/act cycle (Bachant & Soloway 1989). A production rule has the form i f  condition
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th e n  consequence. A working memory holds global state  information: inputs and results 

from executing actions. The conditional part of the rule specifies tests on the working mem

ory. If the conditioned part is satisfied, then the consequence part of the rule is executed, 

possibly modifying the  working memory.

Solutions are derived in a forward-chaining manner. At each step, the system examines 

the entire set of rules and considers only the set of rules which can be executed next. Each 

rule carries its own complete triggering context, which identifies its scope of applicability. 

One of the rules under consideration is then selected and executed, by performing its action 

part.

Although it was claimed that the rule-based reasoning allows incremental development, 

it became soon apparent tha t one has to deal with enormous maintenance problems for large 

rule-based systems (Golden, Siemens, &: Ferguson 1986) (Barker & O’Connor 1989). Rules 

specify both directed relationships and actions. A directed relationship represents domain 

knowledge (compatibilities, dependencies, etc.), while an action represents (procedural) 

knowledge controlling the computation of a solution. It is exactly this lack of separation 

between domain knowledge and control strategy and the spread of knowledge about a single 

entity over several rules tha t make the knowledge maintenance task  so difficult.

Consider the problem  of updating rules in light of changes in  the component types 

specification. I t  is very hard even to know if one 1ms found all the rules that need changes. 

Furthermore, if the condition does not trigger, the consequence part of the rule is not 

considered. It is the rule base developer’s responsibility to ensure th a t the set of rules covers 

completely the context of each desired consequence. To get an idea about the complexity 

of the knowledge maintenance task, XCON had in 1989 in its knowledge base more than 

31,000 components and  approximately 17,500 rules (Barker & O’Connor 1989). The change
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rate of this knowledge averaged about 40% per year.

This challenge lead to the development of a programming methodology, RIME, that 

provides structuring concepts for rule-based programming (Bachant 1988). M eta rules are 

used to control and order context specific decisions. The user can force, a t development 

time, the firing of rules in a  fixed sequence, thus decomposing the problem into steps. Upon 

entering a step, the satisfied rules axe activated and the process proceeds to the next step. 

Indirectly, this provides some guidance in organizing the rule base, but due to the sheer 

quantity of rules and their size, the maintenance problem remains still unsolved.

2.3.2 M od el-B ased  R easoning

Unfortunately, most of this early work offers only a limited u n d e r s tan d in g  of the configura

tion process, the existing systems being designed to solve specific instances of configuration 

tasks. As an effort to address the limitations of expert systems, mainly the maintenance 

problem (Barker & O’Connor 1989), model-based, reasoning emerged as a new field of Artifi

cial Intelligence research, around 1980. The main assumption behind model-based reasoning 

is the existence of a model of the system, which consists of decomposable entities and inter

actions between their elements. The most important advantages of model-based systems 

are, as presented in (Hamscher 1992):

• a better separation between what is known and how the knowledge is used,

• enhanced robustness (increased ability to solve a broader range of problems),

•  enhanced compositionality (increased ability to combine knowledge from different do

mains within a single model), and

• enhanced reusability (increased ability to use existing knowledge to solve related
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classes of problems).

There are several model-based approaches to configuration. We will present in the 

following subsections the most relevant ones, characterizing them along the lines described 

earlier.

Logic-Based Approaches

One prominent family of logic-based approaches is based on Description Logic (DL). De

scription Logic is not monolithic. There is an entire assortment of description logics and 

extensions implemented by the DL community, each one better suited for a specific type of 

application. Description Logics are formalisms for representing and reasoning with knowl

edge, unifying and giving a  logical basis to  the well-known traditions of frame-based systems, 

semantic networks and KL-ONE-like languages, object-oriented representations, semantic 

data models, and type systems. There are three fundamental notions in DLs:

• individuals, representing objects in  the application domain,

• concepts, representing sets of individuals, and

• roles, which are binary relations between individuals.

These systems reason about the intensional description of concepts and their instances 

(individuals). Complex, composite descriptions can be created using constructors {e.g. and, 

or, at-least, all, etc.).

The main inference mechanism in DLs is subsumption, i.e. decide whether one con

cept (description) is more general than  another concept (description). The semantics of 

subsumption is defined by the subset relationship between the two concepts as sets of in

dividuals. A concept Ci subsumes another concept C2 when every instance of C2 is also
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an instance of C\. Most of the other forms of inference performed in DLs systems can 

be expressed using subsumption. Examples are classification and recognition. Classifica

tion is the process of integrating a  new concept into the concept hierarchy, and recognition 

determines if an individual instantiates a  particular concept.

The clear semantics and simple logical operations made DLs popular in theoretical 

studies as well as practical applications. Description logic-based configuration applications 

have been used within AT&T since 1990 (Wright et al. 1995). They are based on CLASSIC, 

an object-centered knowledge representation and reasoning tool. DLs can offer support for 

such applications bo th  during the knowledge acquisition phase and the problem solving 

phase.

The advantages of DLs during the knowledge acquisition phase are clear. The classi

fication facility automatically organizes descriptions into an explicit taxonomy, based on 

subsumption inferences. In  addition, consistency is automatically maintained over time, as 

new descriptions are classified and added to the knowledge base, or existing descriptions 

are modified and reclassified.

Dining the problem solving phase, DLs can offer support in one of two ways. The 

first possibility is for the DLs system to provide run-tim e support for other configuration 

engines. The organization of the taxonomy, based on subsumption, enables efficient retrieval 

of descriptions. Another advantage of DLs is their ability  to deal w ith partied, incomplete 

descriptions (of systems, component types, functionality, etc.). Furthermore, there exist 

different extensions to DLs, that have been designed to provide special types of reasoning, 

for example explanation (McGuinness & Borgida 1995).

The second possibility is for the DLs system to solve the entire configuration problem. 

An example is presented in (Wright et al. 1995). T he terminological knowledge base con-
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tains descriptions of the classes (component types) as well as rules. These rules, attached to 

concepts on different levels of abstraction, can extend and refine an  individual configuration 

as required (in more sophisticated systems, an  external, domain-specific control mechanism 

may be used for increasing the efficiency). After the interface has guided the user through 

some simple questions, the system uses these inputs, and the application, through follow 

up questions guided by CLASSIC, arrives a t a complete (abstract) solution.

This approach has one potential drawback: the tradeoff between the efficiency of the 

reasoning tasks and the expressiveness o f the knowledge representation tool is crucial. If the 

formalism aims to a certain level of expressiveness (by allowing existential quantifications 

or disjunctions, for example), subsumption becomes A/’P-complete. O n the other hand, 

restricting expressiveness to ensure tractability  makes the formalism unable to represent 

complex systems, which is often the case in representing practical configuration tasks.

Other examples of logic-based systems for configuration include Prose (Wright et al. 

1993) and Beacon (Searls & Norton 1988). The constructive problem solving, described 

in (Klein 1996), is a different logic-based approach, centered around the idea of model 

construction.

The Resource-Based Approach

In the resource-based approach, the interfaces through which technical systems, their com

ponents, and the environment interact are represented as abstract resources (Heinrich & 

Jungst 1991). A resource-based system offers a producer-consumer model of the config

uration task, in which each technical entity is characterized by the amount and type of 

resources it supplies, uses, and consumes. The description of the environment, s im ilarly  

expressed in terms of the amount of resources demanded from and supplied for the technical
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system, represents the requirement specifications. The goal is to find a set of components 

that bring the overall set of resources in a balanced state, where all the demands are ful

filled. A configuration is acceptable only if the the resources demanded by environment and 

different components are each balanced by the resources the environment and components 

can maximally supply.

The algorithm for solving a configuration task in the context of this model is straight

forward (Heinrich & Jungst 1991). S tart with the set of resources demanded by the en

vironment in  the requirement specifications. Then, select one resource type which is not 

balanced yet and create the list of component types th a t can supply tha t resource. Select 

one component type from the list and add an instance of that component to the current 

(partial) configuration. Repeat this process until for every resource the required amount is 

less than or equal to the amount supplied by the environment or by components. In case 

of dead-end, backtrack to the last choice point.

Domain knowledge is organized on three levels

1 . system knowledge, describing the types of resources associated w ith a  given application 

domain. It is represented as a taxonomy of resource types.

2. catalog knowledge, embedded in the description of the available component types. It 

can be organized in a hierarchy based on component similarity from the point of view 

of the resources they use/consume or supply.

3. heuristic knowledge, used for guiding the resource and component selection process 

dining the search for a  solution. This type of knowledge can be further divided into 

three categories, represented in the form of value slots attached a t different levels of 

abstraction in the resource and component taxonomies:
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•  evaluation knowledge: a  measure of how good a  component is. I t is represented 

by the cost entailed by including the component in the configuration.

•  performance knowledge: sequencing of decisions th a t are known to lead quickly 

to a solution. Represented by an order imposed on the resource types based on 

static priorities.

• exception knowledge: rules on resource types and amounts. It is part of the 

performance knowledge.

The approach has been implemented in the COSMOS system, an  expert system shell 

for configuration. The inference engine used in COSMOS has a  blackboard architecture. A 

decision record keeps track at each decision step of the list of all viable component types, 

in decreasing order of their utility. Balance sheets tally for each type of component the 

amount required versus the amount supplied by the components already selected. The 

agenda contains one of two types of action, either component selection (creation of the 

next entry in the decision record) or component positioning (instantiating a resource by 

associating it with the selected component). The process starts with the environment as 

the first selected component.

The approach is well-suited for configuration tasks where the main concern is in cov

ering a desired functionality, especially when single components satisfy only partially tha t 

functionality. For example, the systems offers an elegant solution to the configuration of 

modular systems, where all constraints are resource-based. The method loses its elegance 

and simplicity when forced to deal w ith structural and specific placement requirements.
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Constraint-Based Approaches

The first a ttem pt to define a generic domain-independent m odel for configuration tasks, and 

one of the most im portant works towards a general model o f configuration, was presented 

in (Mittal & Frayman 1989). The paper identifies the m ain characteristics of configuration 

tasks and introduces the definition presented in section 2 .2 .

Each component is defined by a  set of properties and a set of ports for connecting to other 

components. Constraints among components restrict the ways in which various components 

can be combined to form a valid configuration. In  addition to  component descriptions, the 

specification for a  configuration task also includes a description of the desired product and 

optimization criteria.

Given a specification, the goal is to build one or more configurations (i.e. set of compo

nents and a description of the connections between them) th a t satisfy both  the specification 

and optimization criteria, in case such solutions exist, or detect inconsistencies in the re

quirements otherwise.

The problem solving method described in (M ittal &; Fraym an 1989) is based on two 

simplifying assumptions about the domain knowledge. F irst, configuration is usually a 

purposeful activity, i.e. the kinds of functional roles that have to be fulfilled by the artifact 

are known ahead of time. Second, for each functional role one or more components can be 

identified as the key component, i.e. any implementation of th a t function will include one 

of these components. This restricted form of configuration task can be represented as a 

constraint satisfaction problem ( CSP) (Tsang 1993) in which components and their ports 

are variables, and constraints restrict the way components can be integrated in a solution.

Because the mapping between functioned roles and the set of components available is 

typically many-to-many, the configuration task is more of a dynam ic nature. Different com-
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ponents for the same functional role may need nonidentical sets of additional components 

or functional roles. Also, multifunction components often provide nonidentical sets of func

tions. To cope with this situation, (M ittal & Falkenhainer 1990) introduces an extension to 

the classical CSP paradigm, called dynamic constraint satisfaction problems (DCSP). The 

additional requirements are then expressed by activity constraints, which make possible 

that new variables and constraints be dynamically introduced in the solution as the result 

of choosing a particular component to (partially) implement a functional role.

The main advantage of this extension over the standard  CSP is th a t inferences can now 

be made about variable activity, based on the conditions under which variables become 

active, avoiding irrelevant work during search.

A formal, mathematically well-founded, treatment of the conditioned existence of vari

ables is presented in (Bowen &; Bahler 1991) where the constraint network is viewed as a 

set of sentences in first-order free logic.

The dynamic CSP model described so far has, however, several limitations. The most 

severe one is the requirement th a t all the variables (and constraints among them) be declared 

from the beginning, although only a subset of them will be active, and thus part of a solution. 

It is not only a m atter of efficiency, considering tha t sometimes it may be possible to come 

up with an upper bound on the set of variables needed to represent a  particular artifact. 

There are cases when it is not practical (or even possible) to anticipate the set of variables 

to cover all possible solutions of a  configuration problem.

The constraint-based configuration framework C o n fCS (Haselbock 1993) extends the 

previous model to handle an  indefinite number of variables. This is accomplished by spec

ifying generic constraints on a  meta level, as relations among component types, instead of 

component instances, and is based on the fact tha t the set of different component types
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is finite and all components of a given type behave in the same manner. Since the set of 

variables th a t exist in  a specific configuration is not predefined anymore, generic constraints 

involve meta-variables, which, axe place holders for the component variables. The approach 

eliminates the need for declaring the complete set of variables beforehand, and allows the 

treatment of multiple occurrences of components with s im ilar behavior.

C onfC S  also offers support for specifying constraints on sets of variables which, are 

not known before hand. A special case are resource constraints, which express cumulative 

relations on resource properties of a set of components. The only restriction is th a t the 

aggregate functions have to be monotonic.

Although not really part of the framework, type abstraction can also be integrated in 

ConfCS and the author gives some ideas of how hierarchical reasoning can be integrated 

in the constraint-based schema. In addition, interchangeability (Freuder 1991) can be used 

to improve search efficiency.

2.4 Chapter Conclusions

Each of the approaches presented in the previous sections uses a different technique for 

representing the knowledge base and specific reasoning algorithms, but all agree that most of 

the complexity of solving a configuration task lies in the domain knowledge representation. 

This is due mainly to  the heterogeneity of relations that one has to be able to express: 

component taxonomies, composition, arithmetic, geometric and structural constraints, and 

resource balancing (Klein 1996). Furthermore, just being able to represent the domain 

knowledge is not enough. The knowledge representation mechanism must also support the 

maintenance and evolution of the knowledge base.

To summarize, the  challenges that configuration frameworks face axe the following:
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•  provide an expressive and flexible knowledge representation formalism,

•  provide efficient knowledge application in a highly combinatorial context,

•  integrate in a  natural way different types of reasoning, e.g. hierarchical and resource- 

balancing, and

•  provide mechanisms for coping w ith the high ra te  of change of the knowledge base.

None of the existing frameworks is able to address all these requirements. The knowledge 

embedded in rule-based systems can be very complex and, in general, these systems have 

very good performance, bu t the lack of separation between domain and control knowledge 

leads to insurmountable maintenance problems. Logic-based systems make a clear tradeoff 

between expressiveness and efficiency. The resource-based approach is not powerful enough 

to represent and reason with topology information, and therefore there are certain classes 

of configuration problems which cannot be expressed a t all.

Although expressive and powerful, the knowledge representation mechanism used by 

the existing constraint-based approaches does not structure well the knowledge base. In 

particular, because the model does not differentiate between structural (e.g. aggregation) 

and arbitrary, user-defined, relationships, it offers no support and guidance as to the appro

priate content and organization of the knowledge, which makes modeling difficult and error 

prone (Sabin & Preuder 1998). C urrent systems do not capture explicitly the aggregate 

structure and hierarchical organization of the component types. This prevents them from 

further improving search efficiency and maintenance by taking advantage of these particular 

characteristics of a  configuration task.

A second aspect th a t should be taken into account by any configuration framework 

is optimality. Most of the existing approaches disregard the fact th a t the solution to a
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configuration problem, besides being valid, must also be optim al according to some user- 

defined optimization criteria. Even the few approaches th a t acknowledge this aspect do so 

without providing a concrete solution.
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CHAPTER 3

BRIEF CONSTRAINT SATISFACTION

BACKGROUND

Constraint satisfaction problems. Constraint network. Local and global consistency.
Consistency inference. Constraint propagation. Backtracking search. Arc consis
tency. Advanced search methods. Forward checking. Maintaining arc consistency.
Variable ordering heuristics.

Constraint satisfaction has established itself as a well founded formalism with wide 

application in artificial intelligence. Based on a  simple m athematical model, domain inde

pendent and completely declarative, the constraint satisfaction problem (CSP) paradigm 

provides an elegant and natural framework for representing and solving a  large variety of 

reasoning tasks, and lately has been widely accepted, both  in academia and industry, as 

the formalism of choice for dealing w ith optimization problems as well.

This is the result of a  sustained research effort that started  two decades ago, with the 

work presented by Waltz (Waltz 1975), and continued w ith landmark contributions by 

Mackworth and Freuder (Mackworth 1977), Haralick and Elliot (Haralick & Elliot 1980) 

and Dechter and Pearl (Dechter & Pearl 1988).

This chapter is not intended to be a  survey of the state-of-the-art in CSP solving meth

ods. Instead, it provides CSP definitions and techniques relevant for the work presented 

in the rest of the thesis. For a more detailed presentation of the field, the reader should 

consider (P 1991) or (Tsang 1993).
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3.1 Definitions and Notations

A CSP V  is formally defined as a  triplet V  = <V, V , C>, where

•  V =  {Vi, . . . ,  Vn} is the set of problem variables, of cardinality n  = | V [.

•  T> = {D y , , Dvn} is the  set of domains. For each V* 6  V, Dy{ =  {d,-,, - - •, d,-m} 

represents the finite set of possible values tha t can be assigned to variable V*. Let d 

be the cardinality of the laxgest domain, d =  max | D{ |, £),- 6  T>.

•  C = {Cu | U = {Vi-, ,Vi2, . . . , V i k} C V, Cu c  Dv{l x Dyi2 x • - - x Dyik } is the set of 

problem constraints. Each tuple in Cu defines an  ordered set of values tha t variables 

in  the ordered set U axe allowed to take simultaneously. Let e be the total number of 

constraints, e = | C \.

Two parameters are commonly used to characterize CSPs. The problem density rep

resents the ratio between the number of problem constraints and  the totcil possible 

number of constraints. T he tightness of a constraint is the ration of the number of 

tuples disallowed to the to ta l possible number of tuples.

The task of solving a CSP involves finding values for problem variables subject to con

straints that axe restrictions on which combinations of values are allowed (Tsang 1993).

To instantiate a  variable means to assign that variable one of the values in its domain. 

A partial instantiation on an ordered set of variables U  =  {I/,-,, t/,-2, . . .  Ujk} c  V is a  tuple 

lu  =  (dj'i,d,-2, . .  .d ik) such tha t each variable U{ G. U  is assigned the corresponding value 

di G Iu- If U =  V, the set of problem variables, i.e. all variables have been assigned one 

value, the partial instantiation becomes a complete instantiation.

The projection Cu\r  of a constraint Cu to a set of variables T  C U, is a set of tuples 

obtained from tuples in Cu, by keeping only the values that correspond to variables in V.
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Given a  constraint Cu and a  subset of variables T , a  p a rtia l instantiation Ij-  satisfies 

the constraint Cu iff  U C \T  7  ̂<h => Iuorr G Q /|Mn-r-

A partieil instantiation Iu  which satisfies all the constraints involving variables in U 

is called a  partial solution. In  this case, the partial instantiation Iu  is said to  be locally 

consistent.

Similarly, a  complete instantiation which satisfies all the constraints of a CSP is called 

a solution, and the complete instemtiation is said to be globally consistent.

A partial instantiation Iu  is locally consistent if f  it satisfies eill the constraints involving 

variables in  U. According to the previous definition, a partial solution is locedly consistent. 

A partial instemtiation Iu  is globally consistent i f f  it can be extended to a solution.

A CSP V  =  <V, V ,C >  can also be represented in the form of a  hypergraph H  = < X , £>  

(also known as constraint graph for short, or constraint network), by associating a node A,- 

with each variable V* € V and a  hyper-edge E u  =  {Atl ,X i2, . . . ,  A7,-fc} with each constraint 

Cu={xil,x i2,...,xik} eC .

We use the  notation M y  to denote the set of variables to which a  variable V  is connected 

by constraints, called the neighborhood of V.

In case all the constraints of a  CSP involve only pairs of variables, the problem is called 

a binary CSP., and its constraint graph becomes a regular graph. An example of binary 

CSP is presented in Figure 3-1. The problem has three variables, X , Y  and Z. Each domain 

contains three values, D x  =  {a, b, c}, D y  =  {d , e, /} , and D z  =  {<7, h, i}. The binary 

constraints C x y , Cx z , and C y z ,  describe the set of allowed pairs of values.
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X

Q y = {(a,d), (a,f), (c,e), (c,f)}
Cxz={(b,h), (c,h), (c,i)}

f # = {(d,g), (e,g), (f,i)}

Y z

Figure 3-1: Sample CSP problem

3.2 CSP Solving techniques

Two standard techniques used in  solving CSP problems are backtrack search and consistency 

inference.

3.2.1 Backtrack Search

Backtrack search is the standard procedure for solving CSPs. The idea behind backtrack

ing is very simple. Considering th a t variables are ordered according to some criteria, the 

algorithm will try  to instantiate each variable in turn. Each tim e a  value is assigned to a 

new variable, the resulting partial instantiation is tested for consistency. If the test suc

ceeds, the algorithm moves to the next variable. If the test fails, the variable is tentatively 

assigned the next value in the domain. Backtracking occurs when there are no more values 

in the domain to try. The algorithm then backtracks to the immediately (chronologically)
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preceding variable and replaces its current value with the next value in the domain. If there 

is no such value, the algorithm backtracks one more step.

A ssu m in g  th a t we are only looking for one solution, the algorithm can end in one of two 

situations. If  all variables have been instantiated successfully, the problem has a solution. 

However, if backtracking continues until all the values in the domain of the first variable 

have been exhausted, the problem is inconsistent, i.e. it has no solution.

The search space explored by backtracking a lg o r ith m s can be represented as a tree. 

Each time a  variable is instantiated, a node is added to the search tree. The root does 

not correspond to any instantiation. Instead, it is the common ancestor of all the nodes 

associated w ith the first variable. Each path from the root to any node represents a partial 

instantiation. A depth-first traversal of the search tree produces the sequence of steps taken 

by the algorithm. Figure 3-2 presents a sample search tree for the problem in Figure 3-1.

solution

Figure 3-2: Typical search tree

For this example, the order in  which we consider variables and values is the order in 

which they have been introduced. We start by assigning value a to variable X .  There is no
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previously assigned variable, so there is no constraint we have to check yet. We then assign 

value d  to variable Y  and check the constraint Cx y - Since pair (a, d) G C x y  the constraint 

is satisfied, and we move further. We try  first value g for variable Z .  Pair (x,g) 0  C x z  

and this instemtiation fails. Values h and i  also fail. Because there is no other value in the 

domain of Z  to try, we must backtrack. This means th a t we must try  another value in the 

domain of Y .  The next value, e, violates constraint Cx y ■ This process continues until we 

eventually find the solution X  =  c, Y  =  / ,  Z  = i.

3.2.2 C o n sisten cy  Inference

Consistency inference, sometimes referred to as constraint propagation, denotes a  set of 

techniques used for transforming a CSP problem into an equivalent one, with exactly the 

same set of solutions, but easier to solve. The set of transformations includes eliminating 

values from domains, tightening constraints (i.e. reducing the number of tuples allowed), 

or even structural changes in the constraint network.

3.2.3 A rc C o n sisten cy

There axe several consistency inference techniques available. The most widely used one is 

based on the notion of arc-consistency (AC) (Waltz 1975). Arc-consistency is a  form of 

local consistency which requires that each value Xj from the domain Dyi of variable Vi be 

compatible (i.e. satisfies ail the constraints involving Vi). Given a  CSP V  =  <V, V , C>, a 

domain Dyi G V  is arc consistent iff Dyi ^  $  and Vdy G Dy{, 'iCu, Vi £  U => dj E Cu \v 

(P 1991).

A binary CSP V  =  <V, V, C>, is arc-consistent iff VX G V =*>• D x  ^  $  and Vo G D x , 

VCx y  G C, 3b G Dy  s-t- (a, b) G Cx y • In  other words, for a CSP to be arc-consistent, each
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value iu  the domain, of each variable must be supported by at least one value in the domain 

of every variable in  its neighborhood. If a certain value in the dom ain of some variable 

has no support on some constraint, that value is inconsistent, and  is eliminated from the 

domain because it can  never be p a rt of any solution. If during this process the domain 

of any variable becomes empty, it means that the problem is arc-inconsistent, and has no 

solution.

Arc-consistency enforcing algorithms are recursive in  nature. T he idea is to successively 

eliminate from domains those values which are inconsistent. If a  value th a t has just been 

eliminated was the only support on some constraint for another value, the latter becomes 

now inconsistent and the process continues recursively. This phase is called the propagation 

phase of the algorithm.

Figure 3-3 presents the actions required for making the CSP in Figure 3-1 arc-consistent. 

Values connected by lines in the picture represent pairs of values allowed by constraints. 

First we check all the values in every domain for consistency, and eliminate the inconsistent 

ones. We eliminate value a from the domain of X  because there is no value in domain of Z  

to support it on constraint C x z  (1)- Similarly, we eliminate b a t X  because it lacks support 

on constraint C x y  (2). Value d a t Y  remains w ithout support on C x y , and is eliminated 

(3). Also eliminated are values g and h at Z, because they have no support on constraint 

C x z  (4), and C y z  (5), respectively. The last action, (6 ), is an example of how eliminating 

one value, g, from the domain of one variable, Z , propagates and leads to the removal of 

another value, e, a t another variable, Y .

The first notable arc-consistency algorithm, AC -3, was presented by Mackworth (Mack

worth 1977). The tim e complexity of AC-3 is 0 (ed 3) (Mackworth & Freuder 1985). Since 

then, a  lot of research effort has been spent on providing more efficient algorithm s. Mohr
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Y Z

Figure 3-3: Enforcing sire consistency (example 1)

and Henderson introduced AC-4 , with, a time complexity of 0(edP) (Mohr & Henderson 

1986). Although, its worst case time complexity is optimal, AC-4 has a high, space complex

ity of O(ecP), and experimental evidence suggests that in practice its average behavior is 

worse than tha t of AC-3 (Wallace 1993). The algorithm proposed by Bessiere and Cordier 

in (Christian & Cordier 1993), (Christian 1994) addresses both  limitations, with a space 

complexity of O(ed), same worst case time complexity as AC-4, and a better average per

formance than AC-3. Finally, the best arc-consistency algorithms to date, AC-Inference 

and AC-7, were presented by Bessiere, Freuder and Regin in (Christian, Freuder, & Regin 

1995). AC-Inference takes advantage of various properties of constraints (e.g. structural, 

commutativity, etc.) to infer, rather than compute, information necessary for establishing 

arc-consistency. AC-7 is a  refinement of the AC-Inference schema, using only the bidirec

tionality of constraints, and thus providing a fully general arc-consistency algorithm.
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There are two ways in which consistency inference can be used to improve search effi

ciency. Constraint propagation techniques can prune values from consideration either before 

or during search. The idea in both cases is the same. Since the size of the search tree is 

exponential in the size of the domains, smaller domains translate directly into smaller search 

trees. We will present this implication in more detail in the next section.

3 .2 .4  H igher Order C onsistency

Arc consistency cannot eliminate all the inconsistencies present in a  CSP problem. Consider 

the example in Figure 3-4. After eliminating values /  and c, although the constraint network 

is arc-consistent, there is no combination of values which satisfies all the constraints, i.e. 

the problem has no solution.

X

Y

Figure 3-4: Enforcing sure consistency (example 2)

As a result, researchers started looking for stronger local consistency properties of con-
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straint networks. The first one to formalize this was M ontanari by defining the notion of 

path-consistency (PC) (Montanari 1974). But the most im portant work in  this direction 

was presented by Freuder in (Freuder 1978). He defined the  notion of k-consistency, which 

generalizes and extends previous forms of consistency.

A CSP V  =  <V, V , C> is k-consistent, 1 <  k < |V| iff VW =  {C/,-,, U{2, . . . ,  Z7ffc_l} C  V, 

'ilu  a  consistent partial instantiation, Iu  =  {(kl , d,-2, . . .  d,A_ l) and VX €E V \  U  =k 3x E D x  

such th a t (dt l , dt-2, . . . t , x) is a consistent partial instantiation onWU { X }.

According to the new definition, arc-consistency is 2-consistency, while path-consistency 

is 3-consistency. Informally, a CSP is k-consistent if any consistent partial instantiation on 

a subset of k — 1 variables remains consistent when extended to any k th variable.

Reading carefully the definition, the reader will realize th a t k-consistency with A: =  |V| 

is not equivalent to globed consistency. This is because if there is no consistent partial 

instantiation on a subset of n  — 1 variables, although the previous condition is satisfied, no 

solution is possible. This is why Freuder gave a second definition of consistency, which links 

together successive levels of consistency.

A CSP V  is strong k-consistent iff fo ra n y  1 <  i < k, V  is i-consistent. L. The first 

consistency inference algorithm for achieving k-consistency was proposed by Freuder in 

(Freuder 1978). It was later improved by Cooper in (Cooper 1989) using an approach 

similar to the one used in AC-4.

Now we can make a direct equivalence between strong consistency and global consistency. 

If a CSP V  =  <V, V , C> is strong n-consistent, n =  |V|, then it is also global consistent.

1 Although we did not give a  definition for it, node consistency, which corresponds to 1-consistency, 
involves simply instantiating variables only with values which satisfy all unary constraints.
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However, the cost of achieving fc-consistency is exponential in  fc. From a  practical point of 

view this is too expensive and prohibits the use of fc-consistency for fc larger than  3.

3.3 Advanced Search M ethods

The running tim e of the backtrack search algorithm is proportioned to the size of the un

derlying search tree. For a  CSP V  =  <V, “D, C>, this is O(eP). Since the CSP problem 

is known to be ^/"P-complete, and thus it is unlikely th a t there exists a polynomial ver

sion of backtracking, various methods have been developed for improving the average case 

performance of CSP solving algorith m s by concentrating on three main directions:

•  Reducing the search space using consistency inference as preprocessing to eliminate 

values from consideration before search.

• Reducing the search space dynamically, during search, by using techniques which allow 

the algorithm to prune entire branches of the search tree. Algorithms produced by 

this line of research can be divided into two categories:

— prospective (look-aheadI) algorithms, and

— retrospective (look-back) algorithms, also known as intelligent backtracking algo

rithms.

• Reduction of the search effort by guiding the search procedure on the shortest path 

to a  solution.

3.3.1 C o n sisten cy  Inference as P rep ro cess in g

Conventional CSP wisdom says tha t using consistency inference in a preprocessing step, 

to prune values before search, will reduce the subsequent search effort. There has been
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some question as to the degree of consistency preprocessing that is desirable — additional 

preprocessing effort may outweigh subsequent search savings (Dechter & Meiri 1989). How

ever, it seems an  obvious article of faith that removing values from consideration during 

a preprocessing step will lead to savings during the subsequent search step or, at the very 

least, do no harm. A counterintuitive demonstration tha t pruning values can increase search 

effort, was obtained recently by Prosser. He showed tha t p r u n i n g ; values can degrade perfor

mance for algorithms tha t employ “intelligent backtracking” (though the actual exhibited 

effects were small) (Prosser 1993a). We demonstrated in (Sabin & Freuder 1994) that there 

are circumstances in which pruning values by consistency preprocessing can in fact greatly 

increase subsequent search effort.

3.3.2 P ro sp ectiv e  Search A lgorithm s

We present only prospective variants of backtracking in this section because our work is 

entirely based on look-ahead schemes. For details on retrospective schemes consult (Prosser 

1993b).

Prospective search algorithms perform a limited amount of computation for enforcing 

some level of consistency after each variable is instantiated. The combination of consistency 

pruning with backtrack search has a  long history (Gaschnig 1974), (Golumb & Baumert 

1965), (Mackworth 1977). Various degrees of consistency processing interleaved with back

track search were studied experimentally in (Haralick & Elliot 1980), (McGregor 1979), (B. 

1989). A variety of algorithms were considered tha t alternate choosing a value for a  vari

able with “looking ahead”, via a  constraint propagation process, to infer the consequences 

of that choice for pruning the values available for the as yet uninstantiated variables. The 

algorithms differed in how much constraint propagation they performed, and thus in the
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degree of consistency they achieved.

Forward Checking (FC) is an  a lgor ithm  which does a  m in im al amount of constraint 

propagation, in  the  sense tha t it  performs the m in im al a m o u n t of lookahead needed to 

avoid having to “look back” , i.e. to avoid the need to check new choices against previous 

ones. It combines backtrack search with a very limited form of arc consistency maintenance. 

The main idea is to  project forward the consequences of variable assignments during search. 

W hen a variable V  is assigned a  value x  e  D y, the new value is checked against the d o m ains  

of each variable in  the neighborhood of V  that is as yet unassigned. All values inconsistent 

with x  are removed. This way a limited form of arc consistency is maintained. (If, during 

this process, the domain of some variable becomes empty, then no complete extension of 

the current assignment set to a solution is possible, and the current a ssig n m en t for V  must 

be discarded). For details on forward checking consult (Haralick & Elliot 1980). Figure 3-5 

presents the search tree for FC on the example in Figure 3-1.

solution

Figure 3-5: Search tree produced by Forward Checking
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In  experimental studies forward checking repeatedly proved superior to  algorithms in

terleaving more constraint propagation. Of course, the limitations of these experiments 

were recognized. However, the repeated success of forward checking began to bias the 

conventional wisdom in  the CSP com m u n ity  in the direction of “less is more” : using consis

tency inference during search, to prime values that become inconsistent after m aking search 

choices, is best limited to the m inim al inference embodied in the forward checking algo

rithm. The feeling is th a t additional search savings produced by pruning more values will 

be offset by the additional inference cost. For example, in a  recent survey of CSP algorithms 

(Kumar 1992), the section on “How M uch Constraint Propagation Is Useful?” concludes: 

“Experiments by other researchers [in addition to Nadel] w ith a variety of problems also 

indicate th a t it is b e tte r to  apply constraint propagation only in a limited form”.

In our laboratory severed studies began to suggest that “more could be more” . Gevecker 

studied full arc consistency maintenance (Gevecker 1991) and Freuder and Wallace studied 

a range of hybrid algorithms based on a notion of “selective” or “bounded” constraint 

propagation (Freuder & Wallace 1991). However, these results were still limited in their 

understanding of the random  problem space. Eventually, by introducing Maintaining Arc 

Consistency (MAC), an  algorithm th a t efficiently maintains arc consistency during search, 

in (Sabin & Freuder 1994), we proved th a t maintaining fu ll arc consistency during search 

is in fact very cost effective. Subsequent work done by Regin (Regin 1995) lead to the 

development of MAC7-PS, a variant of MAC based on AC7, which is the best general CSP 

search algorithm to date  (Bessiere & Regin 1996). Figure 3-6 shows the search tree produced 

by MAC for the example in Figure 3-1.

42

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



solution

Figure 3-6: Search tree produced by Maintaining Arc Consistency 

3 .3 .3  O rdering H euristics

As mentioned before, the search algorithm assumes that variables, and their domains, are 

ordered according to some criterion. During search, the algorithm selects the next variable 

in the ordered sequence and assigns to it the next value available. W hen we are interested 

in finding either the first or the optimal solution, the ordering we choose can make a 

tremendous difference in performance. A static ordering is obviously less expensive, but 

research shows th a t the results produced by using a  dynamic ordering are far superior.

There are many good variable ordering heuristics in the literature and it is beyond the 

scope of this section to present them  in detail here. Instead, we single out two heuristics 

that perform very well in conjunction with prospective algorithms. T he minimum domain 

heuristic, selects the variable with the least number of values still present in the domain as 

the next variable to be instantiated. It is a popular ordering heuristic- In a probabilistic
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analysis, it was shown optimal under certain assumptions in  (Haralick & Elliot 1980). It 

has proven particularly useful in conjunction w ith  forward checking. A sim ilar heuristic, 

minimum domain/degree (Bessiere Regin 1996), which performs especially well in con

junction with MAC, selects as the next variable to be instantiated the variable with the 

smallest ratio between the size of the remain ing  domain and its degree in the constraint 

graph.
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CHAPTER 4

COMPOSITE MODEL FOR 

CONFIGURATION

Aggregation and Context Independence. Composite models as aggregation o f local 
models. Anatomy of a component type. The Descriptive Section. The Structural 
Section. The Internal Relationships Section.

Our research was partially inspired by the work presented in (M ittal & Frayman 1989). 

We adopt the same component-oriented definition of configuration because it is general 

enough to cover a  broad range of configuration tasks. The two simplifying assumptions, 

the fixed set of well-defined component types and the predefined ways of interconnecting 

components, do not limit the  scope of the definition. Instead, they reduce the complexity of 

the task and offer guidance during the search for a  solution, thus increasing the efficiency.

Since a typical configuration application can involve hundreds or thousands of different, 

configurable components, the  search space can be very large. To m anage a task of such 

complexity, it is imperative to first organize the domain knowledge in terms of models. A 

model is a simplification of a  real entity, capturing only the aspects which are relevant for 

a  specific task. By using models, we can describe a  problem in a  formal m anner, restating 

it at an abstract level more amenable to finding a  solution. Modeling usually offers two 

techniques for dealing with complexity: aggregation and abstraction, and as we will see, 

bo th  techniques appear naturally  in configuration problems.
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Additional motivation for using model-based configuration systems lies in  the  nature of 

configuration, which is, as presented earlier, a  synthesis task. T he ability to cover the entire 

range of possible solutions in  a systematic way is a must, and this is exactly what using 

models allows us to do. A lthough experience in  a  particular domain can be gained and used 

to improve efficiency, the system should still work for application domains in which there is 

no prior experience.

4.1 Aggregation and Context Independence

A typical example of a  configuration task is the configuration of technical systems, and 

there axe two important observations we can make about this domain:

(a) a product is assembled from components from a finite set of available component types. 

We use here the term component in a  generic manner, to designate an arbitrarily com

plex artifact, which can be used as a building block for obtaining other components 

and/or the desired product.

(b) whether we are successful or not in solving a configuration task depends on the success 

of engineering configurable components th a t can be interconnected systematically, cov

ering the entire range of desired functions. We should therefore bear in mind that a 

component was designed w ith a specific purpose in mind, to provide a certain function, 

and not to be used in a  specific context.

Observation (b) above leads to the idea th a t domain knowledge can be expressed declar- 

atively at the level of each component. More precisely,

• each component should be modeled locally , 

in a context-free manner, independent of the context in which it may be used.
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A natural solution to modeling a  configuration task would then  be, according to point 

(a) above, to

•  build the model of the desired product as a  co m p o sitio n  o f  local m odels of the 

constituent components.

This can be done only if the components are represented by pure local models. But not all 

the domain knowledge is context-free. An im portant part of this knowledge refers exactly to 

how components relate to each other when assembled together in a  particular environment. 

Apparently, by adding this type of contextual information to our models we destroy their 

context-free property. In fact, we can preserve this desirable property if all the specific 

aspects of using the constituent parts in the particular context of some component/product 

are specified in the model of tha t component/product.

4.2 Abstraction

Conceptually, a type is a description of all the properties, both behavioral and structural, 

a  set of objects has. As mentioned before, all relevant properties are captured by a model. 

Thus a type is the formal representation of a model.

All the possible instances of a particular type form a class. By identifying common 

structure and functionality among the elements of a class, we can group s im ilar instances 

in subclasses. We keep in the type only the information associated w ith properties common 

to all the instances of the class. We associate w ith each subclass a  subtype, which contains 

only the properties which are specific to that particular subclass. We continue this process 

recursively, at the level of each subclass, until no more common aspects can be identified. 

As a result, the domain knowledge is organized in the form of a  tree, in which each
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subtype is the descendent of its type l . Instances of a  particular type inherit all the prop

erties specified by the ancestors of that type. Because types which are internal nodes in 

the tree contain only a subset of the properties associated with real objects, their instances 

are abstract concepts, having no real-world counterpart. Types which are leaf nodes, on 

the other hand, describe completely objects in the application dom ain and their instances 

are concrete parts. The one-to-one relationship between a subclass (subtype) and its class 

(type) is called generalization, usually known as the “is_a” relationship. The inverse of gen

eralization, a one-to-many relationship between a class (type) and its subclasses (subtypes), 

is called specialization.

4.3 Anatomy of a Component Type

The type associated with a particular class describes the entire part of the domain knowledge 

that refers to the class. This information is split into three sections:

•  Descriptive information, consisting of properties based on which we can differentiate 

individual instances of the type,

• Structural information, specifying the composition of the object, in the form of a set 

of interconnected objects.

• Internal relationships established among constituent parts an d /o r their properties.

1 For the purpose of modeling configuration tasks, we consider simple inheritance between classes suffi
cient, but nothing prevents us from using a different organization of the domain knowledge, based on multiple 
inheritance, if required by the application.
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The D escriptive Section

An object is an instance of a type and has all the properties characteristic for that type. 

Besides common properties though, instances are distinct. They have their own identity 

according to the values of their properties. The collection of all the properties based on 

which instances can be differentiated forms the descriptive section of a  type. Based on their 

semantics, properties can be further divided in:

•  Attributes, which specify descriptive features, like functional and technical character

istics, visual properties, physical dimensions, etc. An attribute can:

— have a single value {e.g. rack-count =  1 , height = 1”, etc.) or

— take values from a predefined domain {e.g. cache-size 6 { 0, 32Mb, 64Mb }, 5 

<  bay-count <  15, disk-size > 2 1  Gb, etc.).

•  Resources, which specify (functioned) characteristics that can be either supplied or 

used by different components in the system. Each resource in  a  system must be 

balanced, i.e. the amount of resource produced m ust be at least equal to the amount 

of resource consumed. This requirement can be expressed globally, at the level of 

the entire system, and /o r locally, a t the level of a  particular component. Resource 

balancing is the m ain mechanism that controls what new parts are created and added 

to the system.

There are several dimensions along which we can classify resources. From a semantic 

perspective, resources can be either:

— qualitative, e.g. electrical power. A power supply will provide the resource 

electrical power, while an electronic device will use the resource electric power, 

or
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— quantitative, for example the amount of power supplied by a power supply.

From the point of view of how the resource is being used, we identify the following 

cases:

— the resource is produced, e.g. the power supply supplies 2 , 0 0 0  watts of electrical 

power.

— the resource is shared, e.g. internal memory is shared among programs running 

in a  multitasking system.

— the resource is used, e.g. the cabinet uses 1 , 0 0 0  watts out of the 2 , 0 0 0  watts of 

electrical power supplied by the power supply.

— the resource is consumed, e.g. a printer consumes the data-path resource pro

vided by a  cable.

In  general, qualitative resources can be either shared or consumed, while quantitative 

resources are either produced or used in predefined units (e.g. Kbyte, inch, dollar, 

etc.).

The Structural Section

As described at the beginning of this chapter, we view a component as an aggregation of 

objects which interact under the control of a design. The model is recursive in that each 

object is a  component in its own right and thus may have its own internal composition.

T he second section in the specification of a component type enumerates the set of objects 

(sub-components) which are part of the component. Conceptually, all these objects exist 

only if the component exists. The one-to-one relationship between a sub-component and 

its component is called “part_of’. The inverse relationship, between a component and
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its sub-components is a one-to-many relationship called “is_composed”. For example, the 

composition of a  server system includes a system console, and a power supply. In  the process 

of configuring an instance of SERVER SYSTEM, exactly one instance of SYSTEM CONSOLE and 

one instance of p o w e r  s u p p l y  will be automatically created and added to the configuration.

In addition to sub-components, both abstract and concrete, a component may also 

contain homogeneous collections of objects which can be seen as a whole. We refer to such 

a collection by the generic term  port. Conceptually, a port represents an association, which 

describes a relationship between a set of objects (the members) and the component to which 

the port belongs.

A port is described by its own properties and may be connected with other objects. 

Two special properties, which are found in the description of any port, are the attributes 

cardinality and base-type. Base-type represents the type of the objects allowed to “connect” 

to the port. Cardinality controls the m inim um  and maximum number of these objects. The 

server system described earlier contains a set of racks, expressed in the model as a port of 

type RACK of cardinality minimum 1 and maximum 3.

Ports are also used for representing optional components in the model. An optional 

sub-component can be seen as a set of at most one element. For example, in addition to 

the set of racks, a  system console and a power supply, the server system may also contain a 

server console and a laser printer. The server console and the laser printer are represented 

by two ports, each with cardinality between 0  and 1 .

The Internal Relationships Section

The design of a  component defines the interactions between its sub-components and de

scribes the connections among them. The main source of complexity in modeling a  con-
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figuration task is the complexity and heterogeneity of these inter-object relationships. We 

have already presented one type of relationship, generalization, which describes the relation 

between component types. T he structural section of a  component type introduces another 

type of relationship, this time between component instances, namely aggregation.

All the other inter-object relationships among sub-component are specified in the in

ternal relationships section. Some describe functional dependencies {e.g. the  functional 

relation between electrical currents expressed by Kirchoff’s laws), performance require

ments {e.g. CPU speed >  400 MHz), compatibility information {e.g. country =  Prance 

—>■ power .supply, voltage =  220 V), producer-consumer relations (server_system.power =  

53 racks.power), etc. These can be seen as restrictions imposed by design on how sub

components can be interconnected.

Other relationships describe arbitrary associations between objects tha t otherwise can 

exist independently of each other. These axe expressed using ports. For example, a server 

is “mounted_on” a  rack of a server system. This relationship is expressed in our model by 

adding a port racks of type RACK to the model for s e r v e r  SYSTEM.

Conceptually, a port offers a dual point of view on a set of objects. First, a  port can be 

viewed as an object in its own right, and thus can participate in relationships with other 

objects, e.g. the port SIM M slots  is “part_of” a  s e r v e r .

Second, a port can be viewed as a collection of objects which are in a certain relation

ship with the component to which the port belongs. The relationship can be defined by 

restricting the objects allowed in  the collection. The port is used as a vehicle for introducing 

restrictions on the attributes of the candidate objects. For example, SIM M  slots.pin-type 

=  gold implies tha t only MEMORY instances which have the value gold for the attribute 

pin-type can be in the relation “mounted_on” w ith an  object of type s e r v e r .
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Furthermore, by viewing a port as a  collection of objects we can express producer- 

consumer relationships between sub-components. Again the port is the vehicle. I t  allows 

us to define cumulative expressions over attributes of all the instances in the collection. 

For example, ^2 CPU slots.size  represents the sum of the value of attribu te  size over all the 

instances of m e m o r y  “mounted-on” a server. We can now define the relationship between 

the a ttribute  memory s iz e  of an instance server A  of SERVER and the total amount of memory 

“mounted-on” it: serverA.memory s iz e  =  ^ se rv e r  A . C P U slotssize.

4.4 Chapter Conclusions

Using local models for components allows us to separate completely the component descrip

tion from the environment in which particular instances cure used. There are two benefits 

associated with this. The first one is reusability. The same model can be used for each 

instance of a given type. The second benefit is increased maintainability. Changes in 

the specification of a component type axe local to the component model, and require no 

modification outside it.

To preserve these benefits, all the interactions between any component instance and 

a  particular environment in which the instance is used (i.e. larger component, artifact, 

etc.) must not be part of the component’s model. Instead, they axe part of the model of 

tha t environment. It is this locality that allows us to increase the efficiency of the search 

algorithm by isolating, and then making inferences on, contextual information, as we will 

show later in Chapter 7.
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CHAPTER 5

CONFIGURATION AS COMPOSITE 

CONSTRAINT SATISFACTION

The Composite Constraint Satisfaction Problem. Composite values. Port variables. 
Related work. Hierarchical Domain CSPs. Dynamic Constraint Satisfaction Prob
lems. Meta Constraint Satisfaction Problems. Component Type models as Compos
ite CSPs. Composite CSPs as knowledge representation mechanism.

Highly declarative, domain independent, and simple to use, the C S P  paradigm offers a 

good starting point for a configuration framework. Unfortunately, the classic C S P  form alism  

is not powerful enough to capture:

• The internal structure of components and the hierarchical organization of component 

types.

• The large variety of complex relationships among components, and

• The dynamic nature of the configuration process.

5.1 The Composite Constraint Satisfaction Problem

After exploring several possible extensions, we came to a surprisingly simple solution. En

hancing the definition of CSP, we provide a  natural extension of the constraint satisfaction
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paradigm, offering an  elegant and efficient solution to  the above issues. We call this new, 

non-standard class of CSPs, composite constraint satisfaction problems.

As mentioned in  Chapter 3, a constraint satisfaction problem "P is completely specified 

by the triplet <V, X>y,Cy>. A composite CSP is defined in a similar manner, w ith the 

following im portant differences.

5.1.1 C o m p o site  Values

The values a  variable can take are not restricted to be atomic values, as in the classic case. 

Instead, a value can be an entire problem V  = < V , T>y,Cy>. After instantiating a variable 

17 6  V to a composite value V ,  the problem V  is modified dynamically and becomes V  =  

<V U V', 2?y U D y , Cy U Cy'>.

The impact of this change on the existing CSP algorithms is minimal. As the result 

of instantiating a variable V  to value val, V, T> and C change dynamically, according to 

the definition. In  case this instantiation does not lead to a solution, these changes will be 

undone as a result of backtracking. Since no other modifications are necessary, all existing 

filtering and search algorithms can thus be easily adapted and used, without the need for 

introducing specialized, conceptually different methods.

Examples of composite values, extracted from the representation of the problem intro

duced in Chapter 1, include MiniServer and SuperServer for variable type in the model 

of s e r v e r ,  64Mb, 128Mb, 256Mb, 512Mb and 1024Mb for variable type in the model of 

MEMORY, etc.
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5.1.2 P ort Variables

We introduce a special type of variable, called port variable. The domain associated w ith 

a  port variable is a  finite set of composite values. W hat is special about po rt variables is 

that their domains have an  unspecified, though finite, cardinality.

All the values in the domain of a port are instances of the same component type, i.e. they 

all have exactly the same structure. Remember, composite values are actually composite 

CSPs, so every member of the domain will have the same number and type of variables, 

interconnected by the same number and type of constraints. This common structure is 

captured by a generic value, called wildcard. The wildcard anticipates all the possible 

members of the domain. Acting like a generator, new members can be created on demand 

by duplicating it. Initially, the domain of the  port variable contains only the generic value

i

The value a port variable can take is a  subset of its domain. Despite having identical 

internal structure, the members of the domain sure distinct. Consider a port variable V  

with domain B y  =  { pi, . . . ,  pn, wildcardy  }. Each composite CSP p,- =  <Vj, V ^ ,  Cyt.> , 

Pi E B y ,  has its own identity, according to the domains of variables in V,-, which can be 

restricted by constraints w ith variables outside V,-.

A large variety of constraints can be posted on port variables. We divide them in three 

main categories.

• A lower and upper bound can be imposed on the number of d o m a in  elements which 

can be assigned to a  port, i.e. the cardinality of the port. Constraints restricting the

1 This representation is, at some extent, the result of work done together with Daniel Mailharro from 
ILOG S.A., as part of a joint research effort. A similar description is presented in (Mailharro 1998)
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cardinality of a  port axe called cardinality constraints.

•  Constraints in the second category refer to individual elements of the domain and act 

like filters. We call these filtering constraints.

Consider again a port variable V  with domain D y  =  { , pn, wildcardy },

where each pt- 6  D y  is a composite CSP, pt- =  <Vj, 'Dyi , Cy{>. Filtering constraints 

are defined between variables of wildcardy  and variables in V — (J V,-, 1  <  i < n. As 

mentioned before, all members of the domain have identical structure, in particular 

all sets Vi =  { V ^, . . . ,  have the same number and types of variables. This

allows us, using the constraints on wildcardy  as templates, to generate and post a 

sim ilar set of constraints on individual elements of the domain, as they are added to 

the current value of the port.

•  T he last category consists of constraints tha t refer to the current value of the port 

as a  whole. Using again the fact that the elements in the domain of a port variable 

have identical structure, we define cumulative expressions on the current value of a 

port. A cumulative expression can be any monotonic function applied to the same (in 

term s of the common structure) numeric variable of each element in  the current value. 

Examples include sum , product, Min, Max, etc.. Cumulative expressions participate 

in  arithm etic constraints, which restrict the values expressions can take, and provide 

a  mechanism for expressing producer-consumer relationships.

5.1.3 R e la te d  W ork

For more than  a decade now, various extensions to the classic CSP paradigm  have been 

proposed, in  an attem pt to increase its representational power, and thus make it able to 

address issues raised by practical application. Some of these extensions are particularly
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relevant to our work and the most im portant ones are presented in this section.

Hierarchical Dom ain CSPs

As we pointed out earlier, in many applications, in general, and in configuration, in partic

ular, objects naturally cluster into sets with common properties and relations, which can 

be organized in a specialization/generalization (is-a) hierarchy. This type of information 

can be represented as a CSP by organizing hierarchically the domains of the variables. 

By doing so, we obtain a hierarchical domain CSP. The first hierarchical arc-consistency, 

HAC, based on AC3, is presented in  (Mackworth, Mulder, & Havens 1985). An improved 

algorithm, HAC6 , based on AC6 , is presented in (Kokeny 1994). The idea behind HAC6  is 

the following. For every variable, the domain of values contains all the nodes (internal, as 

well as leaves) in the corresponding hierarchy. A breadth-first linearization of the directed- 

acyclic graphs representing the hierarchical domains is used to impose a partial order on 

these flattened domains. Using the relative position of domain values in the partial order, 

inferences can be made about their viability without having to perform actual constraint 

checks. This can lead to significant performance increase.

Hierarchical domain CSPs are clearly a special case of composite CSP. We represent 

internal nodes in the hierarchy as composite values. There are also additional advantages 

associated with our representation. Since only direct descendants on one level in the hier

archy are required to be available a t any time, domains of the variables in the composite 

CSP are smaller. And as a bonus, any regular consistency algorithm, including, but not 

limited to, arc consistency, can be used without modifications.
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Dynamic Constraint Satisfaction Problems

According to the CSP definition, the set of variables and the set of constraints have to be 

exactly specified, as part of the problem. On the other hand, in m any reasoning tasks, 

especially in synthesis tasks, the set of variables th a t participate in  a  solution cannot be 

determined a priori. To cope with this problem, (M ittal & Falkenhainer 1990) introduce 

the notion of dynamic constraint satisfaction problem (DCSP). The m ain idea is that only 

a subset of all the  variables need to be instantiated and, thus, p a rt of a  solution. Each 

variable can be in  one of two states: active or inactive. Constraints axe also divided into 

two specialized types: activity constraints, tha t specify conditions on the values of already 

active variables, under which new variables become active, and compatibility constraints, 

which specify relations on consistent values for variables. Inferences can now be made about 

the status of a variable, based on the activity constraints, avoiding irrelevant work during 

search.

A DCSP is described by the set of all variables th a t may potentially become active, a  

nonempty initial set of active variables, the set of domains and the two sets of activity and 

compatibility constraints. The search process starts w ith the initial set of active variables. 

Additional variables are introduced as the result o f satisfying activity constraints. The 

problem is thus changing dynamically as the search progresses. The set of active variables 

induces the set of “active” constraints, in  the sense th a t a constraint which does not have 

all its variables active is by definition trivially satisfied, and thus, becomes “inactive” . A 

formed, mathematically well-founded treatm ent of the conditional existence of variables is 

presented in (Bowen & Bahler 1991) where the constraint network is viewed as a set of 

sentences in first-order free logic.

A first lim itation of dynamic CSPs is the requirement that the set of all variables in
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the problem must be known from the beginning. As mentioned earlier, this is not only- 

inefficient, but often even impossible to achieve. Another m ajor disadvantage, especially 

when modeling very complex systems, is the lack of guidance as to the appropriate content 

and organization of the domain knowledge. As shown in (Sabin & Freuder 1998), even simple 

dynamic CSPs can contain inconsistencies which impact not only search performance, but 

can also produce erroneous results.

Composite CSP overcomes bo th  limitations. The effect of instantiating a variable V  

w ith a composite value V  =  <V, C> is tha t all variables in V are added to the current 

problem, thus having the same effect as a set of activity constraints w ith condition V  =  V  

and list of variables to be activated covering V. However, as we will see in the next section, 

the instantiation mechanism for port variables supports dynamic creation of variables, on 

request, thus eliminating; the need for knowing in  advance the set of all variables.

A second advantage of using composite CSP is the support it offers implicitly in or

ganizing and m aintain ing  the domain knowledge based on abstraction/generalization and 

aggregation.

M eta Constraint Satisfaction Problems

In  the CSP context, when we talk  about structure in general, we can position ourselves 

on one of three levels: macro, micro and meta (Freuder 1992). At the meta level, we 

decompose the problem into subproblems, and view this decomposition as a meta-problem.

Each metavariable of the meta-problem is a  subproblem of the original problem. The 

domain of a metavariable is the set of solutions to the subproblem. Each subproblem 

includes a subset of the variables in  the original problem, together with the values for 

these variables and the constraints relating variables within this subset. Meta-variables can
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overlap by sharing common variables. A meta-constraint between two meta-variables must 

enforce all the original constraints, involving variables from the corresponding subproblems. 

Furthermore, if the same variable appears in both subproblems, the meta-constraint must 

ensure tha t this variable receives the same value in the solution chosen as meta-value for 

each of them.

The goal of this decomposition is to deal with the complexity of solving a problem 

by solving an equivalent problem, represented at a different level of abstraction. This is 

desirable because either the meta-problem or the metavariable subproblems may present a 

special structure, which can be solved more efficiently.

Composite CSPs support a somewhat opposite approach. The initial problems is de

scribed a t an abstract level. During search only relevant subproblems axe expanded and 

added to  the original problem, thus keeping the complexity to a  minimum.

5.2 Component Type Models as Composite CSPs

Each component type is modeled in our framework as a composite CSP. The translation pro

cess is almost a one-to-one mapping. Properties are represented in the model as variables. 

Restrictions imposed by the design are expressed as constraints. The internal structure 

of the component type is captured by the structure of composite values. The general

ization relationship between component types is also expressed through composite values. 

Associations between components are described using port variables. Producer-consumer 

relationships are expressed as arithmetic constraints involving cumulative expressions on 

port variables (resource constraints). Finally, cardinality and resource constraints control 

the dynamic evolution of the model.

Before moving further to a more detailed presentation, we introduce some notations.
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Models axe described using a pseudo-language providing some object-oriented constructs. 

The types of variables can be deduced from the description of their domain. Ranges of 

numeric values are enclosed in square brackets. Character as upper bound stands for 

infinity. As mentioned in the definition of a port variable, all the elements in  the domain 

have identical structure. In  other words, they are instances of the same type. The notation 

for a port P  of type T  and cardinality a t least m  and at most M  is P<T>[m..M ]. The 

expression |P | represents the cardinality of the current value of the port. To denote attribute 

a of an object x  we use x.a. Similarly, to refer to attribute a of any member of the current 

value of the port, we use the notation P.a.

As an example, the following is the model for component type SERVER, from the problem 

described in Chapter 1 .

t y p e  SERVER {

/ /  variables

type: { m i n i s e r v e r ,  s u p e r s e r v e r . }  

bay-count: [0..4]

CPU-count: [I..4]

SIMM-count: {2 , 4, 6, 8 } 

bus-count: [2..4] 

memory-size: [128..8096]

//p o r ts

CPU-slots<CPXJ>[l.A]

SIMM-slots< m em o r y >[2..8 ]

Bays<M E D IA >  [0. .4]

Software<SO FTW A RE> [2.. *]
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2?us-sfofc<BUS>[2..4]

/ /  constraints

d -bay—count,Bays* bay-count = \Bays\

C 2 c p u -count,CPU-slots'* CPU-count =  | CPU-slots\

C^siMM-count,STMM-siots* SIMM-count =  \SIMM-slots\

C^Qxis—count,Bus—slots* B u S -C O U n t  — [ Bus-slots I

C^-memory—size,sim M —slots* memory-size =  SIMM-slots.size

CQrnemory—size,Software* rriCTTlOry-sizC ^  Software.memory

}

type MINISERVER {

/ /  constraints

C7CPU—count* CPU-count <  2 

C^memory—size* HtCTTlOTy-sizC ^  1024

}

type SUPERSERVER {

/ /  constituent parts

graphics: GRA PH ICS-PRO CESSO R 

/ /  constraints

C Q q p u —count* CPU-count ^  2 

C^QxnemoTy—size* memory-size ^  512

}

As mentioned previously, none of the existing constraint-based approaches to configura-
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tion addresses the issues raised by configuration, problems in an integrated m an n er- In the 

following sections we will show how this is accomplished in our framework in a  natural way.

5.2 .1  C apturing S tru ctu ra l Inform ation

A composite value is an instance of some component type. A particular component type 

describes the composition of th a t component (aggregation). Whenever a new composite 

value is created, as the result of either a request for generating and adding a new value to 

the domain of a port, or an instantiation action, a  new component instance is created. Ac

cordingly, all the appropriate variables and constraints, as specified by the type description, 

get created and added to the existing composite CSP (i. e. the existing model). For exam

ple, the constraint graph corresponding to a composite value of type SERVER is presented 

in Figure 5.2.1.

5 .2 .2  C apturing H ierarch ica l Inform ation

According to the problem description, there are two types of server available: miniserver 

and superserver. Both types have a  similar structure and set of features. However, the 

number of CPUs and memory size me dictated by the type of server. We capture this 

information by factoring the common part into an abstract component type SERVER, and 

adding two concrete types, m i n i s e r v e r  and s u p e r s e r v e r ,  which specialize the abstract 

type and extend it with specific properties. We express this specialization relationship 

by adding the composite variable type to the model of s e r v e r ,  with domain D server =  

{m iniserver, super server}. T he instantiation mechanism will insure that this variable will 

be eventually assigned one of the two possible values, thus refining the server type. As a 

result, the appropriate set of variables and/or constraints, as specified by the model of the
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SERVER

BAYS BAY-COUNT

Cl<MEDIA> 0..4

CPU-SLOTS MINISRVCPU-COUNT
C7

Cl<CPU> 1..4 C8

MEMORY-SIZESOFTWARE
SUPERSRV

C6<SOFTWARE>|. 128..8096 I
CIO

GRAPHICSCS,
SIMM-SLOTS SIMM-COUNT

C3<MEMORY>

BAYS BUS-COUNT

C4<BUS> 2..4

TYPE

MINISRV
SUPERSRV

Figure 5-1: Composite CSP representation for s e r v e r

value tha t was selected for instantiation, will be created and added to the model. The new 

model becomes the one presented in Figure 5.2.2.

5.2.3 C apturing R ela tionsh ip s

We have already presented two types of relationship which can be expressed by a composite 

CSP: abstraction and aggregation. Other types of relationships, describing associations 

between objects which otherwise can exist independently, are expressed through the use of
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SUPERSRV

BAYS BAY-COUNT

<MEDIA> 0..4

CPU-SLOTS CPU-COUNT

Cl<CPU> 1..4

SOFTWARE MEMORY-SIZEC9

C6 128..8096

C5,
SIMM-SLOTS SIMM-COUNTCIO

C3<MEMORY>

BAYS BUS-COUNT

C4<BUS> 2..4

TYPE

GRAPHICS

Figure 5-2: Composite CSP representation for s u p e r s e r v e r

port variables. For example the relationship between instances of s o f t w a r e  and s e r v e r .  

A server is not composed of software, among other things. Instead, the software is in the 

relation “runs-on” w ith a server. This is represented in  our model through the port variable 

Software. The set of s o f t w a r e  instances assigned to the value of this port by a particular 

solution represents the set of programs that are in the relation “runs-on” with this server 

machine.

Another im portant set of relationships are producer-consumer relationships which gov-
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em  the use of resources. For example, we express the fact th a t the amount of memory 

available on a  server is equal to the total amount of memory provided by the memory chips 

mounted on the machine through the constraint memory-size =  Y',SIMM-slots. size. Sim

ilarly, memory-size > Software.memory rejects ail software packages which require more 

memory than the maximum amount which is available on the machine.

5.3 Chapter Conclusions

In this chapter we have introduced Composite Constraint Satisfaction Problems, a new, 

nonstandard class of problems which extends the classic Constraint Satisfaction paradigm. 

The new things composite CSPs bring are composite, structured values, and port variables, 

with domains which can be extended dynamically. Two standard types of relationships, 

generalization and aggregation are captured directly by the notion of composite value, 

while various association relations among application objects are expressed through port 

variables. The dynamic aspect of the configuration process is handled through the set of 

constraints posted on port variables and the instantiation mechanism. Because it is based 

on a declarative paradigm, this knowledge representation mechanism provides complete 

separation between domain knowledge and control strategy, which makes both knowledge 

specification and knowledge maintenance much easier.
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CHAPTER 6

TAKING ADVANTAGE OF PROBLEM

STRUCTURE

Maintaining arc consistency (MAC). Why it works. The cycle-cutset method. How 
to improve MAC. Instantiate less. Propagate less. M A C  extended (MACE).

6.1 Introduction

As we briefly showed in Chapter 3, in order to improve the  efficiency of CSP algorithms, very 

often search is interleaved with consistency inference (constraint propagation) which is used 

to prune values during search. The basic pruning technique involves establishing or restoring 

some form of arc consistency, pruning values that become inconsistent after making search 

choices. Recent research on finite domain CSPs suggests tha t Maintaining Arc Consistency 

(MAC) (Sabin & Freuder 1994) is the most efficient general CSP algorithm (Grant & B.M. 

1995) (Bessiere &; Regin 1996). Using implementations based on AC-7 or AC-Inference 

(Christian, Freuder, & Regin 1995) (Regin 1995), which have a very good space and worst 

case running time complexity, and a new dynamic variable ordering heuristic (Bessiere & 

Regin 1996), MAC can solve problems which are both large and hard.

The enhanced look ahead allows MAC to make a much more informed choice in selecting 

the next variable and /o r value, thus avoiding costly backtracks later on during search.
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However, additional search, savings will be offset by the additional costs if proper care is 

not taken during the implementation. There are two sources of overhead in implementing 

MAC:

• the cost of restoring arc consistency after a decision has been made during search 

(either to instantiate a variable or to delete a value)

• the cost of restoring the problem to the previous state  in case the current instantiation 

leads to failure.

Specifically, most of the effort is spent in deleting inconsistent values, during the prop

agation phase, and adding them back to the domains, after backtracking. Accordingly, we 

propose two ways to lower these costs:

• Instantia te  less. In the context of maintaining full arc consistency, the search algo

rithm can focus on instantiating only a subset of the original set of variables, yielding 

a partial solution which can be extended, in a backtrack free manner, to a complete 

solution. Depending on the problem’s density, the size of this subset, and thus the 

effort to find a solution, can be quite small.

•  Propagate le8S. Instead of maintaining the constraint network in an arc consistent 

state, we propose to maintain an  equivalent state, less expensive to achieve because 

it requires less propagation, which is:

o only partially arc consistent, but 

o guaranteed to extend to a fully arc consistent state.
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6.2 Example

(Grant & B.M. 1995) presents a  m ajor study of the performance of MAC l , over a large 

range of problem sizes and topologies. The results demonstrate tha t the size of the search 

trees is much smaller for MAC th an  for FC and th a t MAC produces backtrack-free searches 

over a  considerably larger num ber of problems across the entire range of density/tightness 

values commonly used to characterize random problem space.

If we expected MAC to do b e tte r them FC, due to its enhanced look-ahead capabilities, 

our own experiments showed an  unexpected result: th a t on problems w ith low and medium 

constraint densities (up to 0.5 -  0.6) a static variable ordering heuristic, instantiating vari

ables in decreasing order of their degree in the constraint graph, is in general more effective 

in  the context of MAC than the popular dynamic variable ordering based on minimal do

main size. In the m ajority of cases the gain in efficiency was due to a lower number of 

backtracks, very large regions of the search space being backtrack-free.

Trying to understand how a static  variable ordering can be better than a dynamic one 

is what led us to the ideas we will present next via an  example. We restrict our attention 

here to binary CSPs, where the constraints involve two variables. One way of representing 

a  binary CSP is in the form of a constraint graph. Nodes in the graph are the CSP variables 

and the constraints form the arcs.

Let us now consider the example represented by the constraint graph in Figure 6-1, and 

see what happens during the search for a solution. For the sake of simplicity, assume that 

all constraints are not-equal and ail domains are equal to the set {r, g, 6 }.

1 The authors describe a “weak” form of MAC; we believe that the results would have been even stronger 
if the experiments had been done with the MAC algorithm described later in this chapter.
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Figure 6-1: Sample constraint network

We are ready now to explain what we mean by instantiate less. Suppose that MAC 

will choose for some obscure (for now) reason, U  as the first variable to be instantiated. 

After selecting value r, the algorithm will eliminate all the other values in  the domain of 

U  and will propagate the effects of these removals, restoring arc consistency, as shown in 

Figure 6-2.

At this point the reader can verify that no m atter which variable is next instantiated, and 

no m atter which value is selected for the instantiation, MAC will find a  complete solution 

without having to backtrack. Furthermore, we claim th a t if we had been interested only 

in  finding out whether the problem is satisfiable or not, the algorithm could have stopped 

after having successfully instantiated variable U and have returned an affirmative answer.
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Figure 6-2: The constraint network sifter instantiating variable U

Why? Take a look at Figure 6-3, which presents the state of the problem after instantiating 

variable U.

Intuitively, since r  is the only value left in the domain of U  and it supports (is consistent 

with) all the values remaining in the domains of neighbor variables, it will itself always have 

a support as long as these domains are not empty. U thus becomes irrelevant for the search 

process trying to extend this partial solution, and we can temporarily “eliminate” from 

further consideration both U and all constraints involving it.

If we ignore the grayed part of the constraint net in Figure 6-3, the constraint graph 

becomes a tree. This, plus the fact tha t every value in the domain of any variable is 

supported by at least one value at each neighbor (the network is arc consistent), implies
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Figure 6-3: The constraint network after instantiating variable U

that the problem is globally consistent and makes it possible to find a  complete solution in 

a backtrack-free manner, for example the one in Figure 6-4.

In fact, for this reason, MAC is able to find all the solutions involving U  =  r  without 

having to backtrack. But what makes U so special ? If we look again to the graph in 

Figure 6-3, we see that

•  all the cycles in the graph have one node in common, the one corresponding to variable 

U, and

• by eliminating this node and all the edges connected to it we obtain an  acyclic graph.

A set of nodes which “cut” all the cycles in a  graph is called cycle cutset. In  our case, 

the set C =  { U  } represents a  minimal cycle cutset for the graph in Figure 6-3. I t is obvious
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Figure 6-4: T he constraint network after finding a  solution

that the graph obtained from the original one by eliminating the nodes in any cycle cutset 

and the related edges is acyclic.

The observations made on the graph in  our example are directly supported by research 

on discrete domain CSPs (Dechter & Pearl 1988) (Dechter 1990) (Freuder 1982), and are 

similar to the following two theorems presented in (Hyvonen 1992):

(1) An acyclic constraint net is globally consistent iff it is arc consistent.

(2) If the variables of any cutset of a constraint net S axe singleton-valued, then S is 

globally consistent iff it is arc consistent.

If after all the variables in  some cutset axe instantiated the net is locally consistent, we 

can “eliminate” these variables and their related constraints from the problem, as shown
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above. This cuts the loops and makes the constraint net acyclic. In this case, according to 

Theorem (I), local consistency is equivalent to global consistency. In addition, regardless 

of the order in  which variables are instantiated, MAC can find a complete solution without 

any backtracking. We can now present a  first modified version of MAC, in the form of the 

following algorithm:

1 . Enforce arc consistency on the constraint network. If the domain of any variable 

becomes empty, re tu rn  failure.

2. Identify a cycle-cutset C of the constraint graph.

3. Instantiate ail variables in C while maintaining full arc consistency in  the entire con

strain t network. If this is not possible, return failure.

4. Use MAC to extend the partial solution obtained in step 3 to a complete solution, in 

a backtrack-free manner.

So far we showed that, in  order to guarantee the existence of a complete solution in 

the context of maintaining arc consistency, it is sufficient to obtain a partial solution, by 

successfully instantiating only a subset of the variables, namely the cycle-cutset of the 

constraint graph. A  simple heuristic to find a cycle-cutset (not necessarily m in im al) is 

to order the variables in decreasing order of their degree, which explains why this static 

ordering performed so well in our tests.

Let us see if we can do better by propagating less. As we indicated earlier, after each 

modification MAC tries to restore the network to an arc consistent state. We claim tha t it 

is sufficient to bring the network to a partially arc consistent state only. More exactly, we 

need to m aintain arc consistency just in  part of the constraint graph, involving only some 

of the variables and constraints of the original CSP.
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Figure 6-5 presents the constraint graph of our example, in which variables not involved 

in  any cycle have been grayed. Once arc consistency is established, these variables become 

irrelevant for the search process. If  the problem is inconsistent, none of these variables 

can be the source of the inconsistency. If there is a  partied solution instantiating any 

of the normal variables in Figure 6-5, we are guaranteed to be able to extend it to a  

complete solution in  a backtrack-free manner. Therefore, they can be disconnected from 

the constraint network, until we decide whether it is possible to instantiate successfully the 

variables which are left. Dining search the algorithm will propagate any change, and restore 

consistency accordingly, only in a (potentially small) part of the network. This partially 

arc consistent state is equivalent with the fully arc consistent state in the sense that bo th  

lead to exactly the same set of complete solutions.

Once all the variables which are still part of the network are instantiated, it is enough to  

reconnect the variables previously disconnected and to enforce arc consistency (or directed 

arc consistency) in order to obtain global consistency and to extend the partial solution to  

a  complete solution in a backtrack-free manner.

The two ideas, instantiate less and propagate less, can now be combined under the 

name of MACE (M AC  Extended), which instantiates only a subset of the CSP variables 

while maintaining only a partially axe consistent state of the constraint network. The gain 

in  efficiency is twofold. Instantiating a smaller number of variables aims a t reducing the 

number of backtracks (and, accordingly, the number of constraint-checks, nodes visited, 

values deleted, etc.). Since the values disconnected are not part of any cycle-cutset, and 

hence, will not be instantiated in the first phase of the algorithm, the limited propagation 

implied by the second idea does not influence a t all the number of backtracks or nodes 

visited, but reduces the number of constraint checks and values deleted.
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Y

Figure 6-5: The constraint network after eliminating the cycle-free variables

6.3 Related Work

The idea of using the cycle-cutset of a constraint graph to improve the efficiency of CSP 

algorithms was used in (Dechter & Peaxl 1988) as part of the cycle-cutset method (CC) 

for improving backtracking on discrete domain CSPs. (Hyvonen 1992) uses it for interval 

CSPs. A related idea is used in  (Solotorevsky, Gudes, & Meisels 1996) for solving distributed 

CSPs.

Dechter and Pearl’s cycle-cutset method can be described by the following scheme.

1. Partition the variables into two sets: a cycle-cutset of the constraint graph, C, and T, 

the complement of C.

2. Find a(nother) solution to the problem w ith variables in C only, by solving it inde-

77

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



pendently. I f  no solution can be found, return  failure.

3. Remove from the domain of variables in T  all values incompatible with the values 

assigned to variables in  C and achieve directed arc consistency a t variables in T . If 

the domain of any variable becomes empty, restore all variables in T  to their original 

state and repeat step 2 .

4. Use a backtrack-free search for extending the partial solution found in step 2 to a 

complete solution.

The major problem with the cycle-cutset method is its potential for thrashing. One 

type of thrashing is illustrated by the following example. Suppose the variables in C are 

instantiated in  the order X , Y , . . .  Suppose further that there is no value for some variable 

Z  in T  which is consistent, according to constraint C xz, w ith value a for X .  Whenever the 

solution to the cutset instantiates X  to a, step 2 will fail. Since this can happen quite often, 

the cycle-cutset method can be very inefficient. We can elim inate this type of thrashing 

if we make the constraint network arc consistent before search starts, in a preprocessing 

phase.

A different type of thrashing, which cannot be eliminated by simply preprocessing the 

constraint network, is the following. Suppose th a t after making the network arc consistent 

initially, the domain of variable Z  contains two values, c and  d. Furthermore, value a for 

X  supports value c on C x z ,  bu t does not support d. On the  other hand, value b for Y  

supports d  and not c on C yz-  The cycle-cutset method will discover the inconsistency only 

while trying to instantiate Z , and this failure will be repeated for each solution of the cutset 

problem instantiating A  to a  and  Y  to 6 .

Our approach maintains arc consistency during the search (in fact, it maintains an
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equivalent state, as explained above). This eliminates bo th  sources of thrash ing and leads 

to substantial improvements over the cycle-cutset method.

6.4 Algorithm

The goal of this section is to present the description of three a lg o r ith m s: M A C , the cycle- 

cutset method (C C ), and the new algorithm we propose, M A C E . The following is a  high 

level description of the basic M A C  algorithm.

MAC ( in: V ar  ; o u t :  Sol ) r e t u r n  boolean

1 consistent <— in it ia l iz e  ( )

2  w h ile  consistent d o

3 (X, valx) «- s e l e c t ( V ar, 0 )

4 i f  s o l v e ( (X, valx), V a r \  {X}, Sol, 1 ) t h e n

5 r e t u r n  t r u e

6  Dx <- Dx \  {valx}

7 consistent Dx 7  ̂0 a n d  p r o p a g a t e  ( V ar \  {X}, 1 )

□

8  r e tu r n  fa ls e

□

SOLVE( in : (X, valx ) ,  Var, Sol, level ; o u t: Sol ) r e t u r n  boolean

9 Sol <— Sol U {(X, valx)}

10 i f  level =  N  t h e n

1 1  r e tu r n  t r u e

12 fo r  e a c h  a G D x, a 7  ̂valx d o
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13 Dx <— Dx \  {a}

14 consistent <— p r o p a g a t e ( Var, level )

15 w h ile  consistent d o

16 {Y, valy) <— SELECT( V ar, level )

17 i f  SOLVE( (Y, valy), V ar \  {y}, Sol, level+1 )

18 r e t u r n  t r u e

19 Dy <r- D y \  {valy}

20 consistent <— Dy 7  ̂ 0 a n d  PROPAGATE( V ar \  {y}, level ) 

□

21 Sol <- Sol \  {(X, valx)}

22 r e s t o r e ( level )

23 r e tu r n  fa ls e

□

It is worth stressing the differences between MAC and another algorithm that restores 

arc consistency, called Really Full Lookahead (RFL) (Nadel 1988). Once the constraint 

network is made arc consistent initially (line 1), MAC restores arc consistency after each 

instantiation, or forward move, (lines 12-14), as RFL does, and, in  addition:

• whenever an instantiation fails, MAC removes the refuted value from the domain and 

restores arc consistency (lines 6-7  and 19-20);

• after each modification of the network, both after instantiation and refutation, MAC 

chooses a (possible new) variable, as well as a  new value (lines 3 and 16).

For our experiments we implemented a slightly improved version of MAC, called MAC- 

7ps (Regin 1995). According to the results presented in (Christian, Freuder, & Regin
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1995), (Bessiere & Regin 1996) and (Regin 1995), MAC-7ps is the best general-purpose CSP 

algorithm to date. It is an AC-7 based implementation of the basic MAC, with one notable 

improvement: special treatment of singleton variables. The idea is roughly the following. 

After restoring arc consistency, singleton variables can be disconnected temporarily from 

the network. The goal is to avoid studying the constraints connecting other variables to the 

singletons. A detailed description of the implementation can be found in (Regin 1995).

MACE and CC need an algorithm to find a cycle-cutset. There is no known polynomial 

algorithm for finding the minimum cycle-cutset. There are severed heuristics which yield a 

good cycle-cutset a t a  reasonable cost. The simplest sorts first the variables in decreetsing 

order of their degree. Then, starting w ith the variable with the highest degree, as long as 

the graph still has cycles, add the variable to the cycle-cutset and remove it, together with 

all the edges involving it, from the graph. Assuming tha t lexical ordering is used to break 

ties, this method yields for our example the cycle-cutset presented in Figure 6 -6 . Variables 

are added to the cutset in the order W , S  and U. O n a problem w ith n  variables and e 

constraints, the worst case run time complexity for this heuristic is 0 (ne).

A smeiller cutset can be obtained if, before adding a variable to the cutset, we check 

whether it is part of any cycle or not. For example, after removing W  from the graph, S  is 

not involved in a cycle anymore, and, with the new algorithm, we find the cycle cutset in 

Figure 6-7. The worst case time complexity for this heuristics is 0 (n e ).

Additional work leads to an even smaller cutset. The cutset shown in Figure 6 - 8  is 

obtained by a third heuristic, which determines dynamically the number of cycles in which 

each variable is involved and adds to the cutset at each step the variable participating in 

the most cycles. T he worst case tim e complexity of this heuristic is 0 { n 2 e).
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Figure 6-6: Cycle-cutsets for the example in Figure 6-1 (first heuristic)

We used exactly the same algorithm in implementing bo th  CC and MACE. We per

formed the tests using the th ird  heuristic presented above. T he implementation of CC is 

straightforward. Since there is no requirement on the algorithm  to solve the cutset sub

problem, to keep the comparison with MACE as fair as possible, we used the basic MAC 

as our choice.

To implement MACE, we modified the algorithm presented earlier as follows.

•  After enforcing arc consistency, procedure IN IT IA LIZ E  (line 1) partitions the set of 

variables into two sets, one of which is the cycle-cutset C. Disconnect from the con

straint network all variables which are not involved in  any cycle and add them to the 

set of disconnected variables, U.
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Figure 6-7: Cycle-cutsets for the example in Figure 6-1 (second heuristic)

• Restrict procedure s e l e c t  (lines 3 and 16) to choose only from among variables in C.

•  Whenever a variable becomes a singleton disconnect it from the network and add it 

to U. If this makes other variables “cycle-free” , disconnect them and add them to U 

as well. Continue this process until no more variables can be disconnected.

•  Once all variables in  C have been successfully instantiated, reconnect ail variables in U 

and eliminate from their domains ail values incompatible with the values assigned to 

variables in the cutset. Enforce directed arc consistency with respect to some width-1 

order on the problem containing only variables in the complement of C and conduct 

a  backtrack-free search for a complete solution.
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Figure 6 -8 : Cycle-cutsets for the example in Figure 6-1 (third heuristic)

6.5 Experimental Evaluation

We tested our approach on random binary CSPs described by the usual four parameters: 

number of variables, domain size, constraint density and constraint tightness. We generate 

only connected constraint graphs (connected components of unconnected components can 

be solved independently). Therefore the number of edges for a graph w ith n  vertices is at 

least n  — 1  (for a tree, density=0 ) and at most n (n  —1 ) / 2  (for a complete graph, density=l). 

Constraint density is the fraction of the possible constraints beyond the m inim um  n  — 1 , 

that the problem has. Thus, for a problem w ith constraint density D  and n  variables, the 

exact number of constraints that the problem has is [n — 1 +  D (n  — l)(n — 2) /2 j .

Constraint tightness is defined as the fraction of all possible pairs of values from the
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domains of two variables, that are not allowed by the constraint. So, for a  domain size of 

d and a constraint tightness of t, the exact number of pairs allowed by the constraint is 

1(1 -  t ) c P J.

The tests we conducted addressed the problem of finding a  single solution to a CSP (or 

determining th a t no solution exists). We ran three sets of experiments on hard random 

problems problems, situated on the ridge of difficulty in the density/tightness space.

For the first two sets we generated problems w ith 20 variables and domain size of 20. 

The density of the constraint graph varies between 0.05 and 0.95, with a step of 0.05, while 

the tightness varies between T ^ n  — 0.08 and Ta-u +  0.08, with a step of 0.01. For each pair 

of values (density, tightness) we generated 1 0  instances of random problems, which gives us 

roughly a total of 3,200 problems per set.

The problems in the third set have 40 variables and domain size of 20. We expected 

the problems in this set to be much harder than the ones in the previous sets. Therefore 

the constraint density varies only between 0.05 and 0.30. The tightness varies between 

Tcrit — 0.08 and Tcrit +  0.08, w ith a  step of 0.01. We generated again 10 instances of random 

problems for each (density, tightness) pair, which gives us almost 1 , 0 0 0  problems for this 

set.

We present the results of the experiments using two types of plots. One type represents, 

on the same graph, the performance of two algorithms in terms of constraint checks, as a 

function of tightness.

The second type of plots represents the ratio between the performance of two algorithms 

as a function of tightness, in the form of a set of points. Again, results from different sets 

of problems, w ith different densities, are plotted on the same graph. Each point on the 

graph represents the average over the 1 0  problems generated for the corresponding (density,
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tightness) pair.

It is very im portant what measure is used to judge the performance of algorithms. The 

usual measure in  the literature is the number of constraint checks performed by an algorithm 

during the search for a solution. Whenever establishing th a t a value a for a  variable X  is 

consistent w ith a  value b for a variable Y ,  a single consistency check is counted. Constraint 

checks are environment independent, but are highly dependent on the efficiency of the 

implementation. In our case, since we use more or less the same implementation for all the 

algorithms, we choose this measure as being representative for the search effort.

We ran experiments comparing the performance of three algorithms: the cycle-cutset 

method, MAC-7ps and MACE. All algorithms used the dynamic variable ordering heuristic 

proposed in (Bessiere & Regin 1996), choosing variables in increasing order of the ratio 

between domain size and degree.

The first set of experiments compares the performance of the cycle-cutset method and 

MACE on the first set of test problems. Figure 6-9 shows the relative average performance 

of the algorithms in terms of constraint checks.

Constraint Checks
C C ......

M ACE-----le+08

le+07

le+06-

Le+04

D = 0.15D = 0.95 D = 0 3 0 Density = 0.05le+03 D = 0.70 D = 0.40 D = 0.20 D = 0.10
le+02

0.60.2 0 3 0.4 0.7 0.8 0.9 I
Tightness

Figure 6-9: Comparison between the cycle-cutset method and MACE
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As we can see, MACE outperforms substantially the cycle-cutset method on problems 

with densities up to 0.90-0.95, when they have approximately the same performance. The 

size of the cycle-cutset varies almost linearly with the density, from 3 for density 0.05 to 

almost 18 for density 0.95. For problems in the high density area the cutset is almost the 

entire set of variables (these are 2 0 -variable problems) and therefore the behavior of the 

two algorithms is almost identical.

As suggested in Section 3, we added an arc consistency preprocessing phase to  CC and 

ran this combination on the same problem sets. The results are presented in  Figure 6 - 

10. As we can see, the preprocessing improves the performance of CC only in  the very 

sparse region, by discovering the arc inconsistent problems. On the rest of the problems 

the preprocessing had practically no effect.

Constraint Checks
le+09 CC + AC preprocessing......

M A C E -----le+08

Le+07

Le+06-

le+05

Le+04

Density = 0 .0 5 ^ ^D = 0.95 D = 0.15Le+03 D =0.40 D = 0.20 D =0.10D = 0.70
le+02l

10.6 0.7 0.90.2 0 3 0.80.4
Tightness

Figure 6-10: Comparison between the cycle-cutset method with arc-consistency preprocess

ing and MACE

The same results are presented from a different perspective in Figure 6-11, which shows 

the ratio between the constraint checks performed by the cycle-cutset method and MACE. 

The advantage of MACE is very clear.
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The second set of experiments compares the performance of MAC-7ps and MACE. 

Figures 6-12 -  6-21 show the relative average performance of the two algorithms in terms 

of constraint checks on the second set of problems, w ith 2 0  variables.

As we can also see from the plot in  Figure 6-22, which shows the ratio between the 

number of constraint checks for MAC-7ps and MACE on the same set of problems, MACE 

performs better than  MAC-7ps. For problems with high densities (0.9 -  0.95) although 

MACE still dominates, MAC-7ps wins a  few times. Again, the explanation consists in the 

size of the cycle-cutset, which increases w ith the density. In  this particular area the sets 

of variables instantiated by the two algorithms become almost the same. Therefore, both 

algorithms exhibit similar behaviors, MACE being still slightly better than MAC-7ps on 

average.

#ccks(CC)
#ccks(MACE)

le+05

le+04

le+02 ♦ ♦ ♦

le+01

le-01
0.4 0.5 0.6 0.7 0.8

Tightness

Figure 6-11: Performance ratio between the cycle-cutset and MACE
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Constraint Checks
16000

MACE
MAC7-PS14000

12000

10000

8000

6000

4000

2000

0.82 0.84 0.880.78 0.8 0.8S 0.9 0.92 0.94 I
tightness

Figure 6-12: Comparison MAC-7ps to MACE on problems with. 20 variables, density=0.05

C onstraint Checks
70000

MACE
MAC7-PS
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50000
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20000
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0.76 0.78 0.820.74 0.8 0.84 0.860.72 0.88
tigh tness

Figure 6-13: Comparison MAC-7ps to MACE on problems w ith 20 variables, density=0.15
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Constraint Checks
45000

MACE
MAC7-PS40000

35000

30000

25000

20000

15000

10000

5000
0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8 I

tightness

Figure 6-14: Comparison MAC-7ps to MACE on problems w ith 20 variables, density=0.25

Constraint Checks
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MAC7-PS90000
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tightness

Figure 6-15: Comparison MAC-7ps to MACE on problems w ith 20 variables, density=0.35
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Constraint Checks
140000

MACE
MAC7-PS

120000

100000

80000

60000
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0.52 0.54 0.62 0.640.56 0.58 0.680.6
tigh tness

Figure 6-16: Comparison MAC-7ps to MACE on problems with. 20 variables, density=0.45

C onstraint Checks
250000

MACE
MAC7-PS
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150000
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tightness

Figure 6-17: Comparison MAC-7ps to MACE on problems w ith 20 variables, density=0.55
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Constraint. Checks
250000

MACE
MAC7-PS

200000

150000

100000

50000

0.46 0.54 0.560.48 0.5 0.52 0.58 0.60.44
tightness

Figure 6-18: Comparison MAC-7ps to MACE on problems with 20 variables, density=0.65

Constraint Checks
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tightness

Figure 6-19: Comparison MAC-7ps to MACE on problems with 20 variables, density=0.75
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Constraint Checks
5COOOO

MACE
MAC7-PS450000
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350000
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tightness

Figure 6-20: Comparison MAC-7ps to MACE on problems with. 20 variables, density=0.85
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Figure 6-21: Comparison MAC-7ps to MACE on problems with 20 variables, density=0.95
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#ccks(MAC-7ps)
#ccks(MACE)

10

1

0.1
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Tightness

Figure 6-22: Performance ratio between MAC-7ps and MACE on problems w ith 20 variables

The last set of experiments studies the scalability of our approach as problem size 

increases. We therefore compared the performance of MAC-7ps and MACE on problems 

with 40 variables, using the third set of random problems. Figure 6-23 shows again the 

relative average performance of the two algorithms in terms of constraint checks, while 

Figure 6-24 presents the same data, but in  the form of the ratio between the number of 

constraint checks for MAC-7ps and MACE. Both plots show again that MACE outperforms 

MAC-7ps significantly. The data also suggests th a t MACE scales well, the relative gain in 

efficiency increasing as the problems become larger.
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Constraint Checks
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Figure 6-23: Comparison between MAC-7ps and MACE on problems with 40 variables
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Figure 6-24: Performance ratio between MAC-7ps and MACE on problems w ith 40 variables
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6.6 Chapter Conclusions

Recent research, on finite domain constraint satisfaction problems suggest that Maintaining 

Arc Consistency (MAC) is the most efficient general CSP algorithm for solving large and 

hard problems. In  the first part of this chapter we explain why maintaining full, as opposed 

to limited, arc consistency during search can greatly reduce the search effort. Based on this 

explanation, in the second part of the chapter we show how to modify MAC in order to 

make it even more efficient. Experimental results prove that the g a in  in efficiency can be 

quite important.
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CHAPTER 7

OPTIMIZATION METHODS FOR  

CONSTRAINT RESOURCE 

PROBLEMS

Constraint resource problems in synthesis tasks. Examples. Problem representa
tion. Algorithms. Port variables instantiation. Achieving optimality through con
straint propagation. Improved lower bound computation.Eliminating partial solu
tions through interchangeability. Abstraction and context-dependent interchange
ability. Experimental evaluation.

7.1 Introduction

Many synthesis tasks can be reduced, on an abstract level, to the generic task of “assem

bling3’ some “artifact” from a set of “building blocks” {e.g. components in configuration and 

design, actions in planning, repair actions in therapy, qualitative models in  model synthesis, 

etc.).

Central to synthesis is the notion of resource. An im portant part of the knowledge 

associated with a particular application domain is represented by producer-consumer re

lations between various parts of the artifact. They introduce cumulative restrictions on 

resource properties of a set of objects. All the resources in the model must be balanced, 

i.e. the amount of resource produced should be equal or greater than the amount used.
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In the majority of synthesis tasks, th e  optimization criterion implies the minimization or 

maximization of some resource and th is  is what eventually dictates the structure of the 

artifact.

In this chapter we present resource optimization methods for efficiently solving synthesis 

problems in a constraint-based framework. Our original contribution is twofold:

• We show how to obtain a tighter lower bound of the problem optimum by adding 

redundant constraints that take into account the “wastage” in  a  partial solution.

• We show how abstraction through focusing on relevant features permits added inter

changeability to deal with equivalent sets of partieil solutions.

In Section 2 we describe a class o f problems which is representative for most synthesis 

tasks. Section 3 describes briefly our algorithms. Each of the following two sections, on 

the lower bound computation and on the use of abstraction and interchangeability, have a 

subsection presenting a running example, demonstrating that these techniques can signifi

cantly reduce the search effort for finding the optimal solution and proving its optimality. 

Section 6  presents additional experimental evidence to support our claims. We end with 

some concluding remarks.

7.2 Problem Definition

The problem we sire interested in is very general. We are given a  set of consumers, each 

characterized by the amount of resources it consumes. Available are several types of pro

ducers, each described by the amount of resources it can provide. A cumulative expression 

on some of the resources is designated as the cost of a  solution. T he task is to find the 

optimal set of producers such that:
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•  all the resources are balanced, and

•  the cost of the solution is minimal.

Instances of this problem appear as subproblems in any synthesis task. Because the 

motivation of our work lies mainly in  solving configuration tasks, the concrete examples 

used come from the configuration domain. Although we use simplified versions of real 

problems, the m ain aspects are preserved.

7 .2 .1  E xam p le 1

Consider this problem, adapted from (ELOG 1998). A control system consists of a set of 

racks with electrical connectors in which one can plug different types of electronic cards. 

A rack has 3 connectors, and each connector can receive exactly one card. In addition to 

the number of connectors it provides, each rack is characterized by the maximal power it 

can supply. Cards are characterized only by the power they use. Available are two types of 

racks, capable of providing 90 and 110 units of power, and four types of cards, consuming 

20, 45, 50, and, respectively, 65 units of power. The number and type of cards which can 

be connected to a  rack is limited by two factors: the number of electrical connectors the 

rack has, and the maximal power the rack can provide.

The cost of a solution is represented by the maximal power supplied by all the racks 

in the system. The problem asks for the number and type of racks which can accept a 

particular set of cards, such tha t the cost is m in im a l.

Assume we axe required to configure a control system th a t must accommodate four 

cards, {C2 0 , C4 5 , C 5 0 , Gss}, one of each type available. We s ta rt by creating one instance 

of r a c k , i? i ,  in which we plug cards C20 and C4 5 . None of the other two cards can use 

R i  anymore, this would require more than the maximum 1 1 0  units of power a rack can
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provide. We add a  new rack to  the system, R 2 and plug in it C'so- The power limitation 

again prevents us from using the same rack for C$5 , so we end up by using three racks. 

Since we are interested in minimizing the to ta l maximal power, we choose for each of the 

three racks the lowest-power variant able to satisfy the request, thus obtaining a solution 

with cost 270. This gives us an  upper bound for the optimal solution.

Continuing the search in  a  backtracking manner, we eliminate C45 and plug C20 and 

C50 in i?i, which allows us to  use the same rack for both C45  and Ce^, m a k i n g  complete use 

of the power provided by R 2 - In  fact this new solution, of cost 200, is optimal. To prove its 

optimality we have to show th a t a  solution of cost lower than 200 is not possible. Actually, 

we can restrict the new solution even more: the next possible combination of lower cost, 

two small racks, has a cost of 180.

0 < C < o o

90 S C  S 180

270 = C <0O

200 = C < 250

_90 110

_ _ A
20 50 m
65

. 90 90 \J
200 = C i  180 180 S C S  180 180SC S 180

I_______ I
45 5020 

65
90 90” 90"

20 50 45
65

(90 90 90
270 = C ^  180 270 = C ^  180

Figure 7-1: Snapshot of the search tree for an optimal solution (example 1).
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We use Branch and Bound to reduce the amount of unnecessary work performed. The 

algorithm abandons a  search path  when the cost of the partial solution, i. e. the lower bound, 

exceeds the upper bound. On our example though, it turns out th a t the lower bound is not 

tight enough to really do any pruning. As we can see in Figure 7-1, it exceeds the upper 

bound too late, only after two racks have already been added to the system. This is because 

the lower bound computation is based solely on racks. To account for the amount of power 

left unused in each rack, the lower bound should consider both the maximal power of the 

existing racks, and the amount of power required by the cards which have not been plugged 

in yet. This would allow the algorithm to discover immediately after plugging C2 0  and Css 

in R i that this partial solution actually incurs a minimum cost of 185 units, and therefore 

cannot lead to a solution of cost 180. In Section 4 we show how to achieve this by using 

specialized redundant constraints.

7.2.2 Example 2

Let us change the problem slightly. The two types of racks available provide 150 and 200 

power units and the four types of cards require 20, 40, 50, and, respectively, 75 power units. 

The set of cards which must be plugged into racks is { Gib, C |o’ Gfoi C 201 C |0, CijQ, C\q, 

Cf0, Cf0, C\q, C\q, C\q , CgQ, C5 0 , C7 5  }. The lower index represents the amount of power 

the instance requires. Instances requiring the same amount of power are  of the same type. 

A snapshot of the search tree associated with this example is shown in Figure 7-2. We start 

again by creating an instance R i  of rack, in which we plug cards C20  through Cf0. The 

power provided by R i,  200 power units, is consumed entirely. A new rack instance, R 2 , 

receives cards through C^q, which consume 170 power units of the  maximum 200 it 

provides. Finally, the last two cards, Cgg, C7 5 , are plugged in the th ird  rack, .R3 , and use
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125 power units out of the maximum 150 the rack provides. The cost of this first solution 

is 550, and gives us an upper bound for the optimal solution. Since the increment for the 

cost is 50, the next solution will be better only if it has a  cost of a t most 500.

RI 2 6 0  C1C2C3C4C5C6C7C8C9CKOQ<1000<3(X40<5 
R2 2 6 0

R 3150 C14C15
150 C140<5
1^0 0(4 C15

200 C10C11C120<3CI40<5
200 C10C11C120<30(4C15
150 1----------------------- CIO Cl 1C12 0(3 0<4 0<5

7200 C10CU<X2C13C140<5
150 ClOCllO(2C13O(40(f
150 C10C110O0(3C140(f
200 C10C110(2 0(3 0(4 Cl!

U 5 0 C10 C110(2 0(3 0(4 0(3
7200 C10OClC12C13C14C<5

150 C100(1C12C130(40C
150 C100(lC120(3C140(f
200 CIO 0(1 C12 0(3 0 (4 Cl!

^150 C10CdC12C(30(4C(3
150 CIO 0 (1 0 (2  C13 C14 0(5
260 CIO 0 (1 0 (2  C13 0(4 C15
150 C100(l 0(2C130(40(5
200 CIO 0 (1 0 (2  0(3 C14 C15
150 C100(l 0 (2 0 (3 0 4 0 (5
150 CIO0 (1 0 (2  0(3 0 (4 C15
150 ■------------------------ CIO0 (1 0 (2 0 (3  0(40(5

r 200 0(0 Cl 1 C12m3"C140(5j
150 0(0C11C12C13 0(40(5
150

1 .
0(OC11C120(3C140(5

495 < C <00 

525 < C <00 

C = 550 <00 

625 < C £  500 
600 < C £  500 
525 < 500
550 < C £  500 
525 < C £  500 
515 < C £  500 
515 < C £  500 
515 < 500
540 < 500
565 < C £  500 
515 < 500
515 < c£  500 
515 < C/£ 500 
540 < 500
565 < C/£ 500 
505 < C/£ 500 
530 < C/£ 500 
555 < C /t 500 
530 < C/£ 500 
555 < C$ 500 
530 < C/£ 500 
605 < c £  500 
515 < c £  500 
515 < C £  500 
515 < C/£ 500

Figure 7-2: Snapshot of the search tree for an optimal solution (example 2 ).

The optimal solution actually has a cost of 500 power units. It turns out that finding it 

and proving its optimality is more difficult than in the previous example. This is due to the 

fact that most of the search effort is spent on exploring sets of equivalent partial solutions,
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introduced in  the search space by the use of multiple instances of the same type of card. In 

the figure we point out an  example. Since the only restriction imposed on the cards is on 

their power consumption, although involving different values (card instances), the partial 

solutions in  the three sets (1), (2) and (3) are equivalent. After the algorithm already 

investigated a solution assigning two 40 power unit cards to R i  (set (1)), there is no point 

in trying other combinations of two s i m i l a r  cards. Therefore we can prune from the search 

tree the regions (2 ) and (3) without losing any problem solution. We show in  Section 4 how 

to eliminate equivalent partial solutions efficiently using abstraction and interchangeability.

7.2.3 P ro b lem  rep resen tation

A producer-consumer relation implies a bidirectional connection between the objects in

volved in the relation. We capture this by adding a port variable to the model of each 

object tha t has resource properties. Ports are characterized by base type and cardinality. 

The domain of a port variable P<T>[m..n] is a set of objects of type 7”, and the values 

the port can take are subsets of the domain, of cardinality at least m  and a t most n. We 

use the notation |P | to refer to P ’s cardinality.

There are several types of constraints that can be posted on port variables, two of which 

are relevant in the context of our presentation:

• cardinality constraints, imposing a lower and /o r upper bound on the number of objects 

tha t can be assigned to the port, e.g. |P | <  2, |P | >  0, etc., and

•  cumulative constraints on attributes of the objects assigned to the port, e.g. X}P.z <  

1 0 0 , where a: is a numeric attribute of instances of type T .

The model for the two examples described in the previous section is the following:
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•  The model for system  consists o f two variables:

— integer variable powerSYSTBM with, domain. {O..00}, and

— port variable racksSYSTBM<RACK>[1..0 0 ].

•  rack  is described by three variables:

— integer variable powerRACK with, domain {90, 110} and {150, 200}, respectively;

— port variable systemRACK <SYSTEM>[1.. 1/;

— port variable cards _r a c k <CARD>[1 ..3].

•  c a r d  instances axe described by two variables:

— integer variable powerCARD with domain {20, 40, 50, 65} and {20, 40, 50, 75}, 

respectively;

— port variable racksCARD<RACK>[1..1].

•  In addition, the model for objects of type system  and rack  contains constraints 

expressing producer-consumer relations:

powerSY s t  e m ^2 rQ<'ksSYsTEM -power

~  powerMCK >  T,cardsRACK.power

•  The cost of a solution is represented by the value of the variable powerSYSTBM -

7.3 Algorithms

For the purpose of this thesis, we consider only complete search methods because we axe 

interested in proving the optimality o f the solution. A  lot of research effort has been invested 

lately in the study of branch and bound variants of CSP search algorithms (Freuder &
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Wallace 1992) (Cabon, De Givry, & Verfaillie 1998). Branch, and Bound keeps track of an 

upper and lower bound for the cost of the solution. The upper bound is the cost of the best 

solution found so far, and can be updated when a new solution is discovered. The lower 

bound represents an estimate of the cost implied by the current (partial) solution, and gets 

monotonically updated as the algorithm advances on the solution path. These bounds are 

used for pruning entire branches from the search tree. At each step of the algorithm, the 

two bounds are compared against each other, and once the lower bound becomes a t least 

as large as the upper bound 1, it is clear that the current search path cannot lead to a 

be tter solution, and is abandoned. Obviously, the better (tighter) the bounds are, the more 

pruning the algorithm achieves. Although it is fairly easy to come up with a  good upper 

bound, in the majority of cases this is not true for the lower bound (De Givry, Verfaillie, & 

Schiex 1997).

7.3.1 P o rt variables in stan tiation

One way to implement a port variable V<T>[m..M] is to m aintain internally two sets of 

T  instances, one representing the current value, the other one the domain. W hen the port 

is created, its domain consists of the set of all T  instances which exist a t that tim e in the 

model plus a  wildcard instance *7-, accounting for any future instance of T  th a t might be 

created. This representation is similair to the one presented in (Mailharro 1998), although 

the implementation details seem to be different.

T he instantiation process we propose is fairly straightforward. Using the set of con

straints posted on the port as a filter, inconsistent instamces are eliminated from the domain.

1 We consider here that the objective is to minimize the cost variable, but the same principle applies 
when we try to maximize it.

105

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



All instances which passed the filter, except for the wildcard, are moved to  the current value 

set. W hen the filtering phase ends, there are two possibilities.

1. T he cardinality of the current value is a t least m. In  this case the port has been 

successfully instantiated.

2. T he cardinality does not satisfy the lower bound requirement. Again we are left w ith 

two possibilities.

(a) The domain is empty, i. e. the wildcard has been rejected by the filter. In this case 

the port is considered to be closed. What this means is that no instance of type 

T  can satisfy (anymore) the requirements imposed by the port, and therefore the 

instantiation fails.

(b) The wildcard is still in the domain. The procedure will first create a  new instance 

of T  and add it to the domain of all ports with base type T  which have not been 

closed yet 2. Then, the instantiation process continues, with the new instance in 

the domain.

However, there is another aspect of the algorithm th a t we would like to point out. A 

connection established through ports is bidirectional. We capture this aspect in our model 

by using pairs of complementary ports. Assume that objects of type U  have a port of type 

T , say P < T > . Objects of type T  must then have a port of type U, call it Q<U>. Consider 

two instances, x  and y, of type U and T , respectively. Connecting y to the port P  of x  

means adding y to the  current value of P . This happens during the process of instantiating

2 We will show in Section 5 that this step can fail as well due to global limitations on the total number 
of instances of a given type.
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P. Due to bidirectionality, x  then must be added to the current value of port Q of y  as well. 

The implication of this step is twofold. First, if adding x  to Q would lead to a  constraint 

violation, then it is not possible to add y to P  either. Second, instances can be added to a 

port’s current value even after the port has been instantiated, as long as the port has not 

been closed yet.

7.4 Achieving Optimality through Constraint Propagation

The search algorithm we use is not a Branch and  Bound algorithm, but achieves the same 

effect through constraint propagation on redundant specialized constraints.

Our algorithm is based on a  powerful CSP algorithm, M AC  (Sabin & Freuder 1994) 

(Sabin & Freuder 1997). MAC uses constraint propagation for maintaining arc-consistency 

during search. Every time the domain of a variable is modified, the constraints in  which 

the variable is involved are responsible for propagating the change to  related variables. For 

more details on how this can be done efficiently see the original papers.

MAC is a general-purpose CSP search algorithm. In particular, it has no provision for 

finding optimal solutions. However, we do not need to change the algorithm for making it 

search for the optimal solution, we update the problem instead. Each time a solution of 

cost C  is found, the constraint cost < C  is added to the problem to reflect the new upper 

bound, and then simulate a failure, thus forcing the algorithm to look for a better solution. 

A similar technique can be found in (ELOG 1998). It is obvious tha t the value C  is the 

upper bound of the solution and that by adding the new constraint the updated upper 

bound becomes actively involved in the search.

The lower bound is integrated in the model through the use of resource constraints. 

In our problem the value of the cost variable powerSYSTEM is controlled by the equality
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constraint with. X^rac&ssya{em .power. Internally, the lower bound of the  is updated incre

mentally, as new elements are added to racksSYSTBM. Through the equality constraint, the 

change propagates and updates the lower bound of the powerSYSTBM variable.

Before moving further, we want to mention briefly tha t when deciding which variable 

to instantiate next, port variables are always preferred, and among several port variables, 

we choose first the ones belonging to a  producer.

7.4 .1  Im proved low er bound com p u tation

Let us get back to Example 1. We can observe from the beginning that the amount of 

power the racks have to provide must be a t least 180 power units, the amount of power 

required by the four cards. The current model does not provide any way of directly relating 

this information to the cost variable. We will add a redundant constraint which, through 

propagation, will provide the connection.

To be able to keep track of the power requirement for all the cards in the system, we 

need a global point of view. We associate with each type U  a special type of port variable, 

called metaport. A metaport variable associated with type T , M < T> , contains all the 

instances of T  that have been created and are currently part of the model.

Cardinality constraints on metaports allow us to put a  limitation on the total number of 

instances of a  given type that can be created. In addition to the usual constraints that can 

be posted on regular port variables (resource, cardinality, etc.), m etaports offer a special 

type of resource constraint, called a balancing constraint. The constraint is described by a 

4-tuple <P, C, x, y>, where

• P  is a  m etaport variable associated with type T ,

• C  is a  m etaport variable associated with type U ,
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•  x and y  are attributes representing the amount of resource r  produced by an instance 

of T  and used, respectively, by an instance of U.

A balancing constraint implies the existence of a  producer-consumer relation between 

instances of the two types, T  and U, on resource r , i.e. any instance t  of T  has a port 

U<U>  and t.x  >  U.y. Its semantics is the following:

• The initial lower bound for ^ P .x  is the lower bound of ^ C .y .

•  The lower bound of ^ P . x  is updated incrementally as the result of:

— Creating a new instance u of type U: the value of ^T,P.x is increased by u.y.

— Closing an instantiated port t.U  on a ttribu te  y: the lower bound of ^ P .x  is 

increased by the difference t.x - X t.U .y.

We extend now the model for sy stem . We add two m etaports, P<RACK>  and C<CARD> , 

as well as two constraints: Balance(P, C, powerRACK, powerCARD) and, since all instances 

of r a c k  must be part of the system, powerSYSTBM =  ^Z,P-powerRACK. The results of this 

change are presented in Figure 7-3.

7.5 Equivalent Partial Solutions

Let us get back to Example 2. Although we did not m ention this before, the instantiation 

algorithm considers an implicit ordering among the elements in the domain, thus avoiding 

symmetries introduced by permutation of values. For example, once the algorithm discovers 

the solution of cost 550 which assigns the value { C |o , C4Lq , C \q, C^q } to rack i?2 , it will 

never consider trying permutations of this set as values for 7 ?2 -
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Figure 7-3: Snapshot of the search tree for an optimal solution (example 1 — after adding 

the redundant constraint).

This cuts down some of the search effort, but we are still left with partial solutions that 

are equivalent in  the sense th a t they all participate exactly with the same amount to the 

final solution cost.

7.5 .1  E lim in a tin g  equivalent partial so lu tion s th rou gh  in terch angeab ility

The simplest type of equivalence is introduced by multiple instances of the same type. Take 

a look at Figure 7-2. Exchanging C\q for C^q in the partial solution th a t includes two 

instances of 40 power unit cards in the value of i?2 , C\q and Cjg, will lead to a solution 

of equal cost. This is because in our model any two card instances of the same type are 

identical in all respects.

By analogy w ith (Freuder 1991), we say that two instances are interchangeable if replac

ing one by the other in any solution produces another solution of equal cost. According to 

this definition, two card instances of the same type are interchangeable.

The process we propose for eliminating equivalent partial solutions is the following. 

Once an instance is rejected from a domain during port variable instantiation, we look for
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all the other instances of components of the same type and reject them as well. The effect 

of doing this on problem in Example 2 is shown in Figure 7-4.

Although true for cards, it is not always the case tha t instances of the same type are 

interchangeable. Here is a simple example. We have two racks of the same type, RI^q and 

f2^50. Due to the different sets of cards already connected to the two racks, R i  has 30 units 

of power still available, while i ?2 has 50 left. Suppose the two racks are in the domain of 

card C|o which must be instantiated next. R i  is rejected because of the power requirement, 

but rejecting R% based on the fact th a t the two instances have the same type would be 

wrong, since f?2 satisfies the power requirement.

The question is then  how to decide when two instances are interchangeable. Remember 

that they are modeled as composite c s p s . Since all instances from the domain of a  port 

have the same type, the corresponding composite CSPs have the same sets of variables and 

internal constraints. Then a sufficient, but not necessary, condition for two instances to 

be interchangeable is tha t pairs of corresponding variables have the same domain in  both 

problems. In case the domains are the same, the two instances are clearly interchangeable.

7.5.2 A bstraction and context-dependent interchangeability

But this method might prove to be too restrictive. Assume that type c a r d  can be refined 

to several specialized types, each with additional features and providing non-identical func

tionality. Some cards requiring equal amounts of power are not instances of the same type 

anymore. Their models may differ, both in structure (i.e. number and type of variables and 

constraints) and in the domain of the variables. According to the above definition, these 

instances axe not interchangeable anymore. However, because the only relevant aspect for 

deciding whether a card can be connected to a rack or not is the amount of power it re-
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quires, solutions involving the same number of cards with equal power requirements are still 

equivalent.

We abstract the model for c a r d  and r a c k  through focusing on relevant common fear 

tures only. Considering only the abstracted model permits added interchangeability. The 

decision on what features are relevant is made based on the set of constraints imposed on 

the port variable.

As shown before, constraints on ports involve attributes of the instances in the domain 

of the port, which in our model are represented by variables. It is this restricted set of 

variables which will be checked for domain identity in deciding whether two instances axe 

interchangeable or not. In our example, the set of variables contains only the variable

powerCARD.

According to the new definition of interchangeability, cards w ith equal power require

ments axe interchangeable. Applying the algorithm presented earlier on the problem in

stance in Example 2 produces the results presented in Figure 7-4.

7.6 Experimental Evaluation

In order to test the performance of our approach, we used a set of randomly generated test 

problem instances similar to the one presented in Example 2. Each instance is characterized 

by the cardinality of the set of cards. We generated problems having between 10 and 200 

cards, with an increment of 10. For each number of cards we generated 50 problem instances. 

The types of the cards were assigned randomly among the four types.

We conducted two sets of experiments in which we addressed the problem of finding 

the optimal solution and proving its optimality. First, we compared our algorithm with a 

program implemented specifically for solving this problem, presented in (ILOG 1998). The
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R1 260 C1C2C3C4C5C6C7C8C9Q<00<1<X20<30<4(X5| 495< C<oc
R2260

1 C1OC11C12C130<4C3<5 525 < C <00

R 3 150 C14C15 C = 550 <00

150 C14 0 (5 625 < C/5 500
l |o  0 (4  C15 600 < C/£ 500

200 CIO Cl 1C12 0 (3  0 ( 4 0 5 550 < 500
150 C10C11C12 0 (3  0 ( 4 0 ( 5 525 < C £ 500
200 C10C110 (2 C 1 3  C 140(5 515 < C/£ 500
150 C10C110 (2 C 1 3  0 ( 4 0 ( 5 515 < Cfi  500
200 CIO Cl 1 0 ( 2 0 ( 3  0 ( 4 C15 540 < C £ 500
150 C10 C1 1 0 (2  0 (3  0 ( 4 0 ( 5 565 < Cfi  500
150 C 1 0 0 (l 0 (2 C 1 3  C 140(5 505 < C£  500
260 0 0 0 ( 1 0 ( 2 0 3 0 ( 4 0 5 530 < C/fc 500
150 0 0 0 ( 1 0 ( 2 0 3 0 ( 4 0 ( 5 555 < 500
150 C 1 0 0 (l 0 ( 2 0 ( 3  0 (4C 15 530 < C £ 500
150 C1 0 0 (1 0 (2  0 (3  0 ( 4 0 ( 5 605 < C/£ 500

Figure 7-4: Snapshot of the search tree for an optimal solution ( example 2 -  after adding 

the redundant constraint and using context-dependent interchangeability.

results, in terms of CPU  time, are presented in Figure 7-5. The advantage of our method 

is obvious. For example for problems w ith 30 cards, we limited the running time for the 

Solver code to two hours, while our algorithm completed on average in  0.5 seconds.

For the second set of experiments we used only our algorithm and compared the search 

effort spent for finding the first solution with the search effort required for finding the 

optimal solution and proving its optimality. The results axe presented in  Figures 7-6 and 

7-7. We report two different measures of the search effort: number of failures (backtracks) 

and CPU time. Both figures consist of two plots, one for the first solution (the plot name 

is prefixed by first), the other for finding the optimal solution and proving its optimality 

(the plot name is prefixed by optimal). Each point of the plot was computed as the average 

over the 50 problem instances generated for each value of the number of cards.
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Figure 7-5: Comparison, with, the original Solver code.
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Figure 7-6: Search, effort in  terms of number of failures
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Figure 7-7: Search effort in terms of CPU time.

As we can observe, the two plots are very close to each other, which proves the advantages 

of our method: we not only discover quickly the optimal solution, but we are also able to 

prove very quickly its optimality.

To realize what is the impact of each of the two methods on the algorithm performance, 

we present in Figure 7-8 the  results of a third set of experiments. We show the ru n n in g  

time of the base algorithm, the base plus the improved lower bound computation, the base 

plus the context-dependent interchangeability method, and the base plus the two methods 

combined. Each point of the  plot was computed as the average over the 50 problem instances 

generated for each value of the number of cards.
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Figure 7-8: The effect of each optimization m ethod on algorithm  performance.

7.7 Chapter Conclusions

The specification of most configuration problems requires th a t the solution be optimal 

according to some criterion. Most often, this is either to maximize or to minimize a certain 

resource produced, respectively consumed, by the artifact. Taking advantage of the locality 

imposed by our modeling methodology and of the composite CSP representation, we have 

developed two specific optimization methods, which outperform  by orders of magnitude 

previous methods. More specifically, we obtain a tight lower bound of the problem o p t im u m  

by adding redundant constraints that take into account the “wastage” in a partial solution, 

while abstraction through focusing on relevant features perm its added interchangeability
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to deal with equivalent sets o f partial solutions. Combining these two ideas allows us to 

discover quickly the optimal solution, and also to prove very quickly its optimality.
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CHAPTER 8

CONCLUSION

We have presented a constraint-based framework for configuration. O ur work was motivated 

by the configuration of technical products, but the results we present can be applied to 

nontechnical domains as well. It addresses the two main issues raised by any reasoning 

task, in general, and by configuration, in particular, namely modeling and efficient solving.

Our approach offers a component-oriented view of configuration tasks. The knowledge 

associated with a particular application domain is modeled by a generic product architec

ture, described in terms of generic parts, which captures multiple product variants within 

a  single data  model. The solution we propose combines object-orientation with constraint- 

based reasoning. Modeling concepts like abstraction and aggregation provide the support 

for a natural and compact organization of the domain knowledge, while the underlying 

constraint-based representation offers powerful solving techniques. In particular, the essen

tial contributions of this thesis are the following:

• We have compared several approaches for modeling configuration tasks, based on dif

ferent paradigms, presenting both their strengths and weaknesses. We have identified 

the main aspects raised by configuration tasks, th a t need to be addressed by any 

configuration framework: hierarchical organization of the domain knowledge, the in

trinsic internal structure of the application objects, and the dynamic nature of the 

configuration process.
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• The modeling methodology we propose, promoting a  composite model of the artifact, 

obtained by aggregation of local, context independent models of its constituent parts, 

offers support and guidance as to the appropriate content and organization of the 

domain knowledge, thus making knowledge specification and representation less error 

prone.

• To be able to provide the powerful and flexible representation mechanism required by 

this modeling methodology, we have introduced Composite Constraint Satisfaction 

Problems, a new, nonstandard class of problems which extends the classic Constraint 

Satisfaction paradigm. Generalization and  aggregation axe captured directly by the 

notion of composite value, while relations among application objects are expressed 

through port variables. The dynamic aspect is handled through the set of constraints 

posted on port variables and the instantiation mechanism. Furthermore, based on a 

declarative paradigm, our framework provides complete separation between domain 

knowledge and control strategy, which makes both knowledge specification and knowl

edge maintenance much easier.

• Once the representation mechanism is in  place, the second main concern of a config

uration framework is to provide efficient search techniques, able to cope with the size 

and complexity of the knowledge base. In  1994 we proposed a search algorithm which 

maintains full arc consistency during search, MAC, and showed th a t it can be very 

effective. Based on subsequent advances in constraint propagation algorithms and 

dynamic variable ordering heuristics, a recent implementation of MAC (Bessiere & 

Regin 1996) became the best general search algorithm to date. By taking advantage 

of the problem structure, we have developed MACE, an  improved version of MAC,
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which, consistently outperforms the previous version.

•  The specification of most configuration problems requires tha t the solution be optimal 

according to some criterion. Most often, this is either to maximize or to m in im ize  

a  certain resource produced, respectively consumed, by the artifact. T ak in g  advan

tage of the locality imposed by our modeling methodology and of the composite CSP 

representation, we have developed two specific optim ization methods, which outper

form by orders of magnitude previous methods. More specifically, we obtain a tight 

lower bound of th e  problem optimum by adding redundant constraints that take into 

account the “wastage” in a partied solution, while abstraction through focusing on 

releveint features perm its added interchangeability to deal with equivalent sets of par

tial solutions. Combining these two ideas allows us to rapidly discover the optimal 

solution, and edso to  prove very quickly its optimality.
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