
Research and Practice in Technology Enhanced Learning
Vol. 5, No. 2 (2010) 97–122
c© World Scientific Publishing Company &

Asia-Pacific Society for Computers in Education
DOI: 10.1142/S1793206810000864

A CONSTRAINT-BASED FURNITURE DESIGN CRITIC

YEONJOO OH∗ and MARK D GROSS†

School of Architecture, Carnegie Mellon University

5000 Forbes Ave, CFA #211

Pittsburgh, Pennsylvania, 15213, USA
∗yeonjoo@cmu.edu
†mdgross@cmu.edu

SUGURU ISHIZAKI

Department of English, Carnegie Mellon University

5000 Forbes Ave, BPH #145D

Pittsburgh, Pennsylvania, 15213, USA

suguru@cmu.edu

ELLEN YI-LUEN DO

Colleges of Architecture and Computing

Georgia Institute of Technology, 828 W Peachtree St.

Atlanta, Georgia, 30332, USA

ellendo@gatech.edu

This paper reports on the Furniture Design Critic. We propose a computational model
of design critiquing using the program, which as a research tool helps us explain how
to select critiquing methods in the consideration of critiquing conditions. Surveying the
literature of architectural education, we have identified two dimensions from critiquing
comments: (1) delivery types (interpretation, introduction/reminder, example, demon-
stration, and evaluation) and (2) communication modalities (written comments, graph-
ical annotations, and images). This paper also presents how the Furniture Design Critic
system selects particular methods by considering specific conditions such as the user’s
knowledge level and the interaction history between the user and the system.

Keywords: Design critiquing; constraint-based tutor; delivery types; communication
modalities.

1. Introduction

Studio occupies a pedagogically important position in design education. It is the

main academic course in any architecture or industrial design program. Students in

a studio are subjected to a series of critiquing sessions, in which instructors offer

feedback on their work. Many design researchers report that this critiquing process

is an essential component in design teaching and learning (Boyer & Mitgang, 1996;

Goldschmidt, 2002; Schön, 1985), but no systematic study has been conducted to

97

http://dx.doi.org/10.1142/S1793206810000864

98 Y. Oh et al.

understand critiquing practice in design. Schön (1985) attempts to describe the

knowledge and skills of design teaching in his book, The Design Studio, but much

about design critiquing remains tacit and only very loosely articulated. Design stu-

dio teachers depend on experience from their own education or on intuition, which

Weaver, O’Reilly & Caddick (2000) refer to as “hit-and-miss” teaching.

We envision a computer program that could offer effective critique to help indi-

vidual students learn designing. However, our understanding of design critiquing as

yet is too spotty or incomplete to realize this vision. Therefore, as a step in this

direction we aim to develop a systematic framework to account for the decisions

that a critic makes.

We built the Furniture Design Critic system to develop a computational model

of design critiquing. The program provides a framework in which we can describe

and explain how a critic might work, specifically, how a critic might select particular

critiquing methods based on a variety of conditions.

The domain is secondary to our agenda: our main goal is not to build a learning

system for furniture design. Rather, flat-pack furniture design provides a test case

for system development to investigate design critiquing. It is an interesting domain

where students encounter many structural and spatial design issues as they make

stable furniture out of flat materials. For this reason, furniture making is often used

as an early exercise for first-year design and architecture students. Compared to

many other design domains, such as architectural design, the problem space of flat-

pack furniture design is relatively small, so we need not account for the enormous

body of domain knowledge that underlies the larger domain of architectural design.

Still, like architectural design, flat-pack furniture design is an ill-defined and open-

ended domain. Like architectural design, furniture design also entails drawing and

model-making.

2. Research Scope

The purpose of the Furniture Design Critic program is to develop a model of cri-

tiquing that can lead to better teaching and learning of design. However, we are

not — in the first place — concerned with answering the question: “What is ped-

agogically the best method of critiquing?” Nor are we concerned with constructing

a model to predict which critiquing methods will be the most effective for which

students under which conditions. That could be the topic of future research using

the computational model presented here, but at this point, the software is simply a

research tool — a framework in which to formulate alternative strategies of design

critiquing, and implement them in a computational design environment.

Thus, our goal is different from that of most intelligent tutoring system research,

and the reader who seeks here an empirical evaluation of our work will not find it.

The evaluation of this research is not whether it helps design students learn more

effectively or if we have programmed a good mechanism for selecting critiquing

methods.

A Constraint-Based Furniture Design Critic 99

Rather, we seek to develop a computational model of design critiquing in which

to articulate and describe design critiquing. The test of this research is the model’s

ability to represent and implement alternative critiquing strategies by selecting of

critiquing methods. Certainly, this computational framework can be evaluated: we

plan a three-phase evaluation to test our computational model of design critiquing.

In Phase 1, we plan to test whether the program can represent a wide range of

proposed critiquing strategies. In Phase 2, we will test if the program can represent

real critiquing sessions. In Phase 3, finally we can test if our system can support

students’ learning. Here, however, we simply present the computational model we

have developed, and argue through an example that it can be used to represent

various strategies for design critiquing.

3. Related Work

3.1. Critiquing systems

A critiquing system is a tool that analyzes a design at hand and provides feed-

back to help a designer improve the solution (Fischer, Lemke, Mastaglio & Morch,

1991; Oh, Gross & Do, 2008). Although the researchers of critiquing systems take

the concept of ‘critiquing’ from the field of design, they lack a clear understand-

ing of design critiquing. Most critiquing systems have focused on detecting errors,

or opportunities for offering corrective feedback. For example, Argo (Robbins &

Redmiles, 1998), SEDAR (Fu, Hayes & East, 1997), TraumaTIQ (Gertner & Web-

ber, 1998) all provide users with only negative evaluations. However, even a brief

look at how one-on-one critiquing sessions function in design studios shows that

current critiquing systems are quite primitive compared to what studio teachers do.

(Examples will be provided in Section 4.)

Although critiquing is the predominant component in design education only a

few critiquing systems for design have been built. Architecture critiquing systems

such as CORENET (CORENET, 2009), ICADS (Chun & Ming-Kit Lai, 1997), and

Solibri checker (Solibri.Inc., 2010) support only checking building codes (e.g. fire

safety requirements). These systems focus on error checking and are not tightly

integrated with design process; nor do they offer constructive feedback to improve

the design at hand. Although task models have been developed in several design

critiquing systems such as SEDAR (Fu et al., 1997) and Argo (Robbins & Redmiles,

1998) systems, it is hard for these systems to recognize what a user is doing using

their highly structured task models. Design, an ill-defined domain cannot be repre-

sented by well-structured models (Simon, 1969). Further, their task models are

not a good way for the programs to identify critiquing opportunities from the

designs.

In short, today’s critiquing systems are not yet able to support design and

design learning and they do not provide a framework in which to articulate design

critiquing.

100 Y. Oh et al.

3.2. Intelligent Tutoring Systems and Constraint-based

Tutors (CBT)

An intelligent tutoring system (ITS) is a program that tracks a student’s actions

and offers feedback. Critiquing systems and intelligent tutors are similar in that

they all analyze the users’ work-in-progress and provide feedback (Robbins, 1998).

However, intelligent tutors differ from critiquing systems in that intelligent tutors

intend to support students’ learning, whereas critiquing systems help users improve

their work at hand.

We are interested in intelligent tutors, because they use Student Models to acti-

vate Pedagogical Module that customizes the feedback for individual students. We

think that we can adopt the design of intelligent tutors to articulate design cri-

tiquing, specifically, how to represent critiquing conditions (e.g. a certain designer’s

knowledge level) and how to select a certain set of critiquing methods in the con-

sideration of critiquing conditions.

Intelligent tutoring systems have been developed for a variety of domains includ-

ing mathematics (Anderson, Corbett, Koedinger & Pelletier, 1995), physics (Van-

Lehn et al., 2005), and database design (Mitrovic, Martin & Suraweera, 2007;

Zakharov, Ohlsson & Mitrovic, 2005). However, there have been only few tutor-

ing systems to support ill-defined domains such as design.

Recently there has been a great deal of attention on the development of intelli-

gent tutoring systems for ill-defined domains (Aleven, Ashley, Lynch & Pinkwart,

2007), for example, legal argumentation (Pinkwart, Aleven, Ashley & Lynch, 2007).

Design is an example, perhaps the canonical example, of an ill-defined domain

(Simon, 1969). An often-cited characteristic of design is that it lacks well-structured

domain models. A design problem seldom has a single or best solution; rather, a

set of solutions is all satisfactory. Although design problems by their nature are not

amenable to well-structured solutions as in the model-tracing approach (Koedinger

& Anderson, 1997) most widely used for ITS development, the constraint-based

approach (Mitrovic et al., 2007; Ohlsson, 1994) is an appropriate choice for rep-

resenting design solutions (Mitrovic & Weerasinghe, 2009). The constraint-based

approach does not require a complete domain model. It also models domain knowl-

edge using a set of constraints that specify what characteristics a solution should

have. On one hand, these constraints can provide only a partial description of a

solution. On the other hand, the effect of a missing constraint is highly restricted,

resulting only in the tutor program failing to detect a particular error; a proposed

solution can still be analyzed with other constraints. Thus, using the constraint-

based approach we can incrementally develop a domain model in the Furniture

Design Critic program.

These constraint-based tutors derive from Ohlsson’s theory of learning from per-

formance errors (Ohlsson, 1996). Ohlsson argues that learning occurs when students

catch mistakes by themselves or when others catch mistakes for them. The funda-

mental assumption is that certain problem states reveal diagnostic information. This

A Constraint-Based Furniture Design Critic 101

assumption stems from the fact that one cannot develop acceptable solutions that

violate domain principles. Antonija Mitrovic and her Intelligent Computer Tutoring

Group (ICTG) have explored various topics in constraint-based tutoring, for exam-

ple supporting a variety of tasks, enhancing student models and new strategies to

deliver feedback, and developing authoring systems (ICTG, 2009).

Each constraint represents a piece of domain knowledge; it consists of a relevance

condition and a satisfaction condition. The relevance condition indicates when the

constraint should apply, and the satisfaction condition represents whether a certain

piece of knowledge has been correctly applied. For every constraint that is deemed

relevant to the student’s problem, a solution must satisfy the satisfaction condition.

A violated constraint indicates an opportunity to improve the proposed design so

the constraint-based tutor then offers feedback regarding the violated constraint.

A constraint-based tutor records information about a student to make inferences

about that student’s knowledge of the domain. This Student Model consists of the

history of all constraints that the tutor has applied to the student’s design including

both satisfied and violated constraints. The violated constraints indicate domain

knowledge the student has evidently not yet mastered. Based on this diagnosis, the

constraint-based tutor then provides feedback to support the student’s learning.

3.3. Critiquing methods in Intelligent Tutoring Systems

and critiquing systems

A drawback of conventional intelligent tutoring systems and critiquing systems is

that they do not provide feedback using the rich range of methods that design

instructors employ in studio teaching. (These methods are outlined in the following

section.) Most computer-based systems focus only on pointing out errors and prob-

lems; although a number of systems support alternative delivery types in addition

to negative evaluation such as argumentation (Fischer, McCall & Morch, 1989),

examples (Nakakoji, Yamamoto, Suzuki, Takada & Gross, 1998), question-asking

(Milik, Marshall & Mitrovic, 2006), or self-explanation (Mitrovic, 2002). One inter-

esting system, Kermit (Suraweera & Mitrovic, 2002), offers six different levels of

feedback; correct, error flag, hint, detailed hint, all errors, and solutions. The first

type of feedback (correct) simply indicates whether a submitted solution is cor-

rect. Whenever the student submits a solution with errors, system advances to the

next level in the sequence of error flag — hint — detailed hint. The student can

request the other two levels: show me all errors and show me solutions. Although

this system supports multiple methods, it does not make inferences about various

characteristics of a student.

Several systems also offer feedback using multiple modalities. For example,

Reading Tutor (Mostow et al., 2003) combines speech and graphics (highlighting);

AutoTutor (Graesser, Chipman, Haynes & Olney, 2005) combines speech with 3D

simulation and facial expression; Design Evaluator (Oh, Do & Gross, 2004) com-

bines text with graphical annotation of a 3D model; and KID (Nakakoji et al., 1998)

102 Y. Oh et al.

employs text and images. Taken together these systems employ diverse methods to

interact with users, but we are unaware of any single system that makes decisions,

based on a student model, about when to use which method to critique. That is the

focus of the system we present here.

4. Delivery Types and Communication Modalities

Studio instructors in architectural design use a variety of critiquing methods to

convey their knowledge and professional skills (Schön, 1983). Using these methods,

they deliver images, ideas, examples and actions from their own ‘repertoires’ (Schön,

1983). They build up these repertoires from their experiences. Schön uses this reper-

toire concept to explain design critiquing: when instructors look at a student’s solu-

tion, they scan their repertoires for similar situations, for example, buildings they

have known, or problems they have previously encountered. The instructors not

only point out errors; they also describe examples or demonstrate how to solve the

problems. Feedback presented using multiple methods helps design students under-

stand their problems better, eliminate errors from their proposed solutions, and

construct their own repertoires (Schön, 1983; Uluoglu, 2000).

We have identified two dimensions of critiquing comments: delivery types and

communication modalities, because this helps us to describe a variety of critiquing

activities. For example, a studio teacher verbally introduces an idea, whereas

another teacher demonstrates a plausible design solution using verbal expressions

and graphic annotations. Examples of these delivery types and communication

modalities used in design studios will be presented in the following sections.

4.1. Delivery types

Uluoglu (2000) and Bailey (2004) both analyze critiquing sessions in architecture

studios and identify diverse ‘delivery types’. These include (1) interpreting stu-

dents’ design solutions, (2) introducing new ideas or approaches/reminders of

them, (3) description of existing examples or precedents, (4) demonstrating

potential solutions or other design actions, and (5) evaluating (positive or neg-

ative) of the students’ solutions. We examined critiquing sessions in architecture

design studio (Wampler, 2002) to see how these delivery types are used. Table 1

shows the examples of these different delivery types used in the critiquing session

of Wampler’s design studio.

Although a studio teacher intends to deliver the same content, it may be trans-

mitted using different delivery types (Uluoglu, 2000). For example, the teacher leads

his/her student to consider the path of the sun. In this case, the teacher’s intention

is same, but s/he can deliver feedback differently according to which delivery type

s/he selects. If a critique presented using the demonstration delivery type shows

how to consider the path of the sun by rearranging rooms or moving the positions

of windows. In contrast, a critique presented using introduction/reminder delivery

type provides a piece of knowledge, which is that it is a good idea for the student

A Constraint-Based Furniture Design Critic 103

to think about the path of the sun. However, the teacher does not show how to use

this knowledge.

Table 1. Feedback instances of five delivery types.

Delivery Types Feedback Instances

Interpretation “Your building only gets light into this level (pointing to the
bottom window on the physical model).”

Introduction/Reminder “Have you thought about the path of the sun over a day and over
the year?”

Example “Le Corbusier’s building has a similar concept. Look at the
windows of his chapel at Ronchamp.”

Demonstration “You need to make a form here. You need to do something here
(drawing a line that represents a wall).”

Evaluation “You take the rough form into something more precise. . . . which is
good.” “No good, horrible — it just ruins the whole idea.”

The choice of delivery types is important because it may influence a student’s

subsequent actions and hence learning. For example, when a teacher offers an exam-

ple, a student may realize that reference to the given precedent is helpful to deal

with the new design situations and attempt to adapt it to fit the work at hand.

When the teacher points out errors, the student may fix them. The use of differ-

ent delivery types in critiquing may lead to different reasoning and thereby further

promote different learning.

4.2. Communication modalities

Design studio learning embraces numerous forms of representation such as written

and graphical. Studio teachers also use these forms to communicate with their

students. These forms correspond to communication modalities. These forms of

communication are important, because drawing, not only verbal expressions, is an

important tool to develop and communicate design solutions.

Communication modalities mean the ways that the design knowledge is pre-

sented, such as through speech, text, graphical annotation, and images. The pri-

mary modality in all face-to-face critiquing sessions is speech — teachers always

talk. Studio teachers also make brief notes as they draw, or annotate their stu-

dents’ sketches. Although these notes are terse, they help students remember the

spoken feedback. Design teachers often use drawings to describe their design ideas

and demonstrate alternative solutions, ranging from abstract diagrams to represen-

tational forms. Schön (1985) and Anthony (1991) both note that critiques presented

in multiple modalities work together and help students understand the intentions

of their instructors. Figure 1(a) shows an everyday scene where a studio instructor

(Professor Jan Wampler at MIT) sketches on a student’s drawing, while offering

feedback verbally (Wampler, 2002). He places tracing paper on top of the student’s

drawing and draws over it to suggest an alternative design. Figure 1(b) presents

sketches and a brief notes that a studio instructor has made (Schön, 1985).

104 Y. Oh et al.

(a)

(b)

Figure 1. Communication Modalities: (a) speech + drawing (source: MIT Open Courseware
(Wampler, 2002)); (b) drawing + text (source: The Design Studio (Schön, 1985)).

4.3. Why selecting a certain critiquing method is important

Individual critiquing situations are all different. For example, individual students are

different; their knowledge levels, strengths, and weaknesses are all varying. Studio

teachers cannot deal with these different students in the same way. Let us provide

a simple example. A studio teacher and a design student with no previous design

experience are working together in a one-on-one critiquing session in an architecture

design studio. The studio teacher provides an existing building as an example to

help the student take the ideas from the building and apply them into the student’s

current design: “Do you know (architect) Steven Holl’s chapel at Seattle Univer-

sity? How the building is placed in the site? Holl controls light with various shaped

windows and the irregular shapes of the roof. Le Corbusier used a similar solution

at Ronchamps, and Holl adopted Le Corbusier’s design. They both designed the

windows to control the quality of light; color, direction, and shape.”

A Constraint-Based Furniture Design Critic 105

However, the student looks puzzled. The student cannot use the given example in

his/her design, because s/he does not know how to apply the example to the current

design and how to represent and explore the design ideas by making drawings.

Thus, providing the example without graphical annotations is not a good choice of

critiquing methods for this particular student. Instead, the teacher can demonstrate

how to design his/her windows differently by dividing the roof into several different

masses and by inclining a window to allow sunlight to enter the living room from

a particular direction. As the teacher verbally demonstrates, the teacher draws

simple perspective diagrams and section drawings. The student now understands

how to use the ideas that the teacher has offered and improves his/her design using

drawings. In this case, the demonstration with graphical annotation is the right

choice of critiquing method for this designer, because the novice designers often

cannot employ the learned knowledge to develop their own designs (Uluoglu, 2000).

Thus, the choice of appropriate critiquing methods is important to help students

improve their work at hand and further learn designing.

5. Furniture Design Critic

Motivated by the richness of critiquing in architectural design studio and the lack

of understanding of design critiquing, specifically context-sensitive critiquing, we

built a constraint-based design critic program. This Furniture Design Critic pro-

gram offers students feedback using five delivery types (interpretation, introduc-

tion/reminder, example, demonstration, and evaluation) and three communication

modalities (written comments, graphical annotations, and images). Based on the

diagnosis of the student’s solution, the model of the student, prior performance, and

the criticism that the student has previously received the Furniture Design Critic

selects a delivery type and modality with which to present a critique.

5.1. System architecture

The Furniture Design Critic is written in MCL (Macintosh Common Lisp) using

OpenGL to provide 3D models and the Lisa (Lisp-based Intelligent Software Agent)

production rule system to reason about a proposed furniture design using previously

stored constraints. The Furniture Design Critic comprises several components: a

Construction Interface, Parser, Pattern Matcher, Design Constraints, Critiquing

Rules, User Model, Pedagogical Module, and Critic Presenter. Figure 2 shows these

components, their relationships, and the information flow among them. This section

follows the process shown in Figure 2 to describe what individual components do

and how the system works.

5.2. Construction interface and parser

A designer starts to design by sketching an axonometric diagram in the Construction

Interface using a stylus and a digitizing tablet. The program records all designer’s

106 Y. Oh et al.

Designer

Construction Interface

(sketched diagram + 3D model)

Parser

Pattern Matcher

Pedagogical Module

Critic Presenter

Text

Critiquer

Graphic

Critiquer

Example

Finder

User Model Design Constraints

Critiquing Rules

Figure 2. Furniture Design Critic system architecture in the iterative construction-critiquing-repair
cycle.

sketched marks, identifies the Cartesian coordinate system that is implicit in the

drawing, and then generates a 3D model.

The Parser examines the sketched diagram and the 3D model and produces

two kinds of data: a list of individual parts, their properties (e.g. x-length, plane,

3D coordinate data, joints, etc.) and the configuration of the parts (e.g. parallel,

between, top-of, jointing, distance, etc.). Based on these data, the program recog-

nizes the function of a furniture piece (e.g. table and chair) and the function of each

part (e.g. top, shelf, and side). Specifically, the program has a list of representations

for particular furniture pieces. It compares them against the symbolic representation

of designer’s furniture using the Pattern Matcher. If matched, the program recog-

nizes what the designed furniture is and what functions individual parts have. The

Parser stores this symbolic representation of the designed furniture in a text file.

This symbolic representation will be used to identify which constraint is satisfied

or violated.

5.3. Design constraints

The program uses a set of Design Constraints that represent principles that furni-

ture designers need to know. Furniture Design Critic uses two types of constraints:

43 structural constraints and 57 functional constraints. The structural constraints

specify valid configuration of furniture parts and are used to identify structural

problematic parts in designers’ solutions. They vary from simple constraints such

A Constraint-Based Furniture Design Critic 107

as “a long shelf must be supported from the middle”, to more complex constraints

such as “a table’s brace must be placed carefully to allow enough leg space.” Simple

constraints only deal with a single piece of furniture. Complex constraints are used

to identify problems in related pieces of furniture, such as a table and a chair. The

leg space constraint mentioned above checks whether a table provides enough leg

space by comparing the position of a table’s brace, with the width and the height of

the chair that a designer has previously designed and stored. Functional constraints

specify the functions of certain parts or a whole piece of furniture. For example, “a

chair may have armrest” and “a horizontal bracing part parallel to the chair seat

may be used as a shelf.”

Each constraint consists of a relevance condition, a satisfaction condition, its

importance, written comments using five different delivery types, function calls

to present feedback using other two communication modalities. The importance

of a constraint is represented as an integer value between 1 and 3 based on its

potential influence of a violation on the stability of the whole furniture piece. Level 1

constraints are important for stability. If a level 1 constraint is violated, the furniture

piece will fall down. For example, “a bookcase must have a back in order to support

lateral loads.” Level 2 constraints are influential on the furniture design but not

critical for stability. For example, “the height of the tabletop must be higher than the

height of the chair seat and the desirable difference is from 45% to 65% of the height

of the chair seat.” The constraints with low importance (level 3) refer to minor

issues, although they are still relevant to the furniture designs. For example, “having

only one armrest breaks symmetry on the chair design.” When these constraints are

violated twice, the program removes these constraints from further consideration as

these constraint violations do not critically influence stability.

The constraint satisfaction conditions require judgment of furniture design that

may not seem easily automated. However, we have implemented constraints that can

determine, for example, whether a corner of a table is unsupported by comparing the

positions of the legs relative to the corners of the table. If this distance is too large

proportionally to the dimension of the table, the corner is considered unsupported.

Although we have implemented each satisfaction condition individually, a more

general way to address this challenge is to employ a physics engine that subjects

the furniture to simulated real-world forces.

Each constraint data structure stores two items relevant to offering feedback

in multiple methods: critique-delivery-types, and critique-modalities. The critique-

delivery-types item stores pre-defined written comments for the constraint in five

different delivery types. For example, the constraint in a bookcase design checks

whether a back part is large enough to support lateral loads (see Figure 3(a)). The

critique-delivery-types item stores five different written comments:

Interpretation – “Your bookcase is composed of two sides, a shelf, a top and a

back. The two sides and the back are vertical structural

components for loads.”

108 Y. Oh et al.

(a)

(b)

(c)

Figure 3. (a) The program highlights the problematic part (the back) in red and draws an arrow
to indicate lateral loads. (b) The program draws arrows to indicate vertical loads placed on the
shelf. (c) The program retrieves relevant examples and presents them.

A Constraint-Based Furniture Design Critic 109

Introduction/Reminder – “Is your back part big enough to support lateral

loads?”

Example – “Look at other bookcases with backs.”

Demonstration – “Make the back part bigger as shown (drawing a bigger back

part).”

Evaluation – “The back is an important part to support lateral loads, but it’s too

small. Your bookcase is structurally unstable for lateral loads”

The critique-modalities item stores a list of calls to routines that deliver feed-

back in different communication modalities. The Furniture Design Critic delivers

feedback using the selected communication modalities by executing these routines:

graphic annotations, e.g. painting parts red that violate a constraint (Figure 3(a));

displaying graphic icons such as arrows to indicate a load placed on a furniture

part (Figure 3(b)); and retrieving and presenting images of relevant examples

(Figure 3(c)).

5.4. Pattern Matcher

The Pattern Matcher compares the symbolic representation of the design against

the Design Constraints in order to detect critiquing opportunities. For example, the

bookcase design in Table 2 violates the stored constraint that “a long shelf of a

bookcase must be supported from the middle”. The pseudo-code and diagrams

show the constraint that the design has violated.

5.5. User model

The Furniture Design Critic stores two types of User Model: a short-term and

a long-term user model. The short-term user model stores the reasoning outputs

of the Pattern Matcher, namely which constraints are satisfied or violated in the

current critiquing session.

The long-term user model is similar to the short-term user model, but it stores

the history of all violated and satisfied constraints over multiple critiquing sessions.

Using this history the Pedagogical Module makes inferences about how much a

designer knows about flat-pack furniture design; the designer’s specific weaknesses,

and which critiquing methods are effective for helping the designer (see Section 5.7).

5.6. History of states

The Furniture Design Critic keeps track of the history of states of the system. A

state represents a critiquing condition: (1) the constraint that was violated, (2) the

selected set of critiquing methods, and (3) whether the selected critiquing methods

were effective. This state is captured when the program offers feedback. This is

stored as the part of the User Model; although it does not describe characteristics

of a designer explicitly, the system employs it when selecting critiquing methods.

110 Y. Oh et al.

Table 2. A violated constraint example.

If the designed furniture is a bookcase
with a long shelf
Top and Shelf are parallel

Side1 and Side 2 are parallel

Shelf is between Side1 and Side2
Side1 and Shelf are jointed

Side2 and Shelf are jointed

Shelf is long (length > width∗5)

then a shelf must be supported from the middle
Shelf is on top of Support

For example, when a particular set of methods have been used repeatedly in two

previous states and the critiques have been unsuccessful both times, the program

will select alternative critiquing methods to offer feedback.

5.7. Pedagogical module

The main task of the Pedagogical Module is to select particular sets of delivery

types and modalities by considering characteristics of the critiquing situation such

as the inferred data about a designer and the history of states (see Section 5.6). The

Pedagogical Module makes these decisions about the critiquing methods by applying

Critiquing Rules (see Section 5.8).

The Pedagogical Module takes as input (1) data of violated constraints from the

short-term user model, (2) data of the User Model and (3) Critiquing Rules. In other

words, it considers the violated constraints and the User Model and chooses a par-

ticular critiquing method by applying the Critiquing Rules (Figure 4). In sequence,

the Pedagogical Module (1) selects which feedback should be offered first; (2) makes

an inference about a designer using the data of User Model; and (3) selects a certain

set of critiquing methods by applying Critiquing Rules.

A Constraint-Based Furniture Design Critic 111

Figure 4. Pedagogical Module and the data involved for selecting critiquing methods.

5.7.1. Selecting which feedback should be offered first

If a design violates more than one constraint the Pedagogical Module must decide in

what order to deliver feedback. It addresses more important issues first. If several

constraints have same importance, the program prefers any constraint that has

previously been violated.

5.7.2. Making an inference about a designer using the data of User Model

The Pedagogical Module takes the history of all constraints including the violated

and satisfied (from the User Model) and infers (1) how much the designer knows

about furniture design; (2) which type of constraints that the designer has trouble

with and what types of constraints the designer handles properly; and (3) which

critiquing methods work well for that designer.

Let’s look at how the Pedagogical Module makes an inference about the designer.

RViolated in Eq. (5.1) represents how much a designer does (not) understand about

the design space represented by constraints. That is, the higher RViolated, the less

the designer knows. RViolatedCritical in Eq. (5.2) represents the designer’s igno-

rance of important constraints. The higher RViolatedCritical, the less a designer

knows about the fundamental knowledge of the design domain. Critical constraints

with high importance (level 1) should be satisfied for designers to develop stable

furniture.

RViolated = (number of constraints violated/number of all constraints

the program knows) (5.1)

RViolatedCritical = (number of critical constraints violated/number

of constraints violated) (5.2)

The program infers a designer’s knowledge level based on the history of all

design constraints that the program knows. The program represents the designer’s

knowledge level by a pair of ratios (RViolated, RViolatedCritical). When these two

ratios are zero (0, 0), then the designer has violated no constraints and therefore

112 Y. Oh et al.

has mastered all the domain knowledge that is stored as constraints in the system.

(As the knowledge level is unknown at first, these ratios are initially (nil, nil). The

program distinguishes this initial level from the perfect mastery level of (0, 0).)

The system computes each designer’s weaknesses with respect to structure

and function. Weakness of structural knowledge is represented by the ratio

RWeaknessStructural in Eq. (5.3). Weakness of functional knowledge is represented

by the ratio RWeaknessFunctional in Eq. (5.4). If RWeaknessStructural is high, the

program recognizes that the designer is weak in applying structural constraints to

his/her designs.

RWeaknessStructural = (number of structural constraints violated/number

of structural constraints relevant to the current

design task) (5.3)

RWeaknessFunctional = (number of functional constraints violated/number

of functional constraints relevant to the current

design task) (5.4)

The Furniture Design Critic infers which effective critiquing methods work well

for each designer based on its long-term user model. When a designer repeatedly

succeeds in response to the critiques offered using a certain method, the program

stores that method as an effective critiquing method for that designer.

We decouple the judgments about the designer from the User Model, because

of the program’s scalability. The current state of this program infers the designer’s

weaknesses in the structural and functional knowledge, overall knowledge level, and

effective critiquing methods. For example, if we add another kind of weakness in

aesthetic knowledge — aesthetic constraints, the program can takes the history of

all constraints and computes the designer’s aesthetic weakness in the Pedagogical

Module by defining a new Pedagogical Rule. We do not need to change the User

Model to judge the designer’s aesthetic weakness. Specifically, if the ratio, (e.g.

number of aesthetic constraints violated/number of aesthetic constraints relevant

to the current design task) is higher than a certain number while executing the

Critiquing Rule, it indicates that the designer is weak in that aesthetic category

of knowledge. This design of the program enables us as the system designer to

easily scale up this program for supporting a larger design domain or other design

domains.

5.7.3. Selecting a set of delivery types and communication modalities

Based on the judgments about the designer, the Pedagogical Module selects delivery

types and communication modalities. It creates a text file that stores a representa-

tion of these critiquing conditions including (1) the violated constraint; (2) data of

the User Model such as the history of the States; and (3) the data that represent

A Constraint-Based Furniture Design Critic 113

the designer’s characteristics such as knowledge levels, weaknesses and effective cri-

tiquing methods. It uses this file to make a decision about which critiquing methods

are appropriate in each situation.

To select an appropriate set of critiquing methods, the Pedagogical Module

applies Critiquing Rules into the critiquing condition representation. It executes

actions such as selecting critiquing method candidates and adding a delivery type,

if the data of the text file satisfy the condition of a Critiquing Rule.

5.8. Critiquing Rules

Currently the program has 76 Critiquing Rules that specify which delivery types and

communication modalities to use under what conditions. These rules are formulated

based on the literature of design and design education, and from informal sessions

in which design studio instructors discussed their teaching techniques. For example,

for novice designers, directive feedback such as demonstration and evaluation are

better than facilitative feedback such as examples, because novices often experience

difficulty using abstract ideas. Here is another example. When the piece of knowl-

edge is introduced, but a designer cannot apply it to his/her design, it is a good

idea to show how to use the idea by demonstrating a plausible solution (Uluoglu,

2000). Although it would be interesting and useful, we did not conduct a formal

evaluation of the critiquing rules, as this is beyond the scope of our work.

The following pseudo-code shows a Critiquing Rule that selects delivery type

candidates, (demonstration, evaluation, (demonstration, evaluation)), when the

data that the Pedagogical Module takes satisfies both conditions (RViolated ≥ 0.4)

and (RViolatedCritical ≥ 0.5). These conditions mean that the designer’s knowledge

level is quite low.

Critiquing Rule# DeliveryTypes-Designer-LowKnowledgeLevel

[conditions] if (RViolated ≥ 0.4) and (RViolatedCritical ≥ 0.5)

[actions] select delivery type candidates

(delivery-type-candidates (demonstration, evaluation, (demonstration,

evaluation))).

5.9. Critic presenter

Once thePedagogical Module selects a critiquing method, the Critic Presenter acti-

vates one or more helper components to present the critique. The Critic Presenter

has three helpers: (1) a Text Critic, (2) a Graphic Critic, and (3) an Example Finder.

The Text Critic finds the written comments associated with a violated constraint

and present them below designer’s diagram. For example, if the selected delivery

types are introduction/reminder and evaluation, the Text Critic selects and dis-

plays the second and fifth written comments from the critique-delivery-types item

of a violated constraint (see the critique-delivery-types item example presented in

114 Y. Oh et al.

Section 5.3). The Graphic Critic highlights relevant furniture parts, draws graphical

annotations on a designer’s diagram, and presents images by executing function calls

stored in the critique-modalities item. The Example Finder selects relevant exam-

ples from a library by comparing the symbolic representation of the current design

against those of the stored examples. Here, the library is a collection of the designs

stored previously in the form of symbolic representations, which contains furniture

parts, spatial configurations among them, and a list of constraints that are violated

or satisfied. For example, if a designer is designing a table, the program retrieves

only the designs considered as tables by analyzing the spatial configurations or the

list of violated/satisfied constraints (Figure 3(c)).

We summarize how our program works before presenting an example scenario.

A designer makes a design diagram to develop a piece of furniture. The program

generates a 3D model based on the sketched diagram. Based on this diagram and

3D model, the Furniture Design Critic recognizes his/her design and finds critiquing

opportunities by comparing this design against design constraints. The Pedagogical

Module makes decisions about critiquing methods by considering the User Model

and the history of states. The Critic Presenter then presents feedback using the

selected methods.

6. Example

An example represents a particular selection mechanism that the Pedagogical uses

to select delivery types and communication modalities. The reason we present this

example here is to present a plausible way to describe design critiquing, specifi-

cally, how to select critiquing methods in the consideration of critiquing conditions.

However, we do not claim that this selection mechanism should be followed or is

correct. Rather, through this example, we intend to show that different selection

mechanisms can be developed by changing the Critiquing Rules. It is because that

the Critiquing Rules decides the performance of the Pedagogical Module. Also these

Critiquing Rules are easily modified and added.

6.1. A selection mechanism of the Pedagogical Module

Let us now examine how the Pedagogical Module reasons about the selection of a

particular set of critiquing methods. Figure 5 shows the four-step reasoning process

by which the Pedagogical Module selects a particular set of delivery types and com-

munication modalities. By applying the Critiquing Rules in sequence, the program

selects candidate critiquing methods and then in each step boxes the candidates.

In Step 1, the Pedagogical Module looks at the User Model, which represents the

designer’s knowledge level, strengths and weaknesses, and the methods of critiquing

that have proven effective. These characteristics lead the program to select critiquing

method candidates.

If the User Model can provide information for selecting critiquing methods the

program follows Steps 2, 3, and 4. However, if the User Model does not provide

A Constraint-Based Furniture Design Critic 115

Figure 5. The reasoning process to determine a particular set of delivery types and communication
modalities.

information (for example, if the user has no history with the program), then the

program simply chooses a predetermined sequence of methods. In this case, for

delivery type, the program follows the sequence: interpretation, introduction, exam-

ple, demonstration, and evaluation. For communication modality, it follows the

sequence: written comments, graphical annotation, written comments + graphical

annotation, written comments + images, written comments + graphical annotation

+ images.

We chose these sequences to first offer critiques using facilitative delivery types

(e.g. interpretation, introduction or example), because this feedback can prompt a

designer to think about and improve the design. When the designer is unable to

116 Y. Oh et al.

benefit from facilitative critiques, the program changes to directive feedback (e.g.

demonstration or evaluation).

In Step 2 the program considers what critiquing methods have been used pre-

viously to address the violated constraint. The program removes the methods used

from the candidate set to avoid repeatedly offering the same form of feedback on

the same constraint violation. If all candidates have already been used for the con-

straint, then the program adds a new method to the candidates from among the

methods that have not been used.

In Step 3 the program considers what critiquing methods have been used in all

previous states regardless of the current constraint violation. For example, when a

set of critiquing methods has been used more than twice in the previous states, the

program selects a different critiquing method to avoid giving feedback in the same

way. For example, when the program believes that the most effective critiquing

method for the designer is evaluation; it will keep offering evaluative feedback. It is

reasonable to communicate with the designer using only methods that have worked.

However, this might also hinder the designer’s opportunities to reflect on the design

in different ways. In this step, therefore, the program experimentally attempts to

communicate with the designer in alternative ways by considering the previous

states. In other words, this step performs an experiment to determine whether

these alternative methods can help the designer improve the design, although the

Pedagogical Module has not selected these methods based on the critiquing situation,

such as the data of the User Model. The result of this experiment is stored in the

history of states and then will influence the next selection.

Finally, in Step 4, the program considers the combination between delivery type

and communication modality candidates to determine whether it is appropriate.

For example, if the program has selected demonstration as a delivery type, it checks

whether graphical annotation or image is also selected as a communication modality.

Graphical annotation and image can facilitate the designer’s understanding of the

demonstrated ideas. The program then returns the selected critiquing methods to

the Critic Presenter, which will present the critiques.

6.2. Scenario

The following scenario illustrates how the Furniture Design Critic works, especially,

the reasoning process of the Pedagogical Module. It demonstrates how the program

selects a particular set of delivery types and communication modalities in a given

situation.

A designer (Claire) draws a diagram while developing her furniture (Figure 6).

The program offers three written comments: “A user cannot keep upright posture

while sitting on the chair. The center of gravity can move around”; “You can add

legs to support the unsupported corners. They will improve stability”; “Your chair

is unstable when a load is placed on the unsupported corner(s).” The program also

annotates Claire’s drawing, adding missing parts of the chair (legs) to her diagram.

A Constraint-Based Furniture Design Critic 117

Figure 6. The program presents critiques using the selected critiquing methods: <[intro/reminder,
demonstration, evaluation] and [written comments, graphical annotations]>.

We now examine in detail how Furniture Design Critic selects these delivery

types and communication modalities to present the critique shown in Figure 7 (the

program follows the sequence of steps shown in Figure 2).

First, the program decides what Claire is designing by analyzing the spatial

relationships of the furniture parts. In her design, three vertical parts (the legs)

support a horizontal part (the seat) and another vertical part (the back) is placed

on the horizontal part (seat). Based on these relationships, the program recognizes

that she is designing a chair, so the program selects a set of design constraints

pertaining to chair design.

Next, comparing these spatial relationships against the design constraints, the

program identifies opportunities to critique Claire’s design. Each constraint rep-

resents a design principle defined in terms of spatial relationships. Here it detects

several critiquing opportunities: the seat needs more vertical supports, the legs need

a brace, and the chair could have armrests. Each of these is a relevant constraint

that the design violates. In this example, the program chooses the constraint that

a seat needs more vertical supports for its stability.

Now the Pedagogical Module considers this chosen violated constraint in the

context of Claire’s User Model and all previous states to select an appropriate set

of critiquing methods. It follows the four-step reasoning process in Figure 5, which

presents what the Pedagogical Module considers to determine a particular set of

delivery types and communication modalities. Figure 7 shows how the Pedagogical

Module reasons about the selection of critiquing methods with concrete data in

Claire’s case. Each box in Figure 7 represents a step of the reasoning process.

Figure 7 summarizes what critiquing methods are selected as candidates and why

118 Y. Oh et al.

Figure 7. The reasoning process of the Pedagogical Module in Claire’s case (DT: delivery type, CM:
communication modality). DTs and CMs in strikethrough indicate candidates that the program
has eliminated. DTs and CMs in red indicate candidates the program has added.

A Constraint-Based Furniture Design Critic 119

they are selected with relevant data, such as Claire’s knowledge level and history

of states.

In Step 1, it analyzes Claire’s User Model, knowledge level, weaknesses, and

effective critiquing methods. Her knowledge level is quite low (RViolated = 0.4 and

RViolatedCritical = 0.65), so the program selects three delivery type candidates:

demonstration, evaluation, and [demonstration + evaluation]. The program starts

with written comment as a communication modality candidate, because the pro-

gram always uses written comments as a fundamental modality, which means that a

delivery type – written comment – is always selected. The program looks at the cri-

tiquing method that has been effective with Claire, which is demonstration. It selects

only delivery type candidates that include demonstration, so the current candidates

are <demonstration, [demonstration + evaluation]> and <written comments>.

In Step 2, the program looks at what critiquing methods have been used on the

previous violations of the constraint in question. Delivery types demonstration and

evaluation and communication modalities written comments and images were used.

The program eliminates demonstration from the candidates to avoid offering feed-

back in the same way. However it does not delete written comments, because written

comments is the fundamental modality to communicate with a designer. Instead,

it adds graphical annotations to the set of communication modality candidates.

At this point, the candidates are <[demonstration + evaluation]> and <written

comments + graphical annotations>.

In Step 3 the program analyzes what critiquing methods were previously used

in the stored states. Furniture Design Critic has selected the same delivery types

[demonstration + evaluation] twice. A Critiquing Rule says that the same methods

may not be repeated more than twice, when the critiques offered in previous two

states have both been unsuccessful. Therefore, the program adds another delivery

type, intro/reminder, because the feedback presented using intro/reminder can sup-

plement a demonstrated solution (demonstration) and the problematic part iden-

tified with evaluation. This combination intends to help Claire to understand the

idea that lies behind the demonstrated course of action and evaluation. At this step,

the candidates are <[intro/reminder + demonstration + evaluation]> and <written

comments + graphical annotations>.

Finally in Step 4 the program considers whether the combination among deliv-

ery type and communication modality candidates is appropriate. It checks whether

the selected communication modality candidate includes graphical Annotations or

images, because the selected delivery types include demonstration following a Cri-

tiquing Rule. Graphical annotations or images facilitate Claire’s understanding of

the demonstrated information, because it provides Claire with a concrete idea about

how to resolve the raised issue. The program thinks that the selected method can-

didates make appropriate combination among delivery type and communication

modality candidate, because the candidates include graphical annotations already.

The final selected critiquing methods are [intro/reminder + demonstration +

evaluation] and [written comments + graphical annotations]. Figure 6 shows the

120 Y. Oh et al.

critique presented with these methods. In this case, the Critic Presenter activates

two components: the Text Critic and the Graphic Critic. The Text Critic presents

the stored intro/reminder, demonstration, and evaluation messages from the vio-

lated constraint. The Graphic Critic executes function calls using the relevant fur-

niture parts as parameters to annotate the designer’s diagram.

7. Conclusion

Unfortunately, the field of design lacks a clear understanding of design critiquing,

specifically, how to make a decision about which critiquing methods are appro-

priate in a certain critiquing situation. To advance knowledge in design critiquing

as well as computer-based systems, we have developed a computational model of

design critiquing using the Furniture Design Critic program. As a research tool this

program provides a way to investigate design critiquing, specifically, the selection

mechanisms. The example selection mechanism presented here is a plausible way to

select delivery types and communication modalities.

The program makes an inference about a designer such as knowledge, weak-

nesses, and effective critiquing methods. It also records the history of States

including what critiquing methods have been selected and if the feedback has been

successful. It then selects a particular set of delivery types and critiquing methods

by considering the inference results and the history of States.

Furniture Design Critic applies the constraint-based approach (Mitrovic et al.,

2007; Ohlsson, 1994) to a design domain. The User Model and the Pedagogical

Module of constraint-based tutors are suitable to represent critiquing conditions

and methods, and to articulate and explore the selection mechanisms of critiquing

methods.

Our work contributes to the fields of design, design education, and computer-

based design systems. The computational model presented here can be a foundation

for us to describe a variety of critiquing strategies using the same factors, critiquing

conditions and methods. For example, studio teachers can systemically explain and

articulate their own critiquing strategies. Further, we as critiquing researchers now

can perform empirical studies about appropriate applications of critiquing meth-

ods under specific conditions, because we have a systematic framework to describe

critiquing strategies. In other words, this computational model can help us gen-

erate a set of variables that could be used to describe critiquing strategies and

hypotheses that could be proved and tested. Our program, Furniture Design Critic

also has closed a gap between what existing computer-based systems offer to design

students and what studio teachers do.

We chose flat-pack furniture designing as an example domain. We plan to apply

our model to other design domains such as architecture, product design, or engi-

neering. The system mechanism that selects particular critiquing methods would be

the same, because the system determines critiquing methods by considering domain

independent information such as how many constraints are violated and satisfied

and delivery types and modalities previously used. Also, it is not hard to add and

A Constraint-Based Furniture Design Critic 121

revise Design Constraints that represent domain knowledge and are used to identify

critiquing opportunities and Critiquing Rules that determine the selection mecha-

nism of the program.

References

Aleven, V., Ashley, K., Lynch, C., & Pinkwart, N. (2007). Proc. workshop on AIED appli-
cations for ill-defined domains. The 13th International Conference on Artificial Intel-
ligence in Education, Los Angeles, CA.

Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive tutors:
lessons learned. The Journal of the Learning Sciences, 4(2), 167–207.

Anthony, K. H. (1991). Design juries on trial: The renaissance of the design studio. New
York: Van Nostrand Reinhold.

Bailey, R. O. N. (2004). The digital design coach: Enhancing design conversations in archi-
tecture education. PhD Dissertation, Victoria University of Wellington.

Boyer, E. L., & Mitgang, L. D. (1996). Building community: A new future for architecture
education and practice: The Carnegie Foundation for the Advancement of Teaching.

Chun, H. W., & Ming-Kit Lai, E. (1997). Intelligent critic system for architectural design.
IEEE transactions on knowledge and data engineering, 9(4), 625–639.

CORENET. (2009). CORENET e-Plan Check System. 2010, from http://
www.corenet.gov.sg/corenet/

Fischer, G., Lemke, A. C., Mastaglio, T., & Morch, A. I. (1991). The role of critiquing
in cooperative problem solving. ACM Transactions on Information Systems, 9(2),
123–151.

Fischer, G., McCall, R., & Morch, A. I. (1989). Design environments for constructive and
argumentative design. The Human Factors in Computing Systems (CHI ‘89), Austin,
Texas (p. 269–275).

Fu, M. C., Hayes, C. C., & East, E. W. (1997). SEDAR: expert critiquing system for flat
and low-slope roof design and review. Journal of Computing in Civil Engineering,
11(1), 60–68.

Gertner, A. S., & Webber, B. L. (1998). TraumaTIQ: online decision support for trauma
management. IEEE Intelligent Systems, 13(1), 32–39.

Goldschmidt, G. (2002). One-on-one: A pedagogic base for design instruction in the stu-
dio. The Common Ground Design Research Society International Conference Brunel
University (p. 430–437).

Graesser, A. C., Chipman, P., Haynes, B. C., & Olney, A. (2005). AutoTutor: An intelligent
tutoring system with mixed-initiative dialogue. IEEE Transactions in Education, 48,
612–618.

ICTG (2009). The Intelligent Computer Tutoring Group (ICTG). Retrieved Aug, 20, 2009,
from http://ictg.canterbury.ac.nz/

Koedinger, K. R., & Anderson, J. R. (1997). Intelligent tutoring goes to the big city.
International Journal of Artificial Intelligence in Education, 8, 30–43.

Milik, N., Marshall, M., & Mitrovic, A. (2006). Responding to free-form student questions
in ERM-tutor. Lecture Notes in Computer Science, 4053, 707–709.

Mitrovic, A. (2002). Normit: A web-enabled tutor for database normalization. The Inter-
national Conference on Computers in Education (ICCE) (p. 1276–1280).

Mitrovic, A., Martin, B., & Suraweera, P. (2007). Intelligent tutors for all: The constraint-
based approach. IEEE Intelligent Systems, 22(4), 38–45.

Mitrovic, A., & Weerasinghe, A. (2009). Revisiting ill-definedness and the consequences
for ITSs. The 14th Conference on Artificial Intelligence in Education, Brighton
(p. 375–382).

122 Y. Oh et al.

Mostow, J., Aist, G., Burkhead, P., Corbett, A., Cuneo, A., Eitelman, S., et al. (2003).
Evaluation of an automated reading tutor that listens: Comparison to human tutor-
ing and classroom instruction. Journal of Educational Computing Research, 29(1),
61–117.

Nakakoji, K., Yamamoto, Y., Suzuki, T., Takada, S., & Gross, M. D. (1998). From cri-
tiquing to representational talkback: computer support for revealing features in
design. Knowledge-Based Systems, 11(7–8), 457–468.

Oh, Y., Do, E. Y.-L., & Gross, M. D. (2004). Intelligent critiquing of design sketches. The
AAAI (American Association for Artificial Intelligence) Fall Symposium — Making
Pen-based Interaction Intelligent and Natural (p. 127–133), Washington DC.

Oh, Y., Gross, M. D., & Do, E. Y.-L. (2008). Computer-aided Critiquing Systems: Lessons
Learned and New Research Directions. Paper presented at the Computer Aided Archi-
tectural Design and Research in Asia (CAADRIA) (p. 161–167).

Ohlsson, S. (1994). Constraint-based Student Modeling. In J. E. Greer & G. I. McCalla
(Eds.), Student modelling: The key to individualized knowledge-bases instruction
(pp. 167–189), Berlin: Springer-Verlag.

Ohlsson, S. (1996). Learning from Performance Errors. Psychological Review, 3(2),
241–262.

Pinkwart, N., Aleven, V., Ashley, K., & Lynch, C. (2007). Evaluating legal argument
instruction with graphical representations using LARGO. The 13th International
Conference on Artificial Intelligence in Education (p. 100–108), Amsterdam, The
Netherlands.

Robbins, J. E. (1998). Design critiquing systems (No. UCI-98-41): Department of Infor-
mation and Computer Science, University of California, Irvine.

Robbins, J. E., & Redmiles, D. F. (1998). Software architecture critics in the argo design
environment. Knowledge-Based Systems, 11(1), 47–60.

Schön, D. A. (1983). The Reflective Practitioner: How Professionals Think in Action. Basic
Books Inc.

Schön, D. A. (1985). The Design Studio. London: RIBA.
Simon, H. (1969). The Science of the Artificial. Cambridge: MIT Press.
Solibri.Inc. (2010, 09/13/2007). Solibri Inc. The World Leader in Design Spell Checking.

Retrieved 07/12/2010, 2010, from http://www.solibri.com/
Suraweera, P., & Mitrovic, A. (2002). Kermit: A constraint-based tutor for database mod-

eling. Intelligent Tutoring Systems, 2363, 377–387.
Uluoglu, B. (2000). Design knowledge communicated in studio critiques Design Studies,

21(1), 33–58.
VanLehn, K., Lynch, C., Schulze, K., Shapiro, J. A., Shelby, R., Taylor, L., et al. (2005).

The Andes physics tutoring system: Five years of evaluations. The 12th International
Conference of Artificial Intelligence in Education (p. 678–685).

Wampler, J. (2002). Architecture Studio: Building in Landscapes. Retrieved Jan.
2009, from MIT Open Courseware: http://ocw.mit.edu/OcwWeb/Architecture/4-
125Architecture-Studio–Building-in-LandscapesFall2002/CourseHome/index.htm

Weaver, N., O’Reilly, D., & Caddick, M. (2000). Preparation and support of part-time
teachers: Designing a tutor training programme fit for architects. In D. Nicol &
S. Pilling (Eds.), Changing architectural education: Towards a new professionalism
(pp. 265–273), New York: Taylor & Francis Spon Press.

Zakharov, K., Ohlsson, S., & Mitrovic, A. (2005). A feedback micro-engineering in EER-
tutor. The Artificial Intelligence in Education (AIED) (p. 718–725), Amsterdam,
The Netherlands.

	1 Introduction
	2 Research Scope
	3 Related Work
	3.1 Critiquing systems
	3.2 Intelligent Tutoring Systems and Constraint-based Tutors (CBT)
	3.3 Critiquing methods in Intelligent Tutoring Systems and critiquing systems

	4 Delivery Types and Communication Modalities
	4.1 Delivery types
	4.2 Communication modalities
	4.3 Why selecting a certain critiquing method is important

	5 Furniture Design Critic
	5.1 System architecture
	5.2 Construction interface and parser
	5.3 Design constraints
	5.4 Pattern Matcher
	5.5 User model
	5.6 History of states
	5.7 Pedagogical module
	5.7.1 Selecting which feedback should be offered first
	5.7.2 Making an inference about a designer using the data of User Model
	5.7.3 Selecting a set of delivery types and communication modalities

	5.8 Critiquing Rules
	5.9 Critic presenter

	6 Example
	6.1 A selection mechanism of the Pedagogical Module
	6.2 Scenario

	7 Conclusion

