
Computer ScienceTechnical Reports
Technical Report No. 1997/04A Constraint Based StructureDescription Language for BiosequencesIngvar Eidhammer, David Gilbert, Inge Jonassen andMadu RatnayakeMay 1997

ISSN 1364-4009 City UniversityDept. of Computer ScienceNorthampton SquareLondon EC1V 0HBUnited Kingdom

A Constraint Based Structure Description Language forBiosequencesIngvar EidhammerDepartment of InformaticsUniversity of BergenDepartment of informaticsHIBN-5020 Bergen Norwayingvar@ii.uib.no
David GilbertDepartment of Computer ScienceNorthampton Square,London EC1V 0HB,United Kingdom,email: drg@cs.city.ac.ukInge JonassenDepartment of InformaticsUniversity of BergenDepartment of informaticsHIBN-5020 Bergen Norwayingvar@ii.uib.no
Madu RatnayakeDepartment of Computer ScienceNorthampton Square,London EC1V 0HB,United Kingdom,email: drg@cs.city.ac.ukMay 16, 1997AbstractWe report an investigation into how constraint solving techniques can be used to searchfor patterns in sequences (or strings) of symbols over a �nite alphabet. We de�ne aconstraint-based structure description language for biosequences, and give the de�nition ofan algorithm to solve the structure searching problem as a CSP. The methodology whichwe have developed is able to describe the two-dimensional structure of biosequences, suchas tandem repeats, stem loops, palindromes and pseudo-knots. We also report on animplementation of the language in the constraint logic programming language clp(FD),with test results of a simple searching algorithm, and ideas for an implementation of theCSP structure searching algorithm in C++.Keywords: constraints, biostructures, description language, searching.

1

Contents1 Introduction 32 Biological motivation 52.1 Example structures . 73 Previous approaches 83.1 General purpose search programs . 84 Constraints 104.1 Constraint satisfaction problems . 104.2 Use of constraint satisfaction in molecular biology 124.3 Constraint Logic Programming . 124.3.1 Introduction to Constraint logic programming 124.3.2 Constraint logic programs . 134.3.3 Constraints, valuations and solutions . 154.3.4 CLP and CSP . 155 The structure language 165.1 Informal description . 165.2 Length constraints . 165.3 Distance constraints . 165.4 Content constraints . 165.5 Position constraints . 175.6 Correlation constraints . 175.7 Examples . 185.8 User queries . 185.9 Macro language . 185.10 Syntax | BNF . 195.11 Towards an implementation . 216 Implementation in CLP 212

6.1 String variables and string expressions . 216.2 Constraints . 226.3 Mapping a speci�cation to an input string . 226.4 Testing . 246.5 Obtaining the program . 247 Representing and solving the structure searching problem as a CSP 247.1 Representation of the constraints . 247.1.1 The constraint variables . 257.1.2 The constraints . 257.2 Consistency checking and constraint propagation 267.2.1 Position constraints . 267.2.2 Distance constraints . 267.2.3 Content constraints . 267.2.4 Correlation constraints . 277.3 Reformulating the problem . 287.3.1 Example . 297.4 Searching for solutions . 297.5 The Procedure . 307.5.1 Increase the e�ciency . 307.6 Example . 317.6.1 Distance constraints . 317.6.2 Content constraint . 317.6.3 Correlation constraints . 327.6.4 Using the s c-constraints . 337.6.5 Reformulating the problem . 347.6.6 Searching . 358 Further work 359 Summary and conclusions 353

1 IntroductionThe aim of the work described in this paper is to investigate how constraint solving techniquescan be used to search for structural patterns in sequences (or strings) of symbols over a �nitealphabet �. The main motivation is searching in biological sequences, and also in providinghigh-level descriptions of biosequence database contents, but we believe that programs forsearching for such patterns also might be useful in other areas as well, e.g. signal processingor treating of acoustics data.We de�ne a pattern as consisting of a logical expression on components and a set of unaryand binary constraints on the components where a component is a description of a string ofsymbols. An input string S matches a pattern if for each component it contains a substringmatching that component, such that all the constraints are satis�ed.A pattern can contain constraints > of �ve types. There can be constraints on the(1) length of a substring to match a speci�c component,(2) distance (in the input string) between substrings to match the di�erent components of apattern,(3) contents of a substring to match a component, e.g. the second symbol should be an a ora t.(4) positions on the input string where a particular component can match,(5) correlation between two substrings matching di�erent components, e.g. the substringsshould be identical, or the reverse of each other.We also de�ne three associated classes of patterns� Sequential: patterns which do not include a correlation constraint. The patterns inthe PROSITE data base [BBH95a] are examples of this class, for example [AC]-x(2,3)-Ddescribing a pattern comprising three components, the �rst being an A or a C, the secondof length 2 or 3 and the last being of a D.� Pure structural: patterns including at least one correlation constraint and no contentconstraints. One example is repetition, where the substrings matching two di�erentcomponents must be identical. Another example is a palindrome, two consecutive sub-strings of equal length must be the reverse of each other.� Structural: patterns having at least one correlation constraint and one content constraint.One example is a palindrome, beginning with an a.In terms of formal languages, the expressive power of sequential patterns is within that ofthe regular languages (not including Kleene closure), while structural patterns may describecontext-free languages (e.g., stem-loops), or even languages beyond the expressive power ofcontext-free grammars (e.g, repeats or pseudo-knots). As upper bounds on the length ofbiological sequences can be assumed, this is not strictly true (as all �nite languages are regular),but we also require that the language description should be in some sense `compact'.We investigate structural patterns, but we have put restrictions on the allowed constraints:4

� The length, position and distance constraints must be speci�ed by intervals, and werepresent these using �nite domains over integers.� The content constraints use sets, where a set speci�es which symbols can be in a con-strained position since � is �nite but unordered.� The correlations (relations) are binary, and are between components for which the match-ing substrings must be of equal length since these relations are recursively applied tocharacter pairs, one member of each pair from each substring.We de�ne a language to specify structural patterns. Although several such languages arealready de�ned (see Section 3.1), in contrast to our language most of them do not permitthe description of general structural patterns. However, the essential novelty in our work isthe method used for searching for matching substrings in the input string. We de�ne thepatterns in a declarative way and show a naive method for solving it using Constraint LogicProgramming. We then describe a possible implementation using techniques from solvingConstraint Satisfaction Problems, which will be more e�cient.2 Biological motivationBiological macromolecules, DNA's, RNA's, and proteins, are chains of relatively small organicmolecules. The di�erent types of these organic molecules are few { there are 4 di�erent basesfor DNA's and RNA's and 20 di�erent amino-acids for proteins. A macromolecule can becoded as a string over an alphabet of size 4 (for DNA/RNA), or 20 (for proteins) starting fromone end of the chain and moving towards the other. The strings for DNA/RNA molecules arecalled nucleotide sequences, and each element in such a sequence is called a base. The stringsfor protein molecules are called protein sequences, and each element in such a sequence is anamino-acid (residue). Collectively nucleotide and protein sequences, are called bio-sequences,or just sequences. Sometimes we will also refer to them simply as strings.Watson and Crick discovered in 1953 that DNA forms a double helix where a base in one strandis bonded to a complementary base in the other strand (chain), and the so-called Watson-Crickbase pairs are a-t and g-c. The bases in RNA molecules can form bonds a-u and g-c in a similarway. RNA and protein molecules fold into 3 dimensional structures enabling them to performtheir structural/functional role in the cell. The structures can be described at di�erent levels.For RNA molecules, the secondary structure is the collection of base pairs which are formed inthe folded molecule, and the tertiary structure is the complete 3 dimensional structure of thefolded molecule. For proteins, the secondary structure is a description of which parts of theamino acid chain folds into alpha-helices and beta-sheets, which are stable local conformationsmost often found in the core of the protein, and the tertiary structure is de�ned as for RNAmolecules.An important problem in molecular biology is the prediction of the biological properties of amacromolecule from its sequence, in particular the prediction of the structure and function ofan RNA molecule or a protein from its sequence. Proteins may be grouped into families wherethe members of a family have similar structures. If the structure of one family member isknown, this helps in �nding the structure of the other proteins in the family. Features that arecommon to the sequences of the proteins in a family can be expressed in a pattern, and a newsequence can be hypothesised to belong to the family if it �ts the pattern. Most languages used5

x xx xy xx xx xx xC Hx \ / xx Zn xx / \ xC Hx x x x x x x x x xFigure 1: Schematic �gure of the zinc �nger c2h2 motif (accession number PS00028 in PROSITE).For this motif the sequential pattern C-x(2,4)-C-x(3)-[LIVMFYWC]-x(8)-H-x(3,5)-H has been de�ned.(In the �gure, x represents a position with any amino acid, and y a position with a more limited set ofalternatives. c g x xa-u u-a o-o o-og-c a-u o-o o-ou-a g-c o-o o-oc-g c-g o-o c-oaugc ggcau aggc ccgu xx xx xx xx(i) (ii) (iii) (iv)Figure 2: Illustration of structures and structural patterns: (i) and (ii) show two examples ofstructures (stem loops) that might be equivalent in RNA molecules. Watson-Crick base pairing isbetween a and u, and between g and c. Other base pairings are also possible. Figure (iii) shows apossible representation of a pure structural pattern matching the structures (i) and (ii). The patterncan also be called a consensus for the structures in (i) and (ii). The o and x symbols each matchany one nucleotide symbol, and pairs of o symbols which are connected with a dash (-) should matchpairs of symbols that can base pair. The x symbols are wildcards - one x matches any one symbol.Figure (iv) shows a structural pattern equivalent to the pattern shown in (iii) except that the �rstnucleotide in the �rst part of the stem has to be a c { a restriction on the content of the substrings tomatch the pattern.to de�ne patterns for protein sequences permit only the de�nition of (what we have called)sequential patterns. Sequential patterns give su�cient expressive power to describe sequencefeatures that are characteristic for many protein families. This is illustrated by the PROSITEprotein family database which gives descriptive patterns for most of its families [BBH95a]. SeeFigure 1 for an example of a pattern from the PROSITE database.For describing patterns in RNA sequences, one needs to include dependencies between indi-vidual letters because the base-pairing interactions (most importantly a-u, g-c and g-u) playa dominant role in determining RNA structure and function [SBH+94]. Figures 2 (i) and (ii)shows two stem-loops (de�ned later) that might be structurally and functionally equivalentin RNA molecules. It does not matter which bases (symbols) are present in the sequence inorder for a stem-loop to be formed, as long as the sequence contains two substrings of someminimum and identical lengths and which are reverse complement of each-other. We will callsuch patterns of dependencies structures in the sequences, and note that such patterns can be6

described using structural patterns as de�ned in the Introduction. We can also describe otherstructures found in RNA and DNA molecules such as clover-leafs and pseudo-knots. Findinga match to a structural pattern in an RNA sequence does not imply that the correspondingmolecule in its native folded state will have the base pairing described by the pattern. It isbelieved that the native structure will be one with minimum free energy, and another set ofbase pairings than the one described by the pattern, might give a lower free energy.A traditional approach to predicting the secondary structure of an RNA molecule is to �nd aset of base pairings that minimises the free energy. For example a popular program developedby Zuker uses dynamic programming algorithm which �nds optimal as well as close to optimalsecondary structures [Zuk89]. The algorithm has time complexity O(l3), where l is the sequencelength, and relies on some simpli�cations, for example, that no pseudo-knots are present.Structural patterns should not be used alone to predict the secondary structure of RNA,but can be used in conjunction with structure prediction methods to provide hypothesises ofpossible folds. This can be done e�ciently because matching a string against a structuralpattern is computationally cheap compared to structure prediction. Another advantage ofusing structural patterns, is that they can be used to describe complex structures which arenot allowed when using dynamic programming based structure prediction. We postulate thatalgorithms can be developed for �nding conserved structural patterns in a set of RNA sequencesanalogous to algorithms for �nding conserved sequential patterns in sets of protein sequences[BJEG95], and will investigate this in further work. In this way structural patterns allow fordescription of potentially interesting conserved structures in sets of related biosequences.Structures are also found in DNA sequences that can be described using structural patternsbut not using sequential patterns. This includes structures such as repeats and palindromes.Repeats are abundant in genomic DNA, both in coding and in non-coding areas, and forinstance recognition sites for restriction enzymes are often palindromes.2.1 Example structuresIn the structure description below �; � (with or without indices) are pattern components andx is a wildcard (matching any one letter in an input string), �r is the reverse of �, and �c isthe complement of �. �rc is the reverse complement of �. We have identi�ed the followingstructures in the literature, see for example [Sea95, BCO+95]. For each type we give oneexample. All examples are from DNA/RNA sequences, except for the last which is from aprotein sequence.� Tandem repeat �� acgacg� Simple repeat ��� acgaaacg� Multiple repeat ����1� acgaaacguuacg� Stem loop ���rc acgaacgu� Attenuator ���rc�1� acgaacguauacg� Palindrome, even ��r acggca� Palindrome, odd �x�r acgagca� Pseudoknot �1��2�1�rc1 �2�rc2 acgaaucugccguauaaga� Sense - antisense ���c IVLSPANHKMore complicated structures can be obtained by combining the ones above, e.g., e.g. clover-leafs. 7

3 Previous approachesSeveral programs have been developed for searching sequences for the presence of patterns.[DH95] gives an elaborate procedure for how to perform search for patterns (or motifs) in RNAsequences, using such programs.The programs can be divided into two types, special and general purpose programs. Thespecial programs are designed to search for speci�c patterns, e.g. candidates for trans-splicingsites [DS90]. Several of them use the minimal free energy principle, and stability measures.We concentrate here on general purpose programs.3.1 General purpose search programsThe principle for most of the general purpose programs is that they include a language in whichthe user speci�es the sequential and structural components of the pattern she/he is going tosearch for. No explicit energy or stability aspects are taken into consideration, but some ofthem use structure predictions and biochemical properties. Some allow for mismatches andinsertion of gaps, and have di�erent ways for penalising mismatches and gaps.Some (of the best known) programs or languages are:QUEST [AEM+84] can only search for sequential patterns.Staden's program [Sta90] is the �rst system that we are aware of in which one could searchfor structural patterns, though in a restricted way. He de�nes a pattern as comprising motifs.A pattern is built up and searched for by interactively specifying new motifs, by giving theclass to which a motif belongs. Nine classes are de�ned, of which two include structures,inverted repeat or stem-loop and (direct) repeat. Logical operators AND, OR and NOT canbe used to specify whether each motif must be present, is an alternative to another, or mustbe absent.Constraints can be speci�ed on the length of a motif, the distance between two motifs and thecontents of a motif. For the structure classes, constraints can be given on a individual part ofthe structure, e.g. on the loop of a stem-loop. Percentage match and scoring matrices can beused in the searching.In Staden's system there is no possibility to de�ne general correlations or relations betweenparts. The only relations are those which are included in the prede�ned classes.SCRUTINEER [SA90] is an interactive program designed to search for patterns in proteinsequence databases. It includes the use of structure prediction and biochemical properties. Theuser can give constraints on the length, contents and distances between parts of a pattern, andwhere on a database sequence a speci�c part must match. A very limited form of dependenciesconstraints can be given, e.g. if position 4 is a small hydrophobic, then position 2 must be aG.OVERSEER [SSA92] is a program for searching in nucleic acids sequences. It is much likethe system of Staden, in that the pattern (or target) is de�ned interactively using speci�c sub-targets (nine types, all sought by di�erent algorithms). Only the logical operator AND can beused between sub-targets. Two structural sub-targets are de�ned, repeats and palindromes.8

Constraints can be given on the lengths, contents and distances between sub-targets, andwhere on the sequences the search should be done.Correlation constraints can be given between two positions (by using boolean matrices), andbetween two substrings of equal length. The search can allow for mismatches.ANREP [MM93] can only search for sequential patterns.PROSITE [BBH95b] accepts patterns described in a declarative notation, but only sequentialpatterns can be given. The expressive power of its speci�cation language lies within the classof regular languages.PALM [HS93] is a powerful language in which general dependencies between parts (sub-strings) can be speci�ed, and hence complicated structural patterns can be de�ned. Patternsare described in a declarative way, and PALM extends the notation used in the PROSITEmotif database. PALM is capable of describing any context free language, and any languagegenerated by a string variable grammar. Approximate matching can be speci�ed. By allowinggeneral procedures to be attached to and called from within a pattern, PALM can also recog-nise patterns describing any language in the Chomsky hierarchy. However, PALM has onlybeen implemented as a prototype in Prolog.GENLANG [SD93] is the most general (implemented) system (to our knowledge) for search-ing for structural patterns in nucleotide sequences. It is based on formal language theory, anduses an indexed language which has an expressive power between context-free and context-sensitive languages. GENLANG is implemented in Prolog, with hooks to C-code for thee�cient caching of data that will be required during parsing. String variables are used to de-�ne structures. By letting � be an operator denoting reverse complementarity, a pseudo-knotis for example speci�ed by X; � � � ; Y;� X; � � � ;� Y . Constraints on the length and contents ofthe string variables can be speci�ed.cBLISS [Rat96] is an implementation in the constraint logic programming language Eclipse ofthe language of Br�azma and Gilbert [BG95] for describing constrained patterns in biosequences.This language is a formalisation and development of Staden's pattern language [Sta90]. Br�azmaand Gilbert follow the notations used by Staden, and consider a pattern to comprise motifsas the basic elements. A motif may be a simple string, � 2 �� for some alphabet � or a morecomplex expression in some grammar. Motifs can be combined in a logical manner using AND,OR and NOT, and constraints can be given on the length, contents and distances betweentwo motifs. As with Staden's language, there is no possibility to de�ne dependencies betweenmotifs, hence the structural possibilities lies within each motif.Although not designed for the description of structures, the language can easily be extendedfor this purpose, since it is easy to add dependency constraints to the language.4 ConstraintsConstraint programming is a general term to describe problem solving techniques which com-putes solutions to problems by reducing the initial domains of the variables in the problemaccording to constraints expressed over those variables.In general constraint solving techniques can be over in�nite domains or over �nite domains.9

There are well-known techniques for the former, for example simplex solving over reals. Solvingover �nite domains is often achieved by techniques for solving Constraint Satisfaction Problems(CSP { see below). A general paradigm for describing and solving constraint problems is thatof Constraint Logic Programming (CLP), a development of Logic Programming extended todomains other than just that of Herbrand terms. CLP systems can describe and solve problemsboth over in�nite and �nite domains and hence can utilise solvers based on techniques such asthe simplex algorithm as well as those from the CSP world. Additionally some hybrid CSP-CLP systems exist such as CHIP which permit the user to explicitly use constraint satisfactionprogramming within a constraint logic programming environment. We will �rst describe CSPand then CLP.4.1 Constraint satisfaction problemsA CSP (Constraint Satisfaction Problem) can be de�ned [Hen89] formally as: Let X be a setof variables x1; x2; :::; xn which take their values from �nite domains D1;D2; :::;Dn: Further letC be a set of constraints, where a constraint ci1;:::;ih(xi1 ; xi2 ; :::; xih) between h variables fromX is a subset of the Cartesian product Di1 � Di2 ::: � Dih , which speci�es the values of thevariables that are compatible with each other. A constraint among h variables is called a h-constraint. The constraints are usually de�ned implicitly by equations, inequalities, programsetc. A solution to a CSP is an assignment of values to all variables, which satis�es all theconstraints. Depending on the task, one or all solutions should be found. The general CSP isNP-hard [Nud83].If the constraints are restricted to 1- and 2-constraints, the CSP is called binary, and binaryCSP's are the most explored ones. A binary CSP is easily drawn as a graph, with the variablesas the nodes, and edges drawn between variables which are mutually constrained. The edgesrepresent the 2-constraints. A general CSP can be drawn as a hypergraph.A CSP is usually solved by search with backtracking. Values are assigned to variables xi1 ; xi2 ; :::as long as consistent values can be found. If the situation occurs that there exists a variablewith no consistent value in its domain (consistent with the assignments done), backtracking hasto be done. That means undoing some of the assignments, and trying alternative assignments.Conditions for a CSP to be solvable by a bactrack-free search have been developed [Fre82,DP88].To reduce the backtracking, some consistency checking can be done before searching [Mes89].The aim of this checking is to discover (and remove from being considered in the search)possible value assignments to one or several variables, which cannot be in any solution. Thiswill reduce the search space, hence there is a trade o� between consistency checking time, andsearch space reduction.To formalise the consistency checking, k-consistency is introduced. A set of n variables is k-consistent if each subset of k�1 variables with any values satisfying all the constraints amongthese k � 1 variables, can be extended to include any of the other n� (k � 1) variables. Thecondition for inclusion is that the k0th variable can be assigned a value such that all constraintsamong these k variables are satis�ed. The aim of the consistency checking is to get the set ofvariables k-consistent.Many algorithms have been developed for achieving k-consistency. However, experiments haveshown that achieving k-consistency for k > 3 is not cost e�ective in general [McG79, Nad88].10

1-consistency is called node-consistency. Node-consistency is achieved by testing the values inthe domains against the 1-constraints. 2-consistency is called arc-consistency, and is achievedby testing pair of values (from two di�erent domains) against the corresponding 2-constraints.To achieve node- and arc-consistency values normally have to be removed from the domains.The best general algorithms for achieving arc-consistency have time-complexity O(d2e) [BC93],where d is the size of each domain (all assumed equal), and e is the number of pair of variableswhich are mutually constrained.3-consistency is equivalent to path-consistency [Mon74], where path-consistency is de�ned as:for any variable pair (xi; xj) each pair of values consistent with ci;j(xi; xj) must also be consis-tent with any other sequence of constraints ci;i1(xi; xi1); ci1;i2(xi1 ; xi2) : : : ; cil;j(xil ; xj). Whenperforming path-consistency checking (global) inconsistent pairs of assignments may be found,and can be added to the constraints. This might imply that the set of variables is no longerarc-consistent. For example, let a be a member of D1 and the only consistent value with thatin D2 be b. If, for achieving 2-consistency the possible assignments (x1 = a; x2 = b) must beremoved, then a in D1 is no longer consistent with any value in D2, and must be removed toachieve 1-consistency. An algorithm for performing path-consistency checking is in [HL88]. In[Coo89] is an algorithm for achieving general k-consistency.If the set of variables is k0-consistent for all k0 � k, then it is strong k-consistent. For a CSPwhich is strong n-consistent all solutions are found without backtracking.Performing consistency checking can also be done during the search, thus giving rise to di�erentsearching methods. In order to analyse that we consider a state in the search space whereconsistent values vi1 ; vi2 ; :::; vir are assigned to the variables xi1 ; xi2 ; :::; xir . Let this set ofvariables be denoted by U , and let W = X�U be the set of the n� r other variables to whichno values have yet been assigned. Di�erent algorithms arise from:� How much consistency checking is done for the variables after each assignment, e.g.arc-consistency between every pair of variables (w; u); w 2 W;u 2 U , (called ForwardChecking) or in addition arc-consistency between each pair of variables in W (calledLooking Ahead). Some exploration are in [DM94, SF94].� How much intelligence is used in the backtracking to decide where to backtrack. A num-ber of di�erent techniques have been proposed e.g. Backjumping [Gas77], Graph basedbackjumping [Dec90], Conict-directed backjumping [Pro93], Backmarking [Gas77]. Eval-uation of backtracking algorithms are in [Nad88, Gre94, Pro99, BR96].� How the order in which values are assigned to the variables is decided, and how it isdecided which of the possible values is to be assigned to each variable. This might havea great e�ect on the e�ciency, and is explored in [DP88, DM89, FG89, BvR95, FD95,BR96].A good book on CSP is [Tsa93].4.2 Use of constraint satisfaction in molecular biologyConstraint based solving was used early in map construction [Ste78]. Several types of con-straints were used to prune the search space during the search. In [LB92] a method for11

genetic map construction is described. A number of constraints are de�ned, and constraintpropagation are used to determine inconsistencies. Clark et. al. [CRD94] have used ElipSysto develop a program for generating a physical genetic map from hybridisation �ngerprintingdata. ElipSys is a parallel CLP language which includes constraint handling on �nite domains.In the program MC-SYM [MTG+91, FM95] the RNA (tertiary) structure prediction problemis formulated as a CSP. The set of variables is the set of nucleotides corresponding to anRNA sequence, and a domain is the set of Cartesian products of various permitted nucleotideconformations and 3-D transformational matrices. Gaspin and Westhof [GW94] have done thesame for secondary structure prediction. To each base in the sequence there is associated avariable. The domain of a variable is the set of positions of other bases with which it can pair.The constraints comes from known restrictions on valid secondary structures, and are unaryor binary.CBS2E [CRS+93] is a program that predicts protein �=�-sheet and �-sheet topologies. Thevariables represents di�erent attributes associated with �-sheet, �-strands, �-helices etc. Thedomains are values associated with those variables, and the constraints are known proteinfolding constraints. The program is written in ElipSys. An earlier version of this program[CSR92], is combined with explicitly representing the uncertainty of the rules in [Par95].AUTOASSIGN [ZKM93] is a program which uses CSP to help in the determination of proteinstructure from NMR. The same is done by PROTEAN [AWN94] and TAM [LGF95]. The lastis implemented in CHIP (Constraint Handling In Prolog), [Hen89].We refer the interested reader to [CR94] which contains an introduction to constraint satisfac-tion in molecular biology and a more detailed explaination of some of the programs mentionedabove.4.3 Constraint Logic Programming4.3.1 Introduction to Constraint logic programmingWe base the following description on [JMSY92, Pou95]; a general text is [Hen89]. Con-straint logic programming (CLP) is a based on constraint solving and the logic programmingparadigm. In fact the CLP scheme describes a class of programming languages, of which Pro-log is one member; in this sense, the CLP scheme is a generalisation of logic programming. Ina CLP system the simple uni�cation algorithm that lies at the heart of a logic programmingsystem, for example Prolog, must be augmented by a dedicated solver for the particular do-main of application, which can decide at any moment whether the remaining constraints aresolvable. For e�ciency's sake, solvers for CLP systems must be incremental, so that addinga new constraint to an already solved set does not force them all to be re-solved. Constraintsolving algorithms are quite well understood from other branches of computing, for exampleConstraint Satisfaction Problems (CSP), described above in Section 4.1.Some CLP languages which are widely available are:� CLP(R), CLP over the reals, originated by J.Ja�ar and J.L.Lassez, Monash Universityin Melbourne, Australia 1987. The present implementation is by IBM. [JMSY92]� CHIP (Constraint Handling in Prolog), from ECRC Munich. Constraint solvers are over12

�nite arithmetic, linear rational and boolean domains [AB91].� ECLiPSe, the ECRC Constraint Logic Parallel System, providing several libraries ofconstraint solvers: arithmetic constraints over �nite atomic domains (CHIP compatible),�nite set constraints, linear rational constraints, Propia (generalised propagation) andConstraint Handling Rules (CHR) [ECR95].� clp(FD) from INRIA, France. This is a constraint logic programming language over�nite domains, based on the wamcc Prolog compiler which translates Prolog to C viathe WAM [CN95]� SICStus Prolog, SICS, Sweden. Incorporates constraint solvers for reals, rationals, �nitedomains and booleans and a general constraint solver interface based on attributedvariables [ea97].4.3.2 Constraint logic programsIn constraint logic programs the basic components of the problem are constraints over ann-sorted algebra A, which are composed together in order to describe the problem underconsideration. An example of such an algebra is the two-sorted algebra which is the naturalcombination of real arithmetic terms and uninterpreted terms from the Herbrand universe.We extend logic programs with dedicated predicate symbols, functors and constants oversome speci�ed domains. These domains may be �nite or in�nite, ordered or unordered, andpossibly associated with a set of operations. The remaining functors of the program areinterpreted as constructors of structures, possibly including elements of the domains, and theremaining predicate symbols of the program are interpreted as relations over the domains ofsuch structures.Thus in our example two-sorted algebra example the constraints may be either over the naturalnumbers or over Herbrand terms. It is common practice, but not necessary, to distinguish tex-tually between constraint symbols over di�erent domains; thus we may have the usual equalityand inequality constraints over natural numbers (=; <;>;�;�) together with arithmetic oper-ations on natural numbers (represented by the interpreted functors +��) and also uni�cationover Herbrand terms (=H). (Pure) Prolog is thus a constraint logic programming languageover Herbrand terms; the CLP(R) language has as its domain of discourse Herbrand terms andReal numbers. clp(FD) permits users to compute over integers and boolean domains and overHerbrand terms; Eclipse permits constraint computations over Herbrand terms, Real numbersand a variety of �nite domains.A goal in a CLP language is de�ned as being C1; : : : ; Cm; A1; : : : ; Anand a program clause to beB0 C 01; : : : ; C 0i; B1; : : : ; BjwhereC1; : : : ; Cm and C 01; : : : ; C 0i are constraints and A1; : : : ; An and Bi : : : ; Bj are atoms with ordi-nary predicate symbols, which may contain interpreted subterms.13

A derivation step is de�ned as:Pick ordinary subgoal, e.g. A1 of the form p(t1; : : : ; tk), and �nd a program clausep(s1; : : : ; sk) C 01; : : : ; C 0i; B1; : : : ; Bjwhere C 01; : : : ; C 0i are constraints; the derived goal is C1; : : : ; Cm; t1 = s1; : : : ; tk = sk; B1; : : : ; Bj ; A2; : : : ; Anif the constraints and the equalities are solvable.Thus for example given the program in a CLP language whose domain A is over the naturalnumbers and Herbrand termsp(X,Y) :- X > Y, q(Y)q(Y) :- Y = 3and the goal?- A < 20, p(A,B)we can derive by one derivation step the goal?- A<20, A=X, B=Y, X>Y, q(Y)providing that the constraint A<20, A=X, B=Y, X>Y is solvable in A. A derivation sequencecomprises goals generated by one or more derivation steps; a derivation sequence is successfulwhen the last goal comprises only solvable constraints which are the answer constraints con-stituting the output of the program. In our example above, the answer constraints are A<20,A>B, B=3.Finitely failed sequences are those whose last goal cannot be expanded due to either an absenceof a suitable rule de�ning one or more predicate symbols in the goal, or the fact that theconstraints in the goal are not solvable.4.3.3 Constraints, valuations and solutionsConstraints are interpreted with respect to some domain such as the real numbers, booleans,or strings, etc. An atomic constraint represents an element of the domain, whilst a (complex)constraint is a �nite set of atomic constraints, intuitively considered as a conjunction. Thesubset of the domain it denotes may be� expressed in a shorthand such as the �nite representation X>5 of an in�nite subset ofthe reals, or� explicitly enumerated , as in Finite Domain problems and CSPs, for example{ X::1..4 (where 1 and 4 are the minimum and maximum elements of the totallyordered set f1,2,3,4g) or{ Y::[a,c,t,g] (where the set fa,c,t,gg is unordered).14

It is required that the language of constraints includes equality, representing a singleton drawnfrom the domain. TRUE and FALSE are distinguished constraints, the former correspondingto the empty constraint.A valuation is an assignment of one value from a domain to each variable in a constraintproblem, and is said to satisfy a constraint if the constraint is true in that valuation. Asolution to a problem is a valuation which satis�es all the constraints in the problem. Wesometimes abuse this concept and consider a solution to be a set of complex constraintsassociated with all the variables in the problem such that all the complex constraints are true.4.3.4 CLP and CSPOne way of constructing a constraint logic language is to extend an existing logic language withtechniques from solving CSP (for �nite domains). This is the case for CHIP and ECLiPSe,which extend Prolog [Hen89, FHK+92]. Solving constraint problems might be looked upon assearching for a valuation which is a solution. The searching is done by pruning the search space.As Prolog uses standard backtracking, only a posterio pruning is done (after the discovery ofa failure). Extending the language with k-consistency checking implies a priori pruning of thesearch space, thus reducing the search space before failure.K-consistency (and/or other CSP methods) involve more work at each node of the search treethan for Prolog or other logic programming languages which only compute over Herbrandterms. However the size of the tree to be searched is reduced, and hence there is a trade-o�between amount of work at each node, and number of nodes visited.Let P be a program over �nite domains d1; : : : ; dr, and A1; :::; Ak; :::; Am a goal. Further, letx1; :::; xr be the arguments of Ak which are domain variables (i.e. taking values from one of the�nite domains), the other arguments being ground. For each i de�ne a set ei � di with y 2 eiif it is found, by k-consistency checking, such that no solutions include the assignment xi = y.De�ne fi = di�ei, and a new domain variable zi with domain fi. Then the new (derived) goalbecomes (A1; :::; Ak; :::; Am)fx1=z1; :::; xr=zrg, where fx1=z1; :::; xr=zrg is a substitution. Ifall zi become ground, then the new goal is (A1; :::; Ak�1; Ak+1; :::; Am)fx1=z1; :::; xr=zrg.5 The structure language5.1 Informal descriptionWe base our structure language on a modi�ed version of Brazma and Gilberts' pattern language[BG95] but keep separate the information about the logical composition of the componentsfrom the set of constraints over these components. Since substrings of the input string haveto match the components, we refer to the components as string variables, and denote themby the Greek letters �; �; ; : : : (possibly subscripted). A pattern is de�ned by a structurespeci�cation, which is a string expression followed by a set of constraints. The string expressionspeci�es the string variables taking part in the pattern, and a logical expression on them usingconjunction, disjunction and negation.A set of constraints can contain constraints over the �ve types: length, distance, content, po-sition and correlation constraints, which are described below. In addition, we permit equality15

and inequality operations over the integer components of the constraints, with the arithmeticoperations over integers. We further allow the user to describe complex structures by conjoin-ing structure descriptions.5.2 Length constraintsA length constraint restricts the length of a string variable to be within a particular range, andhas the form length(�, L) where � is a string variable and L ranges over the positive integerssuch that the length of � is constrained to be within the range of L. We permit the length ofa string variable to be 0 in order to be able to describe null-strings.Furthermore, we introduce two variants, maxlength(�, L) and minlength(�, L) such that thelength of � is the maximum, respectively minimum value possible within the range denotedby L according to some mapping to a given input string. Redundant matches are avoided inthe case of e.g. stemloops where substrings of the stem are not required.5.3 Distance constraintsA distance constraint restricts the distance between two string variables, and are speci�ed ina declarative and uniform way, e.g. start start(�; �;D), end start(�; �;D), start end(�; �;D),end end(�; �;D) where � and � are string variables and D ranges over the integers. Theserelations constrain the distance between the start of � and start of � (respectively end of � andstart of �, start of � and end of � end of � and end of �) to lie within the range denoted by D.A negative value for D indicates that the point of reference of � occurs after the correspondingpoint of reference of � in the input string. We also permit the shorthand �:� to indicate that� starts directly after �. This shorthand is equivalent to � ^ �, end start(�, �, 1) .5.4 Content constraintsA content constraint restricts which symbols can be in a speci�c position on a string variablematching a component and is expressed thus: content(�,Pos,Set) where � is a string variable,Pos is a positive or negative (non-zero) integer representing �Pos, the character from � atposition Pos from the start (or end if Pos is negative) of �, and Set is a (non-empty) set ofcharacters to which �Pos may be bound, e.g. fa,tg.5.5 Position constraintsA position constraint restricts the absolute positions of a string variable on the input stringand is expressed as start(�,P) or end(�,P) where � is a string variable and P ranges over thepositive integers such that the �rst (respectively last) character of � is located at position Pon the input string.
16

5.6 Correlation constraintsA correlation constraint (\correlation" for short) de�nes the relation between the contentsof two string variables. A correlation C has the following properties:� It relates two string variables C(�; �), the string variable � being called the source, and� the target.� The length of the two string variables must be equal (due to equal numbers of symbolsin the matching substrings), implying that there is an implicit length constraint betweenthe two strings.� There is a direction-component Cd, written as the relation Cd(�; �). The two legal valuesfor Cd are 1 and -1. 1(�; �) is satis�ed i� (8i : 1 � i � h : �i is related to �i). �1(�; �)is satis�ed i� (8i : 1 � i � h : �i is related to �h�i+1), where �i and �i are symbols from� and �, and h is the length of the matching substrings. Note that this means that allpositions of the string variables take part in the correlation.� There is a symbol-component Cs. As part of this component a function Cf is de�nedfrom � to 2�. Cs(�; �) is satis�ed i� (8i : 1 � i � h : �i 2 Cf (�i))� Let L be the language of all strings with symbols from �. The correlation C(�; �) issatis�ed i� 9x : x 2 L : Cd(�; x) ^ Cs(x; �).Furthermore, we de�ne a notion of approximate matching, given as an argument to the appro-priate correlation constraints. This argument ranges over the interval 0..100 and representsthe percentage mismatch between two string variables; when the mismatch is zero then we canomit this argument. We can use Hamming distance [Ham82], edit distance or more generallyLevenshtein distance [Lev65] in order to implement approximate matching1.We de�ne id(�,�) and reverse(�,�) as general correlation constraints over all alphabets, where� is the identity (respectively, reverse) of �, and assume that there is a library of correlations,and that a user may� add a new correlation to the library by the command de�ne corr, for example de-�ne corr('rev compl RNA',-1, fa!fug, c!fgg, g!fc,ug, u!fa,ggg)� use a known correlation where a correlation between two string variables is simplyspeci�ed by the name of the correlation, and the two variables as arguments, e.g.rev compl RNA(�, �, M) where M is the percentage approximate match.� use (without storing in the library) an unnamed correlation in a speci�cation correl(�,�,-1, fa!ftg, c!fgg, g!fcg, t!fagg, M), where M is the percentage approximatematch.The de�nitions of reverse, complement and reverse complement with approximate matching are8�8�8M (reverse(�, �, M) $ 9 (reverse(�,) ^approximate match(, �, M)))8�8�8M (complement(�, �, M) $ 9 (complement(�,) ^approximate match(, �, M)))8�8�8M (rev compl(�, �, M)$99� (reverse(�,) ^complement(, �) ^approximate match(�,�, M)))1Minimum transformation costs calculated for: Hamming distance: substitution only, edit distance: insertionand deletion only, Levenshtein distance: substitution, deletion and insertion.17

5.7 ExamplesA description of the stem loop with exact matching in Figure 2(iv) is�::�, maxlength(�, 4), length(, 1), content(�, 1, fcg), rev compl RNA(�, �)assuming a library de�nition of rev compl RNA as above, and where � and � form the stem,with the loop. A longer version without using the shorthand �::� would be� ^� ^, maxlength(�, 4), length(, 1), end start(�, , 1), end start(, �, 1), content(�, 1,fcg), rev compl RNA(�, �, 0)5.8 User queriesFinally, queries can be formulated where an input string is appended to a structure descriptionand some mapping algorithm used to map the description to the string. Thus the user mayenter the following query:�::�; maxlength(�, 4), length(, 1), content(�, 1, fcg), rev compl DNA(�, �), tatacctgtcaggtatawhich will result in � being mapped to the substring cctg starting at position 5 and endingat 8, � to cagg starting at 10 and ending at 13, and to t at position 9. Queries may beoptionally prefaced by a description of the alphabet of characters which are permitted in theinput string.5.9 Macro languageWe further de�ne a macro language permitting the user to store and re-use de�nitions of, i.e.grammars for, speci�c structures. The syntax of this language is similar to that of logic pro-grams; for example the following grammars de�ne languages for stem loops and pseudoknots:stemloop(�,,�):- �::�, rev compl RNA(�,�)pseudoknot(�,�,,�):- �:!1:�:!2::!3:� , rev compl RNA(�,), rev compl RNA(�,�)5.10 Syntax | BNFNote: we indicate terminals by enclosing them in single quotes. Optional items are indicatedin square brackets.

18

query ::= [alphabet] specs `,' inputstringspecs ::= spec | spec `;' specsalphabet ::= `sigma('CharSet`)'spec ::= strexp `,' constraintsconstraints ::= constraint j constraint `,' constraintsconstraint ::= length c j dist c j content c j pos c j corr c jarith clength c ::= `length('stringvar `,' IntVar ')' j`maxlength('stringvar `,' IntVar ')' j`minlength('stringvar `,' IntVar ')'dist c ::= `start start('stringvar `,' stringvar `,' IntVar�')' j`end start('stringvar `,' stringvar `,' IntVar�')' j`start end('stringvar `,' stringvar `,' IntVar�')' j`end end('stringvar `,' stringvar `,' IntVar� ')'content c ::= `content(' stringvar `,' Int� `,' CharSet `)'pos c ::= `start(' stringvar `,' IntVar `)' j `end('stringvar `,' IntVar `)'corr c ::= `define corr('CorrName `,' Direction `,'CharMapping `)' jCorrName`(' stringvar `,' stringvar [`,' IntVar]`)' j`correl(' stringvar `,' stringvar `,' CharMapping[`,' IntVar] `)' jgen corrgen corr ::= `id('stringvar `,' stringvar [`,' IntVar] `)' j`reverse('stringvar `,' stringvar [`,' IntVar] `)'arith c ::= IntExp IntComp IntExpIntComp ::= `=' j `<' j `�' j `>' j `�'IntExp ::= IntVar IntOp IntExp j `(' IntExp `)' j IntVarIntOp ::= `+' j `�' j `�' j `='Direction ::= `1' j `-1'CharMapping ::= `f' CharMappings `g'CharMappings ::= CharToSet j CharToSet `,' CharMappingsCharToSet ::= Char `->' CharSetCharSet ::= `f' Chars `g'Chars ::= Char j Char `,' CharsChar ::= characterIntVar ::= Var j IntIntVar� ::= Var | Int�Int ::= positive integerInt� ::= positive integer j negative integerVar ::= variable over integersstrexp ::= stringvar j stringvar OP strexp j `not' `(' strexp`)'OP ::= `and' j `or' j `.'stringvar ::= `A' ...`Z' 19

5.11 Towards an implementationWe plan that the language will be used in an environment where there is a user interfacewhich permits the user to enter descriptions of the structures that he is interested in, or to usede�nitions from libraries, to map the description to a given input string and then will returnthe results of the mapping to the user. The queries will be handled by a query evaluator,which will check the syntax of the queries, expand macros, and store any macro de�nitionsmade by the user, and translate the queries into an internal form. This form is passed downto a constraint engine which sets up the data structures, imposes the constraints on them anduses a matching algorithm to solve the constraints. Results of matching could be output invarious ways, ranging from the locations of strings, and optionally the strings themselves, tosome graphical representation of the structures found.Such a processor for the language may be implemented in any programming system; in the nexttwo sections we describe an implementation of the processor in constraint logic programmingand also the design for a solver using CSP. Our program in clp(FD) implements all these stagesbut employs a naive and ine�cient algorithm to map a speci�cation onto an input string. Weplan to improve the existing CLP implementation by integrating the CSP solver within it.6 Implementation in CLP6.1 String variables and string expressionsWe have chosen to represent string variables (SV), i.e. components, by sequences of maximumlength m of string-characters (SC). These comprise pairs whose �rst element Chars is a setof characters drawn from some alphabet A (of bases or nucleotides) and whose second elementPos is a set of integers in 1. . .m, i.e. SV = seq(A�1 : : : m). Each pair represents the possiblevalues of the characters to be found on the input string at the locations indicated by thesecond element of the pair. Moreover, we assume that the successor relation holds between thesecond elements of neighbouring members of the sequence, in the normally accepted directionof ordering; given a projection function proj2: x � y ! y then following the set-orientedspeci�cation method of [SP87] we de�ne a successor constraint on string character positionsby8a : SV : 8i : [1 : : : len(a� 1)] : 8x : 1 : : : mj(x 2 proj2(ai) ^ x < m) : succ(x) 2 proj2(asucc(i))We have chosen constraint logic programming over �nite domains [HD91b] as a paradigm forimplementation because of the declarative nature of our structure language and the use whichit makes of �nite domain constraints. In our implementation sequences are represented as lists,and thus string variables comprise lists whose elements are pairs of (Chars,Pos). We choosealso to map alphabets onto (dense subsets of) natural numbers, so that for example for DNAwe represent a, c, g, t by 1, 2, 3 and 4 respectively. In this way we can use any �nite constraintlogic programming language which does not permit operations over arbitrary �nite domains.We have used clp(FD) [DC93] as the basis for our implementation because it has a specialisedoperation for complementation over genomic alphabets (see below). Moreover, the clp(FD)system is freely available, small in size and can compile to executable code. Ideally we wouldalso like to be able to use a string solver, along the lines of [Wal89], [Ger94] or [Raj94].
20

6.2 ConstraintsLength constraints are de�ned in the usual backtracking manner for lists although ideally wewould like to use a list solver (for example [Raj94]). Distance constraints are de�ned simplyby referring to the position elements of character pairs: Content constraints are implementedby imposing constraints on the integer sets representing the characters using the sparse repre-sentation of �nite domain variables in clp(FD) to describe non-continuous domains. Positionconstraints are straightforwardly implemented by constraining the position element of a string-character pair.General correlation constraints (those independent of any alphabet) are coded in clp(FD) asfollows.� The id constraint constrains the corresponding characters in the string characters pairs tobe equal. Note that the position elements in each corresponding pair are not constrainedby this relation, since the string variables may be mapped to di�erent places on the inputstring.� The reverse constraint �rst of all reverses one of the string variables and then constrainsit to be identical to the other string variable.Approximate matching between string variables is implemented using Hamming distance andrelating this to the length of the list representing the string variable.Complementation constraints are implemented using a specialised solving routine compl/4 inclp(FD). For example RNA, whose alphabet a, c, g and u we represent by 1, 2, 3 and 4 re-spectively, has complements fa!fug, c!fgg, g!fc,ug, u!fa,ggg. We represent this bycomplement_char(Char1,Char2):-compl(Char1,1,Char2,[4]), compl(Char1,2,Char2,[3]),compl(Char1,3,Char2,[2,4]), compl(Char1,4,Char2,[1,3]).where the de�nition of compl/4 iscompl(A, Char, B, Chars):-A=Char <=> Val1, B in Chars <=> Val2,Val1 in 0 .. max(Val2), Val2 in min(Val1) .. 16.3 Mapping a speci�cation to an input stringWe have implemented a processor for our language using clp(FD), and have also produced afront-end which permits users to specify constraints on stemloops in an interactive fashion.The system then sets up the data structures for the components, and imposes the constraintsgiven by the user.The aim of a processor for our language is to match a structure description on to an inputstring, in order to determine the contents and locations of those substrings of the input stringwhich match the components of the description. Thus a solution to a mapping of a string21

expression onto an input string is a valuation (an assignment to each constraint variable in thestring expression of one value from the domain of the variable) such that all the constraintsare satis�ed. Each element of all string-character pairs must be a singleton set satisfying theconstraints on that element; an empty set indicates a failure to produce a solution. In ourproblem domain we are interested in producing all the solutions (mappings) possible of a givenstring expression onto an input string.An input string I comprises a sequence of characters drawn from some alphabet A (of bases ornucleotides); we limit the maximum length of any string to be less or equal to some maximuminteger m. In order to perform mapping we �rst convert the input string into a string-variable,i.e. a list whose elements are pairs of (Chars,Pos). For example the RNA sequence of actof bases which is the sequence f(1,a),(2,g),(3,t)g is mapped to the sequence f(1,(fag,f1g)),(2,(fgg,f2g)), (3,(ftg,f3g))g and then to the list [(f1g,f1g),(f3g,f2g),(f4g,f3g)] using our nu-meric representation of the base alphabet.We have de�ned a naive procedure to map a speci�cation Spec (i.e. a constrained stringexpression SE) onto an input string I using backtracking. We assume two types of correlation:c (normal correlation) and r (reverse correlation), and a function p1: x � y ! x. variablese�ciently.for each pair of string variables (�; �) in SE correlated by correlation c do�nd members of I s.t. �1 = Ij and �1 = Ik and set i = 1while c(p1(�i);p1(�i)) and i � length(�) doi := i + 1 and j := j + 1 and k := k + 1�i = Ij and �i = Ikendendfor each pair of string variables (�; �) in SE correlated by correlation r doset l = length(�)�nd members of I s.t. �1 = Ij and �l = Ik and set i1 = 1, i2 = lwhile c(p1(�i1);p1(�i2)) and i1 � length(�) doi1 := i1 + 1 and i2 := i2� 1 and j := j + 1 and k := k � 1�i1 = Ij and �i2 = IkendendHowever, in the algorithm for the general case (including disjunction and negation) we do notdo this pairwise mapping:proc map(SE)if SE = A ^B then do proc(A) and proc(B) endif SE = A _B then do proc(A) or proc(B) endif SE = :A then do not proc(A) endif SE is a string variable then do�nd a member of I s.t. 1 = Ijwhile i � length() doi := i + 1 and j := j + 1if i = Ij then true else fail endend 22

endend6.4 TestingOur source program is 388 lines (10K) of clp(FD) code; we have compiled our program to 370Kof stand-alone sun-sparc code using the clp(FD) system [DC93], and have used this to testthe detection of stem-loops from a variety of databases, including entry with ID CXSTPLUC2(accession number X87994) from the EMBL nucleotide sequence database release 49 (Nov1996),URL: http://www2.no.embnet.org/srs/srsc?[EMBL-id:CXSTPLUC2]+-sf+GCG. For exampleour program took 40 ms on a Sun IPX to �nd the stem-loop cccgtcca, gctcggct, tggacggg atposition 20{43 (perfect matching), and 90 ms to �nd the stem-loop cagctcg, gcttgga, cgggctgat position 26{46 (mismatch of 14%) in a string of nucleotides from positions 1{60.6.5 Obtaining the programThe executable form of the program can be used interactively and also obtained fromhttp://www.soi.city.ac.uk/ drg/systems/structures/structures.html.7 Representing and solving the structure searching problemas a CSPA method for solving the structure searching problem using techniques from solving ConstraintSatisfaction Problems is described. In this �rst version only conjunction are allowed for in thestring expression, and only exact matching in the correlations. In addition only intervalls areallowed for in the length constraints. Inputs are the input string S(1 : n), and a structuralpattern.The method consists of four steps:1. Represent the problem as a constraint problem.2. Perform consistency checking to remove search alternatives.3. Reformulate the problem to a new CSP.4. Search for solutions (a solution is occurrences of the structure in the string).7.1 Representation of the constraintsIn the �rst step the constraint variables will be de�ned, and the constraints represented. Fivetypes of constraints are de�ned in 5. However, in this section the length constraint is includedin the distance constraint. This is because they are represented in a similar way.23

7.1.1 The constraint variablesThe following constraint variables are introduced:� For each string variable � two distance constraint variables L�; U�, with domains subsetsof [1; n]. In a solution the start position and the end position of � in S are assigned tothese variables, respectivily.� For each correlation C between �; � a set X (�;�) of correlation constraint variablesfX(�;�)L� ; :::;X(�;�)U� g, with domains subsets of [1; n]. (We allow at most one correlationbetween any pair of string variables.) Let D(�;�)i be the domain of X(�;�)i , where icorresponds to position i in the input string S. The correlation constraint variablesare used to constrain the position of � in S when restrictions on the position of � areknown, and vice versa. For example, let D(�;�)7 = f5; 9; 13g. If � includes S7, and Cd = 1,then the position of the corresponding symbol in � must be in f5; 9; 13g. In a solutionX(�;�)L�+j = L� + j if Cd = 1, and X(�;�)L�+j = U� � j if Cd = �1.Note that L� and U� are themselves constraint variables. Such use of constraint variablescorresponds to the use in [GW94].A string variable � in the constraint system thus has the following associated constraint vari-ables: L�; U� and a set X (�;�) for each correlation where � is a source.7.1.2 The constraintsMost of the distance constraints are represented as (binary) relational expressions betweendistance constraint variables. The only exception is the implicit length equality between thevariables in a correlation.Bound on the length of a string variable � is represented as a binary constraint betweenL�; U�. Bound on the distance between two string variables �; � is represented as a binaryconstraint between one of L�; U� and one of L�; U� , depending on how the bound is speci�ed.The implicit distance constraint in each correlation (length equality between � and �), is alsorepresented as constraints between four distance constraint variables L�; U�; L�; U� .The position constraints are used to restrict the domains of the corresponding distance con-straint variables. This is wholly done in the consistency checking step, before searching. Thesame is the case for the content constraints.The correlation constraints are represented using a new constraint construction s c (for Se-quence Constraint). Let � = f�ig be an ordered set of variables, and l; u; h integers or integervariables. Then s c(�; l; u; h) � (8i : l < i � u : �i = �i�1 + h)A correlation C between �; �, is then represented as s c(X (�;�); L�; U�; Cd).This constraint has some similarities with van Hentenrycks cardinality operator [HD91a], andthe value constraint in [Eid93]. 24

7.2 Consistency checking and constraint propagationIn this step of the algorithm the domains of the constraint variables will be found, someredundant constraints can be introduced, and consistency checking will be done.7.2.1 Position constraintsThe e�ect of position constraints on a string variable � is done by reducing the domains of L�and/or U�. This means performing node-consistency checking, and the constraints need notbe saved any longer.7.2.2 Distance constraintsConsistency checking over the distance constraint variables can be done. In doing so thedistance constraint variables might be constrained against the end points of the input string(1 and n). For example, if j�j � r for a string variable �, then L� � n� r + 1.It might be useful, for reasons of e�ciency, to have redundant constraints, such that thereare explicit constraints between distance constraint variables corresponding to each pair ofstring variables appearing in a correlation. This can be found by propagating other distanceconstraints. For example if U� < L ^ U � L � 4 ^ U < L�, we can deduce L� � U� + 6.Most of the distance constraints are binary, and easily used in arc consistency checking. How-ever, the implicit distance constraint from a correlation between � and � are between fourdistance constraint variables, but can be seen as a binary constraint between j�j and j�j. Anexample might clarify that: Suppose there is a correlation between � and �, 2 � j�j � 4, andDL� = f2; 3; 5g;DU� = f6; 8g;DL� = f12; 16g;DU� = f14; 16; 19g. We see that j�j can neverbe 3, and U� = 14 only if j�j = 3, hence 14 cannot be in the domain of U� . Treating such animplicit distance constraint as a binary constraint between � and � might be cost e�ective.7.2.3 Content constraintsThe content constraints are used to restrict the domains of the distance constraint variables.Let a content constraint be such that the i'th position of a string variable � must be oneof the symbols in a set E. Then the domain of L� is restricted to be a subset of the setfjjSj+i�1 2 Eg. If the constraint is on the i'th last symbol, the domain of U� is restricted ina similar way: fjjSj�i+1 2 Eg.If � occurs as source in a correlation (�; �), then a content constraint on � implies constraintson either L� or U�, which of them depends on the speci�cation of the constraint and thedirection component. For example if the correlation is reverse complement, then D(�;�)U� is asubset of fjjSj�i+1 2 compl(E)g.If � occurs as target in a correlation (; �), then a content constraint on � implies contentconstraints on . Let the symbol function of the constraint be Cf (see Section 5.6). If Cd = 1,then the domain of L is restricted to be a subset of fjj(Cf (Sj+i�1) \ E) 6= ;g. If Cd = �1,then the domain of U is restricted to be a subset of fjj(Cf (Sj�i+1) \E) 6= ;g.25

i U L Xi

 α β

 a b c
α β Figure 3: Figure showing the limits of �i = Xi � i. a = U� � i; b = L� � U�; c = Xi � L�The e�ect of the content constraints is to individually reduce the domains of distance constraintvariables, hence performing node consistency. This means that the whole e�ect is taken careof in this step, and the content constraints can thus be ignored in the further processing.The restriction of the domains are propagated, through performing arc-consistency checking,to other distance constraint variables.7.2.4 Correlation constraintsA correlation is a constraint between two string variables, � and �. In this step the localsolutions for each correlation are found. A local solution is two substrings which satisfy allthe constraints between and on � and �. For simplicity in the rest of this section we omit thesuperscript (�; �) on the correlation constraint variables.For a correlation between � and � the following can be done. Let� mIJ = min(DIJ) and MIJ = max(DIJ); I 2 fL;Ug; J 2 f�; �g.� r � j�j � R, i.e r and R are the lower and upper bound on the length of � (and �).The (actual) constraint correlation variables are Xi; i 2 [mL� ;MU�], with Di = [mL� ;MU�].However, some of the variables might be constrained more:1. If there exists bounds on the distance between � and �, these bounds can be used to�nd constraints on Xi (bounds on the di�erance Xi � i = �i). There are four ways tospecify the distance between � and �. However, two of them have the same e�ect.� Let l � L� � U� � L{ Let Cd = 1. Figure 3 shows how the bounds on �i can be calculated whenCd = 1. �i = a + b + c, from r � 1 � a + c � R� 1 and l � b � L followsr � 1 + l � �i � 2R � 2 + L{ Let Cd = �1. Now �i is not equal for each i. The minimum value for �i is fori = U�, and the maximum for i = L�. Hence l � �i � 2R � 2 + L� Let l � U� � L� � L. In a similar way as above we �nd{ For Cd = 1: l �R + 1 � �i � L� r + 1{ For Cd = �1: l � 2R + 2 � �i � L� Let l � L� � L� � L or l � U� � U� � L In a similar way we �nd{ For Cd = 1: l � �i � L 26

{ For Cd = �1: l � (R� 1) � �i � L + R� 12. We can also use minimum and maximum values of the distance constraint variables.� For Cd = 1, from XmU� �MU� follows XmU��j �MU� � j; 1 � j � r� For Cd = 1, from XML� � mL� follows XML�+j �mL� + j; 1 � j � R� For Cd = �1, from XmU� � mL� follows XmU��j � mL� + j; 1 � j � r� For Cd = �1, from XML� �MU� follows XML�+j �MU� � j; 1 � j � RBy use of these constraints we restrict the domains Di; i 2 [mL� ;MU�].We then �nd the values for L�; U� where s c(X ; L�; U�; Cd) ^ r � 1 � U� � L� � R � 1 issatis�ed.The procedure above guarantees to �nd solutions satisfying the constraints on the distancebetween � and � if and only if the constraint are in the form l � L��L� � L or l � U��U� �L, and Cd = 1. For all other cases the result must be checked against the distance constraintsto be sure that the found values are local solutions. An example will clarify. Letl � L� � U� � L andr = 3; R = 5; l = 1; L = 2;D1 = f6; :::g;D2 = f7; :::g;D3 = f8; :::g;D4 = f10; :::g: We �nd3 � Xi � i � 6, and a solution to the correlation constraint is � = S(1 : 3); � = S(6 : 8), butthis does not satisfy the distance constraint.Developing e�cient algorthm for �nding the local solutions are the clearly most di�cult andchallenging task.The local solutions de�ne new constraints between pairs of string variables, or between 4distance constraint variables. Before searching for a global solution, we can perform consistencychecking between individual local solutions. To formalise this we reformulate the problem.7.3 Reformulating the problemWe reformulate the problem as a new binary CSP with constraints between the string variables:� The variables are the string variables (�; �; :::), with the components L�; U�; L�; U� ; :::� The constraint between two variables is the distance constraint, and if there is a corre-lation between them, the local solutions found by the algorithm above.� The domains are the consistent values for Li and Ui; i = �; �; :::.We can now perform arc-consistency checking.Note that arc-consistency are assured between string variables for which there is a correlation.
27

7.3.1 ExampleLet a structure speci�cation contain the string variables �; �; ; �; �; �, and the correlationsare C1(�;); C2(; �); C3(�; �). At the beginning arc-consistency is assured for those pairs.Arc-consistency to � are also assured from all of the other string variables, but not the otherdirection (from �). The reason for this is that the domains of L�; U� are not reduced by theprocedure performing the correlation constraints.7.4 Searching for solutionsWhen all the consistency checking is done, we can start searching. This might be done usingforward checking.

28

7.5 The ProcedureNow we give the whole procedure as an algorithm.1. De�ne the distance constraint variables for all string variables, and initialise the domainsto [1; n].2. Represent the constraints (including the implicit distance constraints from the correlationconstraints).3. Use the position constraints and the end positions (1 and n) to reduce the domains ofthe distance constraint variables. Propagate to other distance constraint variables.4. Use the content constraints:for each content constraint on a string variable � doreduce the domain of L� or U�for each correlation to another string variable � doreduce the domain of L� or U�endpropagate to other distance constraint variablesend5. Treat the correlation constraints:for each correlation (�; �) dode�ne the variables fX(�;�)i g; i = min(DL�); : : : ;max(DU�) with domainsD(�;�)i = [min(DL�);max(DU�)]reduce the domains according to the rules found in Section 7.2.4use the s c-constraint and the distance constraint to �nd the local solutions.end6. Reformulate the problem, and perform consistency checking on the reformulated prob-lem.7. Perform searching for global solutions.7.5.1 Increase the e�ciencyThe local solutions are in the procedure found individually for each correlation. The e�-ciency may increase if already found local solutions are used to guide the further search forconsistent local solutions to other correlations. For example, if there are two correlationsC1(�; �); C2(; �), the local solutions found for � in the �rst correlation should be used asguide for �nding consistent solutions in the second correlation or vice versa.
29

7.6 ExampleIn this example the domains are written as sets of integers. When x : : : y appears inside a set,it means all integers between and included x and y.A structure is de�ned by four string variables f�; �; ; �g, where3 � length(�) � 5; 2 � end start(�; �) � 4; 1 � end start(�;) � 6; 1 � end start(; �).The correlations are = I(�); � = R C(�); � = I(�),where I is identity, and R C is reverse complement. There is one content constraint, the nextlast symbol in � is t.The input string isattagtacta tagctagcta actagcgcgc tata (n=34, spaces in the presentation after each 10).7.6.1 Distance constraintsFrom the bounds in the structure speci�cation we get:2 � U� � L� � 4; 2 � U� � L� � 4; 2 � U � L � 4; 2 � U� � L� � 4, and2 � L� � U� � 4; 1 � L � U� � 6; 1 � L� � UBy constraint propagation and using the end positions (1 and 34), we get the following con-straints:1 � L� � 22 3 � U� � 245 � L� � 26 7 � U� � 288 � L � 29 10 � U � 3111 � L� � 32 13 � U� � 34In addition we have U� � L� = U� � L� = U � L = U� � L�7.6.2 Content constraintThe next last in � has to be a t, hence SU��1 =t, which means SU��1 =t, and SL�+1 = compl(t)=a. We then decrease the domains for these constraint variables: DU� = f10; 12; 16; 20; 24g; DU� =f16; 20; 24; 32; 34g; DL� = f3; 6; 9; 11; 15; 19; 20g.From � = we get DL = f9; 11; 15; 19; 20; 23g.The e�ect of the decreased domains can be propagated using the distance constraints, and theresult is (the notation fi:::jg is used for [i,j]):DL� = f3; 6; 9; 11g DU� = f5:::15gDL� = f7:::18g DU� = f10; 12; 16; 20gDL = f11; 15; 19; 20; 23g DU = f13:::27gDL� = f14:::32g DU� = f16; 20; 24; 32; 34g
30

7.6.3 Correlation constraintsTo restrict the correlation constraint variables, we �nd (see the de�nition of m;M in 7.2.4):mL� = 3;ML� = 11 mU� = 5;MU� = 15mL� = 7;ML� = 18 mU� = 10;MU� = 20mL = 11;ML = 23 mU = 13;MU = 27mL� = 14;ML� = 32 mU� = 16;MU� = 34We now use the developed formulas (Point 1 and 2 in 7.2.4) to decrease some of the domains:� For correlation = I(�) we �nd l = 5; L = 14, and get the following constraints (Cd = 1):* 7 � Xi � i � 18* X5�j � 27� j; 1 � j � 3* X11+j � 11 + j; 1 � j � 5� For correlation � = I(�) we �nd l = 4, and get the following constraints (Cd = 1):* 6 � Xi � i* X10�j � 34� j; 1 � j � 3* X18+j � 14 + j; 1 � j � 5� For correlation � = R C(�) we �nd l = 2; L = 4, and get the following constraints(Cd = �1):* 2 � Xi � i � 12* X5�j � 7 + j; 1 � j � 3* X18+j � 20� j; 1 � j � 5

31

We can now �nd the domains for X(I;J)i ; I; J 2 f�; �; ; �g, using the developed constraints,as shown in the following table.Note that for X(�;J)i ; J 2 f�; g, i is in [3,15], and for X(�;�)i , i is in [7,20]. The third rowshows the domains before the constraints are used. The forth row shows the constraints frompoint 1 in 7.2.4, and columns 3,5 and 7 shows the results from using point 2.i D(�;)i D(�;�)i D(�;�)i1 2 3 4 5 6 7 8f11::27g f7::20g f14::34g7 � Xi � i � 18 2 � Xi � i � 12 6 � Xi � i1 a2 t3 t � 25 f11; 15; 19g � 9 f10; 12g4 a � 26 f12; 16; 20; 21g � 8 f9; 11; 15g5 g � 27 f13; 17g f8; 14g6 t f15; 19; 23g f10; 12; 16g7 a f16; 20; 21; 24g f9; 11; 15; 19g � 31 f16; 20; 21; 24g8 c f18; 22; 26g f13; 17g � 32 f14; 18; 22; 26; 28; 30g9 t f19; 23g f12; 16; 20g � 33 f15; 19; 23; 31; 33g10 a f20; 21; 24g f15; 19g f16; 20; 21; 24; 32; 34g11 t f19; 23g f16; 20g f19; 23; 31; 33g12 a � 12 f20; 21; 24g � 19 f15; 19g f20; 21; 24; 32; 34g13 g � 13 f25g � 18 f18g f25; 27; 29g14 c � 14 f22; 26g � 17 f17g f22; 26; 28; 30g15 t � 15 f23g � 16 fg f23; 31; 33g16 a f21; 24; 32; 34g17 g f25; 27; 29g18 c f26; 28; 30g19 t � 15 f31; 33g20 a � 16 f32; 34g21 a7.6.4 Using the s c-constraintsNow we can, for each correlation, �nd for which i the s c-constraint is satis�ed. Note that thelength of each string variable is in [3,5]. We don't show subsolutions, e.g. � = [11; 13]; =[23; 25] is a subsolution of � = [11; 14]; = [23; 26]. The notation used is that � = [i; j] meansthat � is the substring starting at position i and ending at j. By applying the s c-constraint toeach correlation we �nd (Remembering the earlier reduced domains for the distance constraintvariables):1. Correlation (�;); Cd = 1� � = [3; 5]; = [11; 13]; [15; 17]� � = [11; 14]; = [23; 26] Note: subsolutions not given2. Correlation (�; �); Cd = �1 32

� � = [3; 5];� = [8; 10]� � = [11; 14];� = [17; 20]3. Correlation (�; �); Cd = 1� � = [7; 10]; � = [21; 24]� � = [8; 10]; � = [18; 20]� � = [8; 12]; � = [30; 34]� � = [13; 16]; � = [29; 32]� � = [17; 20]; � = [29; 32]Note that the solutions for each correlation were found independently, hence we can performconsistency-checking. However, if we use the solutions found for � in the second correlation(�; �) as guide for the third (�; �), we only �nd� � = [8; 10]; � = [22; 24]� � = [8; 10]; � = [18; 20]� � = [8; 10]; � = [30; 32]� � = [17; 20]; � = [29; 32]We then have:1. Correlation (�;); Cd = 1� � = [3; 5]; = [11; 13]; [15; 17]� � = [11; 14]; = [23; 26]2. Correlation (�; �); Cd = �1� � = [3; 5];� = [8; 10]� � = [11; 14];� = [17; 20]3. Correlation (�; �); Cd = 1� � = [8; 10]; � = [22; 24]� � = [8; 10]; � = [18; 20]� � = [8; 10]; � = [30; 32]� � = [17; 20]; � = [29; 32]7.6.5 Reformulating the problemThe reformulated problem is now node-consistent, we then check for arc-consistency. We knowthat arc-consistency is satis�ed for (�;); (�; �); (�; �). The other pairs with explicit distanceconstraints are (�;) and (; �). We �nd that arc-consistency is satis�ed. Hence, the wholesystem is arc-consistent. 33

7.6.6 SearchingSearching is now performed, and for this example all solutions are found without backtracking.� � �[3; 5] [8; 10] [11; 13] [18; 20][22; 24][30; 32][15; 17] [18; 20][22; 24][30; 32][11; 14] [17; 20] [23; 26] [29; 32]8 Further workWe are in the process of making an object-oriented design for the CSP solver based on thespeci�cation given in Section 7 and implementing it in C++. The design process includes thedevelopment of data structures and algorithms for representing and propagating constraintsand for the search process.We further intend to investigate the possibility of interfacing this solver to the high-levelimpementation which has been made using constraint logic programming. This will involvede�ning a common interface and using the foreign-language facilities of the CLP languagechosen for this.We are working on a formal semantics for our language, including the semantics of negation,as well as of disjunction over both the set expressions as well as over the constraints.More pactical testing of the language is in progress regading recognition of structures, compar-ing our results with those of existing systems, e.g. [SD93]. We are in the process of improvingthe e�ciency of our system by improving our matching algorithms.A more challenging task for the future will be to develop structure discovery algorithm, andwe will need to decide whether we will wish to �nd conserved structures. We intend to baseour approach on the framework that we have developed in [BJEG95].We also plan to develop a language for the schematic description of the spatial structure ofproteins, broadly based on the approach which we have developed in this research. A �rst stepin this direction could be the de�nition of a `regular-expression' language over string variables,and also the de�nition of string constraints, for example the substring relation. The languagewould be used for describing the spatial structure of proteins at di�erent levels of structuralgranularity (atoms, amino-acids, secondary and tertiary structures, etc.).9 Summary and conclusionsDuring this research we have investigated how constraint based techniques can be used todescribe and search for patterns in sequences of symbols over �nite alphabets. We have34

de�ned a declarative constraint-based language in which a user speci�es the pattern he wishesto search for. These patterns can range from strings and regular expressions to more complexstructures such as palindromes, repeats, stem loops and pseudo-knots. The expressive powerof the language is beyond that of the regular languages, and it is deterministic in the sensethat a pattern either does or does not match a given sequence. In the language the user canspecify what we call a structural pattern, which means it can include correlations betweendi�erent components of the pattern.A pattern consists of a logical expression over components and a set of constraints on thecomponents, where a component is a description of a sequence of symbols. An input stringmatches a pattern if for each component, it contains a matching substring such that all theconstraints are satis�ed with respect to the logical expression over the components. It ispossible to constrain the length of a component, the distance between two components (relativeto a matching input string), the symbols of a substring matching a component, the position onthe input string matching a component, and the relation over the contents of two components.We have de�ned an interpreter for this language as a constraint logic program over �nitedomains and implemented the interpreter in several constraint logic programming systems.We use a naive backtracking matching algorithm in this implementation which results inine�cient behaviour. However we have tested our implementation on some real biologicalsequences with encouraging results.We have designed a matching algorithm based on constraint satisfaction solving techniqueswhich will enable the user to e�ciently search for structures in biological sequences.AcknowledgementsWe wish to thank Bernie Cohen for his help with the set-theoretic description of our language,and Daniel Diaz, author of the clp(FD) package, for his help with designing some of the routinesneeded by our solver. This work has been carried out as part of a project �nanced by the BritishCouncil and the Norwegian Research Council, which provided funding for the research visits.In addition, Inge Jonassen's research post is �nanced by the Norwegian Research Council.References[AB91] Abderrahmane Aggoun and Nicolas Beldiceanu. Overview of the CHIP compilersystem. In Koichi Furukawa, editor, ICLP'91: Proceedings 8th International Con-ference on Logic Programming, pages 775{789. MIT Press, 1991.[AEM+84] R. M. Abarbanel, P. R. Eiencke, E. Mans�eld, D. A. Ja�e, and D. L. Brutlag. Rapidsearches for complex patterns in biological molecules. Nucleic Acids Research,12(1):263{280, 1984.[AWN94] R. B. Altman, B. Weiser, and H. F. Noller. Constraint Satisfaction Techniques forModeling Large Complexes: Application to the Central Domain of 16S RibisomalRNA. In R. Altman, D. Brutlag, P. Karp, R. Lathrop, and D. Searls, editors,Proceedings Second International Conference on Intelligent Systems for MolecularBiology, pages 10{18. AAAI Press, 1994.35

[BBH95a] A. Bairoch, P. Bucher, and K. Hofman. The PROSITE database, its status in1995. Nucleic Acids Research, 24(1):189{196, 1995.[BBH95b] A. Bairoch, P. Bucher, and K. Hofman. The PROSITE database, its status in1995. Nucleic Acids Research, 24:189{196, 1995.[BC93] C. Bessiere and M.O. Cordier. Arc-Consistency and Arc-Consistency again. InProceedings of the AAAI, 1993.[BCO+95] L. Baranyi, W. Campell, K. Ohshima, S. Fujimoto, M. Boros, and H. Okada. Theantisense homology box: A new motif within proteins that encodes biologicallyactive peptides. Nature Medicine, 1(9):894{901, 1995.[BG95] A. Brazma and D. Gilbert. A Pattern Language for Molecular Biology. TechnicalReport 11, Department of Computer Science, City University, London, 1995.[BJEG95] A. Br�azma, I. Jonassen, I. Eidhammer, and D. Gilbert. Approaches to the auto-matic discovery of patterns in biosequences. Technical Report TCU/CS/1995/18,Department of Computer Science, City University, 1995. Also Technical Report113, Department of Informatics, University of Bergen, Bergen, Norway.[BR96] C. Bessi�ere and J-C. R�egin. MAC and Combined Heuristics: Two reasons to for-sake FC (and CBJ?) on hard problems. In E. C. Freuder, editor, Second Interna-tional Conference on Principles and Practice of Constraint Programming (CP96).Springer-Verlag, 1996.[BvR95] F. Bacchus and P. van Run. Dynamic variable ordering in CSPs. In First Interna-tional Conference on Principles and Practice of Constraint Programming (CP95),pages 258{275, Cassis, France, 1995.[CN95] Philippe Codognet and Guiseppe Nardiello. Enhancing the Constraint-SolvingPower of clp(FD) by means of Path-Consistency Methods. In Andreas Podelski,editor, Constraint Programming: Basics and Trends, LNCS 910. Springer, 1995.(Châtillon-sur-Seine Spring School, France, May 1994).[Coo89] M.C. Cooper. An Optimal k-Consistency Algorithm. Arti�cial Intelligence, 41:89{95, 1989.[CR94] D. Clark and C. Rawlings. Constraint Satisfaction in Molecular Biology. Tutorialat ISMB-94, 1994.[CRD94] D. A. Clark, C. J. Rawlings, and S. Doursenot. Genetic Map Construction withConstraints. In R. Altman, D. Brutlag, P. Karp, R. Lathrop, and D. Searls, editors,Proceedings Second International Conference on Intelligent Systems for MolecularBiology, pages 78{86. AAAI Press, 1994.[CRS+93] D. A. Clark, J. R. Rawlings, J. Shirazi, A. Veron, and M. Reeve. Protein Topol-ogy Prediction through Parallel Constraint Logic Programming. In L. Hunter,D. Searls, and J. Shavlik, editors, Proceedings First International Conference onIntelligent Systems for Molecular Biology, pages 83{91. AAAI Press, 1993.[CSR92] D. A. Clark, J. Shirazi, and C. J. Rawlings. Protein topologi prediction throughconstraint-based search and the evaluation of topological folding rules. ProteinEngineering, 4:751{760, 1992. 36

[DC93] D. Diaz and P. Codognet. A Minimal Extension of the WAM for clp(FD). InDavid S. Warren, editor, Proceedings of the Tenth International Conference onLogic Programming, pages 774{790, Budapest, Hungary, 1993. The MIT Press.[Dec90] R. Dechter. Enhancedment Schemes for Constraint Processing: Backjumping,Learning, and Cutset Decomposition. Arti�cial Intelligence, 41:273{312, 1990.[DH95] T. Dandekar and M. W. Hebtze. Finding the hairpin in the haystack: searchingfor RNA motifs. TIG, 11(2):45{50, 1995.[DM89] R. Dechter and I. Meiri. Experimental evaluation of preprocessing techniques inconstraint satisfaction problems. In Proceedings of IJCAI, pages 271{277, 1989.[DM94] R. Dechter and I. Meiri. Experimental evaluation of preprocessing algorithms forconstraint satisfaction problems. Arti�cial Intelligence, 68:211{241, 1994.[DP88] R. Dechter and J. Pearl. Network-Based heuristics for Constraint-SatisfactionProblems. Arti�cial Intelligence, 34(34):1{38, 1988.[DS90] T. Dandekar and P. R. Sibbald. Trans-splicing of pre-mRNA is predicted to oc-cur in a wide range of organisms including vertebrates. Nucleic Acids Research,18(16):4719{4725, 1990.[ea97] Mats Carlsson et al_SICStus Prolog User's Manual Version 3.5. Swedish Instituteof Computer Science, Kista, Sweden, 1997.[ECR95] Munich ECRC. Eclipse 3.5 User Manual, 1995.[Eid93] I. Eidhammer. Extending Constraint Satisfaction Problems with Value Con-straints. Technical Report 90, Department of informatics, University of Bergen,1993.[FD95] D. Frost and R. Dechter. Look-ahead value ordering for constraint satisfactionproblems. In IJCAI'95, pages 572{578, Montr�eal, Canada, 1995.[FG89] R. Feldman and M. C. Golumbic. Constraint Satis�ability Algorithms for Inter-active Student Scheduling. In Proceedings of IJCAI, pages 1010{1016, 1989.[FHK+92] Thom Fr�uhwirth, Alexander Herold, Volker K�uchenho�, Thierry Le Provost, PierreLim, Eric Monfroy, and Mark Wallace. Constraint Logic Programming: An infor-mal introduction. In G. Comyn, N. E. Fuchs, and M. J. Ratcli�e, editors, LogicProgramming in Action, LNCS 636, pages 3{35. Springer-Verlag, 1992. (Also avail-able as Technical Report ECRC-93-5).[FM95] M. Foucrault and F. Major. Symbolic Generation and Clustering of RNA 3-D Motifs. In C. Rawlings, D. Clark, R. Altman, L. Hunter, T. Lengauer, andS. Wodak, editors, Proceedings Third International Conference on Intelligent Sys-tems for Molecular Biology, pages 121{126. AAAI Press, 1995.[Fre82] E. C. Freuder. A Su�cient Condition for Backtrack-Free Search. Journal of theACM, 29(1):24{32, 1982.[Gas77] J. A. Gaschnig. A general Backtracking Algorithm that Eliminates Most Redun-dant Tests. In Proceedings of the Fifth IJCAI, 1977.37

[Ger94] C. Gervet. Conjunto: constraint logic programming with �nite set domains. InMaurice Bruynooghe, editor, Logic Programming - Proceedings of the 1994 Inter-national Symposium, pages 339{358, Massachusetts Institute of Technology, 1994.The MIT Press.[Gre94] K. A. Gregorz. A Theoretical Evolution of Selected Backtracking Algorithms.Technical report, Department of Computer Science, University of Alberta, Canada,1994. 52 pages.[GW94] C. Gaspin and E. Westhof. The Determination of the Secondary Structures of RNAas a Constraint Satisfaction Problem. In S.Schultze-Kremer, editor, Advances inMolecular Bioinformatics, pages 103{122. IOS Press, 1994.[Ham82] R. Hamming. Coding and Information Theory. Prentice Hall, Englewood Cli�s,NJ, 1982.[HD91a] P. V. Hentenryck and Y. Deville. The cardinality operator: a new logical connectivefor constraint logic programming. In Proceedings Eight International Conferenceon Logic Programming, 1991.[HD91b] P. V. Hentenryck and Y. Deville. Operational semantics of constraint logicprogramming over �nite domains. In J. Ma luszy�nski and M. Wirsing, editors,PLILP91, number 528 in LNCS, pages 395{406. Springer-Verlag, aug 1991.[Hen89] P. V. Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press,1989.[HL88] C-C. Han and C-H. Lee. Comments on Mohr and Hendersons's Path ConsistencyAlgorithm. Arti�cial Intelligence, 36:125{130, 1988.[HS93] C. Helgesen and P. Sibbald. PALM - a pattern language for molecular biology.In L. Hunter, D. Searls, and J. Shavlik, editors, Proceedings First InternationalConference on Intelligent Systems for Molecular Biology, pages 172{180. AAAIPress, 1993.[JMSY92] Joxan Ja�ar, Spiro Michayov, Peter Stuckey, and Roland Yap. The CLP(R) Lan-guage and System. TOPLAS: ACM Transactions on Programming Languages andSystems, 14(3):339{395, July 1992.[LB92] S. Letovsky and M. B. Berlyn. CPRPO: A rule-based program for constructinggenetic maps. Genomics, 12:435{446, 1992.[Lev65] V.I. Levenshtein. Binary codes capable of correcting deletions, insertions, andreversals. Doklady Akademii nauk SSSR (in Russian), 163(4):845{848, 1965. Alsoin Cybernetics and Control Theory, vol 10, no. 8, pp 707{710, 1996.[LGF95] S. Leishman, P. M. D. Gray, and J. E. Fothergill. A Constraint-based Assign-ment System for Automatic Long Side Chain Assignments in Protein 2D NMRSpectra. In C. Rawlings, D. Clark, R. Altman, L. Hunter, T. Lengauer, andS. Wodak, editors, Proceedings Third International Conference on Intelligent Sys-tems for Molecular Biology, pages 231{239. AAAI Press, 1995.[McG79] J. McGregor. Relational consistency algorithms and their applications in �ndingsubgraphs and graph isomorphisms. Information Sciences, 19:229{250, 1979.38

[Mes89] Pedro Meseguer. Constraint Satisfaction Problems: An Overview. AICOM, 2(1):3{16, 1989.[MM93] G. Mehldau and G. Myers. A system for pattern matching applications on biose-quences. CABIOS, 9(3):299{314, 1993.[Mon74] U. Montanari. Network of constraints: fundamental properties and applicationsto picture processing. Information Sciences, (7):95{132, 1974.[MTG+91] F. Major, M. Turcotte, D. Gautheret, G. Lapalme, E. Fillion, and R. Cedergren.The combination of symbolic and numerical computation for 3D modelling of RNA.Science, 253:1255{1260, 1991.[Nad88] B. A. Nadel. Constraint Satisfaction Algorithms. Technical report, Wayne StateUniversity, 1988. CSC-88-005.[Nud83] B. Nudel. Consistent-Labeling Problems and their Algorithms: Expected- Com-plexities and Theory-Based Heuristics. Arti�cial Intelligence, 21:135{178, 1983.[Par95] S. Parsons. Softening constraints in constraint-based protein topology prediction.In C. Rawlings, D. Clark, R. Altman, L. Hunter, T. Lengauer, and S. Wodak, edi-tors, Proceedings Third International Conference on Intelligent Systems for Molec-ular Biology, pages 268{276. AAAI Press, 1995.[Pou95] Dick Pountain. Constraint Logic Programming. BYTE, Feb 1995.[Pro93] P. Prosser. Hybrid Algorithms for the Constraint Satisfaction Problem. Compu-tational Intelligence, (9):268{299, 1993.[Pro99] P. Prosser. MAC-CBJ: maintaining arc consistency with conict-directed back-jumping. Technical Report 95-177, Department of Computer Science, Universityof Startclyde, 1999.[Raj94] A. Rajasekar. Applications in constraint logic programming with strings. In AlanBorning, editor, PPCP'94: Second Workshop on Principles and Practice of Con-straint Programming, Seattle WA, May 1994.[Rat96] M. Ratnayake. Constrained Pattern Recognition in Biosequences. Department ofComputer Science, City University, London, 06 1996. B.Eng. (Honours) Degree inSoftware Engineering.[SA90] P. R. Sibbald and P. Argos. Scrutineer: a computer program that exibly seeks anddescribes motifs and pro�les in protein sequences databases. CABIOS, 6(3):279{288, 1990.[SBH+94] Y. Sakakibara, M. Brown, R. Hughey, I.S. Mian, K. Sjoelander, R. Underwood,and D. Haussler. Stochastic context-free grammars for tRNA modelling. NucleicAcids Res, 22:5112{5120, 1994.[SD93] D. B. Searls and S. Dong. A syntactic pattern recognition system for DNA se-quences. In C. R. Cantor H. A. Lim, J. Fickett and R. J. Robbins, editors, Pro-ceedings Second International Conference on Bioinformatics, Supercomputing, andComplex Genome Analysis, pages 89{101. World Scienti�c, 1993.39

[Sea95] D. Searls. The Computational Linguistics of Biological Sequences. Tutorial atThird International Conference on Intelligent Systems for Molecular Biology, 1995.[SF94] D. Sabin and E. Freuder. Contradicting conventional wisdom in constraint satis-faction. In Alan Borning, editor, PPCP'94: Second Workshop on Principles andPractice of Constraint programming, Seattle WA, May 1994.[SP87] S. A. Schuman and D. H. Pitt. Object oriented subsystem speci�cation. InMeertens, editor, Program Transformation: Proc. IFIP Working Conf. North Hol-land, 1987.[SSA92] P. R. Sibbald, H. Sommerfeldt, and P. Argos. Overseer: a nucleotide sequencesearching tool. CABIOS, 8(1):45{48, 1992.[Sta90] R. Staden. Searching for Patterns in Protein and Nucleic Acid Sequencies. InR. F. Doolittle, editor, Methods in Enzymology, Vol. 183, pages 193{211. AcademicPress, 1990.[Ste78] M. Ste�k. Inferring DNA Structures from Segmentation Data. Arti�cial Intelli-gence, 11:85{114, 1978.[Tsa93] E. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.[Wal89] C. Walinsky. CLP(��): Constraint logic programming with regular sets. In Gior-gio Levi and Maurizio Martelli, editors, ICLP'89: Proceedings 6th InternationalConference on Logic Programming, pages 181{196, Lisbon, Portugal, June 1989.MIT Press.[ZKM93] D. E. Zimmerman, C. A. Kulikowski, and G. T. Montelione. A Constraint Reason-ing System for Automating Sequence-Speci�c Resonance Assignments from Multi-dimensional Protein NMR Spectra. In L. Hunter, D. Searls, and J. Shavlik, editors,Proceedings First International Conference on Intelligent Systems for MolecularBiology, pages 447{455. AAAI Press, 1993.[Zuk89] Michael Zuker. On Finding All Foldings of an RNA Molecule. Science, 244:48{52,1989.

40

