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A continuum constraint-free phase field model

is proposed to simulate the magnetic domain

evolution in ferromagnetic materials. The model takes

the polar and azimuthal angles (ϑ1, ϑ2), instead of

the magnetization unit vector m(m1, m2, m3), as the

order parameters. In this way, the constraint on the

magnetization magnitude can be exactly satisfied

automatically, and no special numerical treatment

on the phase field evolution is needed. The phase

field model is developed from a thermodynamic

framework which involves a configurational

force system for ϑ1 and ϑ2. A combination of the

configurational force balance and the second law

of thermodynamics leads to thermodynamically

consistent constitutive relations and a generalized

evolution equation for the order parameters (ϑ1, ϑ2).

Beneficial from the constraint-free model, the

three-dimensional finite-element implementation

is straightforward, and the degrees of freedom are

reduced by one. The model is shown to be capable

of reproducing the damping-dependent switching

dynamics, and the formation and evolution of

domains and vortices in ferromagnetic materials

under the external magnetic or mechanical loading.

Particularly, the calculated out-of-plane component

of magnetization in a vortex is verified by the

corresponding experimental results, as well as the

motion of the vortex under a magnetic field.

1. Introduction
Owing to their ferromagnetic property and magnetic-

mechanical coupling, ferromagnetic materials are widely

2014 The Author(s) Published by the Royal Society. All rights reserved.
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used in industrial applications, such as magnetic data storage, sensors and actuators, transducers

and microelectromechanical systems [1–3]. The viable applications and reasonable design

of the devices based on ferromagnetic materials are highly dependent on the fundamental

understanding of the microstructures of these materials. At the microscale, ferromagnetic

materials are composed of discretized magnetized regions in which the magnetization is uniform.

These regions are generally called magnetic domains [4,5]. Accordingly, at the macroscale,

the macroscopic magnetic-mechanical properties are determined by these magnetic domain

evolutions which can be driven by the external magnetic field and/or mechanical loading [4–6].

Hence, developing a model for ferromagnetic materials that can describe or predict the structure

and evolution of the magnetic domains is critically important for understanding, designing and

engineering the macroscopic properties of the ferromagnetic devices.

Presently, the micromagnetic model and the phase field method are two widely used

approaches for modelling ferromagnetic materials. Based on the well known domain wall

calculation by Landau and Lifshitz in 1935 [7], in the 1960s Brown laid the foundation of

the micromagnetics theory [8]. The micromagnetic model uses the celebrated Landau–Lifshitz–

Gilbert (LLG) equation [9] to describe the temporal evolution of the magnetization and of the

domain structure. In the last two decades, the micromagnetic model has achieved vital success in

modelling ferromagnetic materials [10–13]. However, in this model, it is difficult to consider the

mechanical effects, especially the inhomogeneous stress resulting from the elastic incompatibility

of the magnetostrictive strain [14,15]. By contrast, the conventional phase field model is based

on the continuum thermodynamics and the kinematics of the materials. This type of model

usually uses the magnetization as the order parameters [14–19]. It can easily take into account

the magnetic-mechanical coupling and predict the detailed domain structure and evolution

under external magnetic field or mechanical loading without a priori assumption on domain

morphologies.

As in most of the work about micromagnetic models and phase field models for ferromagnetic

materials, we consider here merely the evolution at a constant temperature which is far below the

Curie temperature and the phase transition temperature. Thereby, the magnetization magnitude

remains constant and only its direction changes during the domain evolution. This constraint can

be given as

M = Mm with ‖m‖ = 1, (1.1)

where M is the magnetization vector introduced as a continuum field variable, M is the saturation

magnetization magnitude and m is the magnetization unit vector. M is constant when the

temperature dependence is ignored. This is intrinsically different from the ferroelectric phase

field models with polarization as the order parameter, in which no constraint on the polarization

magnitude is enforced [20,21]. In the ferromagnetic materials, the magnetocrystalline anisotropy

energy term is non-convex, whose function is similar to that of the Landau energy polynomial in

ferroelectrics [20,21]. But it works only when the magnitude constraint of ‖M‖ = M is applied.

In other words, only when the constraint ‖m‖ = 1 is considered, this non-convex term can

form a multi-well landscape which characterizes the easy axes of the magnetization. This

constraint makes the determination of the phase field evolution path challenging and introduces

complications in the phase field modelling and numerical implementation [22–25].

In conventional ferromagnetic phase field models, the LLG equation is usually taken as the

evolution equation. There the magnitude constraint of ‖M‖ = M does not explicitly appear in

the formulation but is enforced in the numerical implementation [14,17,19]. This results in a

rather simplified presentation. But the numerical implementation of the LLG equation with the

constraint is particularly challenging. In the literature, there exist some approximation techniques,

such as projection [26], renormalization [14,22], special test function [24] and Lagrange multiplier

[23]. There are also exact techniques in use of rotation in the Lie group [25,27]. Recently, Landis

introduced a constraint energy term in the form of As(‖M‖ − M)2, in order to handle the constraint

in an energetic formulation [18]. However, in this way, the constraint is only fulfilled at the

stationary solution, and the evolution dynamics is not physically sound. Furthermore, it is not
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so easy to choose a reasonable value for the constraint energy coefficient As. Wang & Zhang [15]

have used this constraint energy proposed by Landis and the time-dependent Ginzburg–Landau

(TDGL) equation which is widely used in ferroelectrics to establish their phase field model. It

should be noted that if the LLG equation instead of the TDGL equation is used, the contribution

of the constraint energy to the LLG equation vanishes; because the equality m × m = 0 always

holds in the LLG equation. Therefore, the method of constraint energy is not so effective.

In this work, we develop a novel constraint-free phase field model for mechanically coupled

magnetic domain evolution in ferromagnetic materials. The focus here is to construct a model

which delivers the correct evolution dynamics and fulfils the constraint automatically. The idea

is to take the polar and azimuthal angles (ϑ1, ϑ2), instead of the magnetization unit vector

m(m1, m2, m3), as the order parameters. It is apparent that the Cartesian components of m can be

expressed by (ϑ1, ϑ2) in a constraint-free formulation, i.e. m1 = sin ϑ1 cos ϑ2, m2 = sin ϑ1 sin ϑ2 and

m3 = cos ϑ1. By using the configurational force theory and the second law of thermodynamics, a

set of thermodynamically consistent constitutive relations and a generalized evolution equation

for ϑ1 and ϑ2 are derived, as shown in §2. In §3, a three-dimensional nonlinear finite-element

formulation of this constraint-free model is presented. Thereby no additional numerical technique

is required for the magnitude constraint of ‖m‖ = 1. Furthermore, the node degrees of freedom

are decreased by one. In §4, several numerical examples are presented. Benchmark test on

precession and precessional switching is checked in the use of one-element simulation, and

it demonstrates that the model reproduces the correct magnetization dynamics. Modelling on

domain formation and evolution, such as vortices and 180◦ domain switching, shows that three-

dimensional simulations are required in order to recapitulate the spatial switching path. The

shape and motion of the computed vortices agree well with the related experimental results.

In addition, the ferroelastic switching is also simulated. In comparison with other phase field

simulations, the proposed three-dimensional constraint-free model has the merit that it can

readily reveal the damping-dependent and the out-of-plane of magnetization in a thin film.

2. Continuum constraint-free phase �eld model

(a) Field equations

The magnetoelastic coupling is one of the most important properties for ferromagnetic materials.

Thus both the mechanics and the magnetostatics should be considered in the modelling.

For a ferromagnetic body B with a boundary ∂B, the quasi-static mechanical equilibrium is

described by

σij,j + fi = 0 in B, (2.1)

where σij is the Cauchy stress and fi is the body force. Hereafter, the Latin indices (i, j, k, l, p, q) run

over the range of 1–3. The comma in a subscript denotes spatial differentiation, for example, σij,j =
∂σij/∂xj in which xj is the jth Cartesian coordinate direction. The Einstein summation convention

is used for the repeated indices. Two types of boundary conditions can be introduced

ui = ûi on ∂Bu and σijnj = t̂i on ∂Bσ (2.2)

in which ûi is the displacement prescribed on the boundary part ∂Bu, nj is the outward surface

unit vector and t̂i is the surface traction on the boundary part ∂Bσ . By assuming linear kinematics,

the strain εij can be expressed as the symmetrical gradient of the displacement field ui

εij = 1
2 (ui,j + uj,i). (2.3)

The Maxwell equation which governs the magnetic part has the form

Bi,i = 0 in B, (2.4)

where Bi is the magnetic induction. As the permittivity of the ferromagnetic materials is usually

much higher than that of the free space, the stray field effect is ignored here. Thus the magnetic
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boundary conditions can take the form of

Bini = B̂ on ∂BB and φ = φ̂ on ∂Bφ , (2.5)

where B̂ is the prescribed value on the boundary part ∂BB, φ is the scalar magnetic potential and φ̂

is the given potential on the boundary part ∂Bφ . The magnetic field Hi is defined by the negative

gradient of φ

Hi = −φ,i. (2.6)

(b) Balance law for magnetization

The magnetic-mechanical couple in ferromagnetic materials results from the existence and

rearrangement of ferromagnetic domains [4]. The free energy of the ferromagnetic materials is

also dependent on the magnetization configuration. In the continuum theory, the magnetization

configuration can be described by the distribution of the magnetization vector. To obtain

the distribution, one needs to first consider the balance law of magnetization. Though the

magnetization dynamics has been well established [8], in this subsection we employ the

configurational force theory [28–30] to represent the balance law, in order to support

the derivation of our phase field model in the following subsections.

As it has been mentioned, we consider only the isothermal process below the Currie

temperature and the phase transition temperature. Thus the magnitude of the magnetization

vector remains constant, and the configuration can be depicted by the unit magnetization

vector mi. The configurational force system for the configurational quantity mi includes the

configurational stress tensor Σij whose power density expended on the surface is ΣijnjMṁi, and

the internal and external configurational force vector gi and gex
i whose power density expended in

the volume is giMṁi and gex
i Mṁi, respectively. Owing to the rotation nature of the magnetization

[9], the angular momentum balance in the continuum aspect can be given as

∫
B

ṁi dv = γ0

(∫
∂B

ǫijkΣjlnlmk ds +
∫
B

ǫijkgjmk dv +
∫
B

ǫijkgex
j mk dv

)

, (2.7)

where γ0 is the gyromagnetic ratio with a positive constant value of 1.76 × 1011/(Ts), and ǫijk is

the permutation tensor. Converting the surface integration in (2.7) into volume integration and

considering its validity in any volume, we can obtain

1

γ0
ṁi = ǫijkΣjl,lmk + ǫijkΣjlmk,l + ǫijkgjmk + ǫijkgex

j mk. (2.8)

The magnetization can only change its direction, so the configurational force, which physically

is the driving force on the change of magnetization, should lie perpendicular to the direction of

the magnetization. In other words, the configurational force along the magnetization direction

must be zero. Thus, in any volume, we have

mi

(∫
∂B

Σijnj ds +
∫
B

gi dv +
∫
B

gex
i dv

)

= 0 ⇒ mi(Σij,j + gi + gex
i ) = 0. (2.9)

From (2.8) and (2.9), one has

Σij,j + gi + gex
i = 1

γ0
ǫijkmjṁk + Mi (2.10)

with Mi = ǫijkǫjpqΣplmq,lmk.

(c) Thermodynamics

As pointed out in the Introduction, although the use of m(m1, m2, m3) as the order parameters is

straightforward, the numerical implementation of the constraint on the magnetization magnitude

can be complicated [22–25]. Herein, we use the polar and azimuthal angles (ϑ1, ϑ2) as order
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parameters. Thus the components of the unit magnetization vector in the corresponding Cartesian

coordinates are given as

m = m(ϑ1, ϑ2) =

⎡

⎢

⎣

sin ϑ1 cos ϑ2

sin ϑ1 sin ϑ2

cos ϑ1

⎤

⎥

⎦
(2.11)

and

ṁi = Aµiϑ̇µ with Aµi =

⎡

⎢

⎣

cos ϑ1 cos ϑ2 − sin ϑ1 sin ϑ2

cos ϑ1 sin ϑ2 sin ϑ1 cos ϑ2

− sin ϑ1 0

⎤

⎥

⎦
. (2.12)

In this paper, the Greek indices µ and γ run over the range of 1–2. The constraint ‖m‖ = 1 is

satisfied automatically. The number of order parameters is also reduced from 3 to 2.

For the temperature-independent process, the Helmholtz free energy of the ferromagnetic

system with magnetic-mechanical couple can be taken as F = F̃ (εij, Bi, ϑµ, ϑµ,i). According to the

second law of thermodynamics, under the isothermal condition, the external power expended on

the control volume should not be less than the change rate in the Helmholtz free energy, i.e.∫
∂B

[σijnju̇i − φḂini + ΣijnjMAµiϑ̇µ] ds +
∫
B

[fiu̇i + gex
i MAµiϑ̇µ] dv ≥

∫
B

Ḟ dv. (2.13)

In this inequality, the internal configurational force gi is omitted as it has no external power. The

difference between the right-hand and left-hand terms is the dissipation. After the Legendre

transformation, the magnetic enthalpy H= H̃(εij, Hi, ϑµ, ϑµ,i) can be derived as H=F − BiHi.

Thus, the thermodynamic inequality (2.13) can be rewritten as∫
∂B

[σijnju̇i − φḂini + ΣijnjMAµiϑ̇µ] ds +
∫
B

[fiu̇i + gex
i MAµiϑ̇µ] dv

≥
∫
B

(Ḣ + BiḢi + HiḂi) dv (2.14)

or by the Gauss law∫
B

[(σij,j + fi)u̇i + σijε̇ij − φḂi,i + MΠµjϑ̇µ,j + M(Πµj,j + ζ ex
µ )ϑ̇µ] dv ≥

∫
B

(Ḣ + BiḢi) dv (2.15)

with

Πµj = AµiΣij and ζ ex
µ = Aµig

ex
i (2.16)

Here, Πµj and ζ ex
µ are the configurational stress tensor and the external configurational force, with

respect to the order parameters ϑµ, respectively.

Left multiplication of (2.10) by matrix Aµi leads to

AµiΣij,j + ζµ + ζ ex
µ = 1

γ0
sin ϑ1Iµγ ϑ̇γ + AµiMi (2.17)

in which ζµ = Aµigi is the internal configurational force with respect to ϑµ, and Iµγ is the

antisymmetric matrix

Iµγ =
[

0 −1

1 0

]

. (2.18)

Application of (2.17) and the form of H to (2.15) leads to

∫
B

{

(σij,j + fi)u̇i − φḂi,i +
(

σij − ∂H

∂εij

)

ε̇ij + M

[

AµiMi − AµiΣij,j − ζµ + Πµj,j − 1

M

∂H

∂ϑµ

]

ϑ̇µ

−
(

Bi + ∂H

∂Hi

)

Ḣi + M

(

Πµj − 1

M

∂H

∂ϑµ,j

)

ϑ̇µ,j

}

dv ≥ 0. (2.19)

Considering the field equations (2.1) and (2.4) and noticing that inequality (2.19) must be hold for

all admissible processes, based on the standard arguments of rational thermomechanics, we can
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obtain these constitutive relations

σij = ∂H

∂εij
, Bi = − ∂H

∂Hi
and Πµj = 1

M

∂H

∂ϑµ,j
. (2.20)

Given these relations, the residual dissipation inequality in (2.19) in the local form can be

derived as

− gdis
µ ϑ̇µ ≥ 0, (2.21)

where

gdis
µ = −AµiMi + AµiΣij,j + ζµ − Πµj,j + πµ, πµ = 1

M

∂H

∂ϑµ

(2.22)

The residual dissipation inequality (2.21) is satisfied by setting

gdis
µ = −βµγ ϑ̇γ , (2.23)

where βµγ is the components of a positive semi-definite matrix which can be derived through a

non-concave dissipation potential D(ϑµ)

βµγ = ∂2D

∂ϑ̇µ∂ϑ̇γ

. (2.24)

Combining (2.17), (2.22) and (2.23), we can obtain a generalized form of the evolution equation

for the order parameters ϑµ as

Πµj,j − πµ + ζ ex
µ =

(

1

γ0
sin ϑ1Iµγ + βµγ

)

ϑ̇γ . (2.25)

It should be noted that when the Rayleigh dissipation functional is adopted, (2.25) can be

reduced to the standard LLG equation. In fact, inserting the Rayleigh dissipation potential [9]

D = ν

2
ṁiṁi = ν

2
(ϑ̇1

2 + sin2 ϑ1ϑ̇2
2
) (2.26)

into (2.24), one has

βµγ = νPµγ with Pµγ =
[

1 0

0 sin2 ϑ1

]

. (2.27)

Insertion of (2.27) into (2.25) leads to

Πµj,j − πµ + ζ ex
µ = 1

γ0
Lµγ ϑ̇γ , (2.28)

where

Lµγ =
[

α − sin ϑ1

sin ϑ1 α sin2 ϑ1

]

(2.29)

and α = γ0ν is the damping coefficient which generally appears in the LLG equation. As it is well

known, the LLG equation is given in terms of m in the following form:

ṁ = −γ0µ0m × H
eff + αm × ṁ, (2.30)

where Heff is the effective field obtained by variational derivation of the total magnetic enthalpy

with respect to m, µ0 is the vacuum permeability constant and × denotes the cross product of two

vectors. By using the relation m = (sin ϑ1 cos ϑ2, sin ϑ1 sin ϑ2, cos ϑ1), it is not difficult to prove that

(2.30) is equivalent to (2.28). For more details, one is referred to the appendix A.

(d) Magnetic enthalpy

In the micromagnetic model, the free energy determined by the magnetization configuration

contains the elastic contribution Hela, the magnetocrystalline anisotropy contribution Hani, the
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exchange contribution Hexc and the magnetostatic contribution Hmag. For a cubic crystal, the

following magnetic enthalpy is used

H=H
ela + H

ani + H
exc + H

mag (2.31)

with
H

ela = 1
2 Cijkl(εij − ε0

ij)(εkl − ε0
kl),

H
ani = K1(m2

1m2
2 + m2

2m2
3 + m2

3m2
1) + K2m2

1m2
2m2

3

= K1(sin4 ϑ1 sin2 ϑ2 cos2 ϑ2 + sin2 ϑ1 cos2 ϑ1)

+ K2 sin4 ϑ1 cos2 ϑ1 sin2 ϑ2 cos2 ϑ2,

H
exc = Aemi,jmi,j = Ae(ϑ1,jϑ1,j + sin2 ϑ1ϑ2,jϑ2,j)

and H
mag = − 1

2 µ0HiHi − µ0MHimi(ϑµ),

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(2.32)

where Cijkl is the component of the material elastic tensor, Ae is the exchange constant, and K1 and

K2 are the magnetocrystalline anisotropy constants. Spontaneous magnetization-induced strain

ε0
ij, for cubic crystals, can be described as

ε0
11 = 3

2 λ100(sin2 ϑ1 cos2 ϑ2 − 1
3 ), ε0

12 = ε0
21 = 3

4 λ111 sin2 ϑ1 sin 2ϑ2

ε0
22 = 3

2 λ100(sin2 ϑ1 sin2 ϑ2 − 1
3 ), ε0

23 = ε0
32 = 3

4 λ111 sin 2ϑ1 sin ϑ2

and ε0
33 = 3

2 λ100(cos2 ϑ1 − 1
3 ), ε0

31 = ε0
13 = 3

4 λ111 sin 2ϑ1 cos ϑ2,

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(2.33)

where λ100 and λ111 is the magnetostriction strain along the direction 〈100〉 and 〈111〉 of a single

crystal, respectively, when it is magnetized at saturation along this direction.

With the above-specified magnetic enthalpy, the constitutive relations in (2.20) can be given as

σij = Cijkl(εkl − ε0
kl),

Bi = µ0[Hi + Mmi(ϑµ)]

and Πµj = 2Ae

M
Pµγ ϑγ ,j.

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(2.34)

The evolution equation (2.28) can be derived as

Πµj,j − 1

M

∂H

∂ϑµ

+ ζ ex
µ = 1

γ0
Lµγ ϑ̇γ , (2.35)

where

∂H

∂ϑµ

= −
∂ε0

ij

∂ϑµ

σij + ∂Hani

∂ϑµ

+ AeQµ − µ0MAµiHi, with Qµ =
[

sin 2ϑ1ϑ2,jϑ2,j

0

]

. (2.36)

The boundary condition and initial condition for ϑ can be set as

ϑµ = ϑ̂µ on ∂Bϑ , ϑµ,jnj = Θ̂µ on ∂BΘ and ϑµ(xi, t)|t=0 = ϑ̂0
µ(xi) in B. (2.37)

The combination of (2.31)–(2.36) constitutes the constraint-free formulation of the continuum

phase field model for ferromagnetic materials. No additional constraint on the magnitude of M is

required, because ‖M‖ = M has been intrinsically implemented in the model.

3. Finite-element implementation

(a) Dimensionless form

A direct implementation of the constrain-free model in the physical dimension leads to equation

systems with large condition numbers in the order of 1017. This can be due to the varying orders of

the parameters in the magnetic and the mechanical problem. For example, the elastic constant is in
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the order of 1011, whereas the vacuum permeability is in the order of 10−6. Hence, a dimensionless

form of the constrain-free model is implemented here. The model is normalized via the following

ansatz

K∗
1 = 1, µ∗

0 = 1, A∗
e = 1, H

∗ = H

K1
, K∗

2 = K2

K1
, t∗ = γ0K1t

M

x∗
i = xi

√

K1

Ae
, (),i∗ = ∂()

∂x∗
i

, u∗
i = ui

√

K1

Ae
, M∗ = M

√

µ0

K1

C∗
ijkl =

Cijkl

K1
, σ ∗

ij =
σij

K1
, ε∗

ij = εij, ε0∗
ij = ε0

ij, H∗
i = Hi

√

µ0

K1

B∗
i = Bi√

K1µ0
, ϑ̇∗

µ = ϑ̇µM

(K1γ0)
, φ∗ = φ

√

µ0

Ae
, f ∗

i = fi
√

Ae/K1

K1

and ζ ex∗
µ =

ζ ex
µ M

K1
.

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(3.1)

The magnetic enthalpy, the field equations, the constitute relations and the evolution equation

take the corresponding dimensionless form as follows:

H
∗ = 1

2 C∗
ijkl(ε

∗
ij − ε0∗

ij )(ε∗
kl − ε0∗

kl ) + m2
1m2

2 + m2
2m2

3 + m2
3m2

1 + K∗
2m2

1m2
2m2

3

+ ϑ1,j∗ϑ1,j∗ + sin2 ϑ1ϑ2,j∗ϑ2,j∗ − 1
2 H∗

i H∗
i − M∗H∗

i mi (3.2)

σ ∗
ij,j∗ + f ∗

i = 0 in B (3.3)

B∗
i,i∗ = 0 in B (3.4)

ε∗
ij = 1

2 (u∗
i,j∗ + u∗

j,i∗ ), H∗
i = −φ∗

,i∗ in B (3.5)

σ ∗
ij = C∗

ijkl(ε
∗
kl − ε0∗

kl ), B∗
i = H∗

i + M∗mi, Π∗
µj = 2Pµγ ϑγ ,j∗ (3.6)

and Π∗
µj,j∗ − ∂H∗

∂ϑµ

+ ζ ex∗
µ = Lµγ ϑ̇∗

γ . (3.7)

The dimensionless boundary and initial conditions are

u∗
i = û∗

i on ∂Bu, σ ∗
ij n∗

j = t̂∗i on ∂Bσ ,

B∗
i n∗

i = B̂∗ on ∂BB, φ∗ = φ̂∗ on ∂Bφ ,

ϑ = ϑ̂ on ∂Bϑ , ϑµ,j∗ n∗
j = Θ̂∗

µ on ∂BΘ

and ϑµ(x∗
i , t∗)|t∗=0 = ϑ̂0

µ(x∗
i ) in B

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(3.8)

Here, Θ̂∗
µ is the boundary value defined for ϑµ,j∗ , as it is shown in (2.37).

Remark. In the next section for the finite element formulation, only the dimensionless form of

the phase field model will be employed. The superscript stars are hence omitted for notational

simplicity.

(b) Finite-element formulation

The presented phase field model in the constraint-free form is implemented in the three-

dimensional finite-element method. The discretization is achieved by eight-node linear elements.

For more details, readers are referred to standard textbooks on finite-element methods [31].

The displacement u(u1, u2, u3), the scalar magnetic potential φ, and the polar and azimuthal

angles ϑ(ϑ1, ϑ2) are taken as independent variables. Thus, each node has six degrees of freedom

d
I = [uI

1 uI
2 uI

3 φI ϑ I
1 ϑ I

2]T, where the superscript I indicates the element node and the underbar

denotes a matrix. Note that if m is taken as the order parameter, it requires not only additional

constrain of ‖m‖ = 1, but also one more degree of freedom. In this sense, the constraint-free

formulation favours an efficient numerical implementation.
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The body force fi in (3.3) and the external configurational force ζ ex
µ in (3.7) are neglected.

Actually, ζ ex
µ can be given by setting the boundary condition of φ. With these simplicities,

corresponding to the strong forms in (3.3), (3.4) and (3.7), the following three weak forms could

be formulated

0 = −
∫
B

σijη
u
i,j dv +

∫
∂B

t̂iη
u
i ds,

0 = −
∫
B

Biη
φ

,i dv +
∫
∂B

B̂ηφ ds

and 0 = −
∫
B

[(

Lµγ ϑ̇γ + ∂H

∂ϑµ

)

ηϑ
µ + Πµjη

ϑ
µ,j

]

dv +
∫
∂B

2Pµγ Θ̂γ ηϑ
µ ds,

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(3.9)

where ηu
i , ηφ and ηϑ

µ are the test functions for ui, φ, and ϑµ, respectively.

By introducing the shape functions for the independent variables, the rate of the polar and

azimuthal angles, and the test functions, the discretized equations are obtained as

u =
∑

I

NI
uu

I, ηu =
∑

I

NI
uηuI, φ =

∑

I

NI
φφI, ηφ =

∑

I

NI
φηφI

and ϑ =
∑

I

NI
ϑϑ I, ϑ̇ =

∑

I

NI
ϑ ϑ̇

I
, ηϑ =

∑

I

NI
ϑηϑI.

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(3.10)

The superscript I denotes the node number. NI
u, NI

φ and NI
ϑ are the shape functions for the

displacements, the scalar magnetic potential and the polar and azimuthal angles, respectively. In

this paper, the underbar denotes Voigt notation of the corresponding quantities. Accordingly, the

strain in (2.3), the magnetic field in (2.6) and ηϑ
µ,j can be given as

εεε =
∑

I

B
I
uu

I, H = −
∑

I

B
I
φφI and ∇ηϑ =

∑

I

B
I
ϑηϑI (3.11)

and the constitutive relations in (3.6) as

σ =CCC(εεε − εεε0), B = H + Mm

and Π = [ϑ1,1 sin2 ϑ1ϑ2,2 ϑ1,2 sin2 ϑ1ϑ2,1 ϑ1,3 sin2 ϑ1ϑ2,3]T.

⎫

⎬

⎭

(3.12)

In the three-dimensional case, the matrices in (3.11) can be given as

B
I
u =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

NI
u,1 0 0

0 NI
u,2 0

0 0 NI
u,3

NI
u,2 NI

u,1 0

0 NI
u,3 NI

u,2

NI
u,3 0 NI

u,1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, B
I
ϑ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

NI
ϑ ,1 0

0 NI
ϑ ,2

Nϑ ,2 0

0 NI
ϑ ,1

NI
ϑ ,3 0

0 NI
ϑ ,3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and B
I
φ =

⎡

⎢

⎣

NI
φ,1

NI
φ,2

NI
φ,3

⎤

⎥

⎦
. (3.13)

Inserting the (3.10)–(3.13) into the weak forms (3.9) and taking the integration over the volume

Be of one element, we can obtain the element residuals

R
I
u = −

∫
Be

(BI
u)Tσ dv,

RI
φ = −

∫
Be

(BI
φ)T

B dv

and R
I
ϑ = −

∫
Be

[

NI
ϑ

(

L ϑ̇ + ∂H

∂ϑ

)

+ (BI
ϑ )TΠ

]

dv.

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(3.14)

Note that the surface terms in (3.14) can be integrated by applying the boundary conditions in

the finite-element software. Thereby, they are here ignored. The determination of the boundary

conditions on the order parameter is not a trivial task. In the following, we will tacitly assume

homogeneous Neumann type boundary conditions, i.e. ϑµ,jnj = Θ̂µ = 0. Note that this Neumann

 on September 11, 2014rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


10

rspa.royalsocietypublishing.org
Proc.R.Soc.A

470:20140517
...................................................

boundary automatically leads to the boundary mi,jnj = Aµi(ϑµ,jnj) = 0 which is widely used in the

conventional phase field model.

With respect to the time dependence of the residual, we use the implicit backward Euler time

integration ḋ = (dn+1 − dn)/�t. The quantities at the previous time-step tn are denoted by R
I
n and

d
J
n. The equation for the current time-step tn+1

R
I
n+1 = R

I

(

d
J
n,

d
J
n+1 − d

J
n

�t

)

(3.15)

should be solved to obtain d
J
n+1. For solving these nonlinear equations, the Newton iteration

scheme is performed at each time step. The corresponding iteration matrix for one element is

S
IJ = K

IJ + 1

�t
D

IJ . (3.16)

From the residuals, the stiffness matrix K
IJ and the damping matrix D

IJ can be calculated by

derivation with respect to uJ, φJ, ϑ J and u̇
J , φ̇J, ϑ̇

J
, respectively. Specifically, the non-zero stiffness

matrix can be derived as

K
IJ
uu = −∂R

I
u

∂uJ
=

∫
Be

(BI
u)T

CCC B
J
u dv, K

IJ
uϑ = −∂R

I
u

∂ϑ J
= −

∫
Be

(BI
u)T

CCC
∂εεε0

∂ϑ
N

J
ϑ dv (3.17)

K
IJ
φφ = −

∂RI
φ

∂φJ
= −

∫
Be

(BI
φ)T

B
J
φ dv, K

IJ
φϑ = −

∂RI
φ

∂ϑ J
=

∫
Be

(BI
φ)TMA

TN
J
ϑ dv (3.18)

K
IJ
ϑu = −

∂R
I
ϑ

∂uJ
= −

∫
Be

NI
ϑ

(

∂εεε0

∂ϑ

)T

CCC B
J
u dv,

K
IJ
ϑφ = −

∂R
I
ϑ

∂φJ
=

∫
Be

NI
ϑMA B

J
φ dv

and K
IJ
ϑϑ = −

∂R
I
ϑ

∂ϑ J
=

∫
Be

[

NI
ϑ

(

∂(L ϑ̇)

∂ϑ J
+ ∂2H

∂ϑ∂ϑ J

)

+ (BI
ϑ )T ∂Π

∂ϑ J

]

dv

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(3.19)

and the damping matrix as

D
IJ
ϑϑ = −

∂R
I
ϑ

∂ϑ̇
J

=
∫
Be

NI
ϑN

J
ϑL dv. (3.20)

All other components of the damping matrix are zero. Note that the stiffness matrix components

K
IJ
ϑϑ and the damping matrix components D

IJ
ϑϑ are unsymmetric. This unsymmetric characteristic

is intrinsically attributed to the precession nature of magnetization dynamics. The elements are

all integrated using a standard eight point Gauss integration scheme. It should be noted that this

procedure is in the element level. For the whole simulated object, the above nonlinear equations

and iteration matrix should be assembled into the global ones. The model is implemented as a

user element in the software FEAP [32].

4. Simulation results
As a typical magnetostrictive material, Fe81.3Ga18.7 is simulated by using the constraint-free phase

field model and its finite-element implementation. The material parameters are taken from the

literature [14,33] and are listed in table 1. For the simulation of precession in §4a, a single element

test was used. For the study of domains, a thin film nanostructure is simulated, in order to

obtain the characteristic features and simultaneously save computation time. The sample mesh

is 10 × 20 × 1. Given that the exchange coefficient of Fe81.3Ga18.7 has a similar magnitude as

Fe (Ae ∼ 10−11 J m−1), the original size of the simulated sample is around 30 × 60 × 3 nm3. The

finite-element mesh size is chosen in a manner that a smooth variation of the magnetization

over the whole sample should be resolved by the discretization. This means that the obtained
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precession

Heff

precessional switching

m

Figure 1. Illustration on precession and precessional switching of magnetization. (Online version in colour.)

Table 1. Material parameters of Fe81.3Ga18.7.

parameter name original value dimensionless value

C11 elastic constant 196 GPa 9.8 × 106
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C12 elastic constant 156 GPa 7.8 × 106
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C44 elastic constant 123 GPa 6.15 × 106
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

K1 anisotropy coe
cient 2 × 104 J m−3 1.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

K2 anisotropy coe
cient −4.5 × 104 J m−3 −2.25
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ae exchange coe
cient ∼ 10−11 J m−1 1.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M saturation magnetization 1.432 × 106 A m−1 11.348
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ100 magnetostrictive constant 2.64 × 10−4 2.64 × 10−4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ111 magnetostrictive constant 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

µ0 vacuum permeability 4π × 10−7 H m−1 1.0


domain wall should span over at least two or more elements. Note that continuum models have

been often used to study ferromagnetic domains in nanostructures [10,13,15,17,23]. As it will be

shown by the comparison with experimental observations in §4b, the choice of the sample size

30 × 60 × 3 nm3 and the application of our continuum phase field model are legitimate. For all

the examples, the boundary condition ϑµ,jnj = 0 is used. This leads to the boundary condition

mi,jnj = Aµi(ϑµ,jnj) = 0, which is commonly assumed in the literature (e.g. [8,13,15,23]).

(a) Precession and precessional switching

Precession and precessional switching are basic physical phenomena in magnetization dynamics

[34]. If there is no damping (i.e. no dissipation), the instantaneous change in m should be

perpendicular to both the external field and the direction of m. In other words, the effective

magnetic field (Heff) is unable to rotate m towards its direction, and m rotates itself around Heff

with a constant angle, as it is shown by the thin line in figure 1. This phenomenon is the so-called

precession. If there is damping, m can be gradually rotated towards the direction of Heff and

forms a spiral-type path, as it is illustrated by the thick green line in figure 1. This is called as

precessional switching. The spiral-type path can vary with the damping coefficient.

As a benchmark example, the constraint-free phase field model is used to reproduce precession

and precessional switching. To simulate this behaviour of a monodomain, a single finite element
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end

(a) (b)

m2

m2

external field Hex

initial m

m3
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m1
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1

–1

–1

0

1

0

a = 0

a = 1
a = 10
a = 100

a = 0.01
a = 0.1

0

1

Figure 2. (a) Initial magnetization con�guration and the external �eld for one-element simulation. (b) Simulated precession

behaviour and damping-dependent precessional switching. (Online version in colour.)

should be sufficient. As shown in figure 2a, the initial magnetization is in the x1-direction, while

the external magnetic field Hex∗ is applied in the x3-direction. A field of Hex∗ = 1.0 is exerted by

applying a magnetic potential difference to the two surfaces perpendicular to the x3-direction.

The simulated rotation path of m is presented in figure 2b, for different damping coefficient α.

In the case of α = 0, namely no damping, m rotates around Hex∗, and the rotation trajectory is

an in-plane circle perpendicular to the x3-direction. It indicates that the precession behaviour

is reproduced. In the cases of α > 0, damping dependent precessional switching is observed.

When α is very small, for example α = 0.01, a large number of precessional loops occur till m is

oriented along the direction of Hex∗. When α is moderately small, for example α = 0.1, much less

number of loops is required. When α is relatively large, for example α = 1.0, 10 and 100, less than

one precessional loop is needed, and m directly rotates towards Hex∗.The rotation trajectory lies

nearly in one plane. These simulation results of precession and precessional switching indicate

that magnetization switching dynamics has been soundly considered in the constraint-free phase

field model.

(b) Domain and magnetic vortex

The proposed model is further applied to simulate the domain structure in a thin nanostructure

which is free from mechanical and magnetic load, as shown in figure 3. The mechanical boundary

condition for all the sample surfaces is traction-free, i.e. σ ∗ · n = 0. The magnetic boundary is set

as B∗ · n = 0 and the damping coefficient α = 1.0. We start with an initial random distribution

shown in figure 3a and then perform finite-element simulation till the equilibrium state is

obtained. As it is shown in figure 3b, two vortices are formed in the equilibrium configuration.

The vortex, a curling configuration with a core, consists of four domains separated by 90◦

domain walls. Most interestingly, in the vortex core, the magnetization rotates gradually out

of the plane. This phenomenon makes our simulation results essentially different from the

vortices given in the literature [23,25]. It should be noted that this simulated vortex with curling

and out-of-plane structure is attributed to the constraint on magnetization magnitude. In the

vortex core, due to the strictly satisfied constraint ‖m‖ = 1, the magnetization cannot vanish

(must be unit) and turns perpendicular to the surface, thus avoiding the singularity. This is

different in the case of ferroelectrics, where the polarization has no constraint in its magnitude

and it can remain in-plane by reducing its magnitude to very small values [20]. In fact, with

‖m‖ = 1, magnetization in the vortex remaining in plane would significantly increase both the

exchange and the magnetocrystalline anisotropy energy. As the out-of-plane m2-direction is also
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Figure 3. (a) Initial (i) and equilibrium (ii) magnetization con�guration in a free- standing sample. The magnetic boundary

condition is B∗ · n= 0. (b) The contour plot ofm1 in the equilibrium state. (c) Comparison of themeasured and the calculated

out-of-plane component m2 along the line CC
′ shown in (b). (d) Comparison of the measured and the calculated in-plane

component m1 along the line DD
′. Both CC′ and DD′ go through the vortex core. The experimental signal is taken from ref.

[35]. (Online version in colour.)

the easy axis, the curling and twisting-out structure largely decreases the exchange energy and

the magnetocrystalline anisotropy energy and thus is energetically favourable. Note that we

have also considered a larger sample with size of 30 × 60 × 9 nm3 and found that the domain

configuration has no significant difference.

This simulated vortex phenomenon is consistent with the experimental observations in

nanoscale ferromagnetic thin films [35]. Figure 3c shows the comparison of the out-of-plane

component m2 along the line CC′ shown in figure 3b. A good agreement can be seen between

the measured and the calculated results. Furthermore, the in-plane component m1 along the line

DD′ is also considered. As demonstrated in figure 3d, the experimental and the simulated results

agree well with each other. In particular, the measured and the calculated profiles show a vortex

width of around 9 nm, also in accordance with the experimental measurements [35].

(c) Evolution of the vortex con�guration under magnetic loading

Simulation is performed to show domain poling under a magnetic field. As an example, the

equilibrium state in figure 3a is taken as the initial configuration. The external magnetic field

Hex∗ = 1.0 is applied antiparallel to the x3-direction. The damping coefficient is set as 1.0. As it

is shown in figure 4a, the two vortices move oppositely towards the sample corners. The motion

trajectory of the vortices is approximately along the in-plane diagonal of the sample. After these

vortices vanish at the corners, a uniform configuration is formed gradually. The whole evolution

procedure can also be demonstrated through the contour plot of the component m3, as it is shown

in figure 4b. During this process, the regions with magnetization parallel to the external magnetic

field expand gradually, whereas the regions with magnetization antiparallel and perpendicular

to the external magnetic field shrink. It should be noted that the moving direction of the vortex

has the component perpendicular to the external magnetic field, which is consistent with the

experimental observation [36].

(d) 180◦ domain wall evolution under magnetic loading
As another example, the evolution of a 180◦ domain wall under an external magnetic field is

investigated. As reported in §4a, the magnetization switching is dependent on the damping

coefficient α. It has been even evidenced that the damping-induced dissipation is the driving
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Figure 4. (a) Domain evolution under an external magnetic �eld, from the initial vortices con�guration to a monodomain

con�guration. (b) Contour plot ofm3 during the evolution process shown in (a). (Online version in colour.)
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force for magnetic domain wall motion [37]. If there is no damping, the motion of the domain

wall will not occur. In this subsection, we show that the magnetization switching of the 180◦

domain configuration can also be damping dependent. Figure 5 shows the distribution of out-

of-plane magnetization m2. When the damping is small, e.g. α = 0.01, 0.1, the magnetization near

the 180◦ wall rotates out of the plane, as it is shown in figure 5a,b. Whereas, it can be seen that

when the damping is large, e.g. α = 1.0, 10.0, the rotation of magnetization is almost constrained

in the plane, as shown in figure 5c,d. Intrinsically, this behaviour is attributed to the magnetization

dynamics. By a LLG-type evolution equation which has only a damping term and no precession

term, Miehe et al. showed in-plane rotation of magnetization [25]. Wang et al. used the TDGL

equation (not the LLG equation) that intrinsically cannot involve the damping effect and found

that most magnetization vectors rotate in plane [15].

For a comparison, the evolution of the 180◦ wall in the cases of α = 0.1 and 10.0 is specifically

given in figure 6. In the case of α = 0.1, the magnetization near the wall first rotates out of plane,

destroying the sharp 180◦ wall configuration. Then the magnetization away from the wall also

rotates out of plane, and two vortices initiate at the sample boundary. Subsequently, the vortex

in the region whose magnetization is along the external magnetic field rapidly disappears. The
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Figure 6. Poling of a 180◦ domain wall con�guration for the case (a)α = 0.1 and (b)α = 10.0. (Online version in colour.)

other vortex forms and moves from one edge towards another edge under the drive of the

external magnetic field. Finally, this vortex moves to the up-left corner and disappears there. The

magnetization in the whole sample is then aligned along the the external magnetic field. Owing

to the out-of-plane rotation of the magnetization and the formation of vortices, this evolution

process is relatively complicated. During this process, the 180◦ wall was totally destroyed, and

new magnetization configurations were constructed. By contrast, the evolution process in the case

of large damping α = 10.0 is much simpler, as one can see in figure 6b. The magnetization merely

rotates in the plane and the 180◦ wall becomes diffusive. The magnetization in the left region,

initially antiparallel to the external magnetic field, always rotates counterclockwise to be aligned

along the external magnetic field. While the magnetization in the right region, initially parallel to

the external magnetic field, rotates firstly clockwise and then counterclockwise. In summary, the

poling process of a 180◦ domain configuration is strongly dependent on the damping coefficient

α. It should be noted that a thicker sample with a mesh of 10 × 20 × 3 is also calculated and it is

found that the evolution process is almost the same.

(e) Domain evolution under mechanical loading

Besides the ferromagnetic switching, the constraint-free phase field model can also simulate

the ferroelastic switching. It essentially makes this phase field model different from the

micromagnetic models. In the simulation, the equilibrium vortex structure is taken as the initial

configuration, as shown in figure 7a. The mechanical load is applied by assigning displacement.

The surface at x∗
3 = 0 is fixed, and the displacement at the opposite surface is set as u∗

3 = 0.07 for
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the case of tension and u∗
3 = −0.07 for the case of compression. The damping coefficient is 1.0.

It is shown in figure 7b that the tensile loading causes the circular vortices to be elliptical, with

the major axis along the tensile direction. As for the domains, the tensile loading increases the

fraction of domains with the magnetization along the x3-direction at the expense of domains

with the magnetization along the x1-direction, as shown in figure 7e. On the contrary, under

the compressive loading, elliptical vortices with major axis perpendicular to the compressive

direction appear (figure 7c). The fraction of domains with magnetization along the x1-direction

remarkably increases (figure 7f ). These results are expected. A tensile stress increases the

regions of domains with magnetization parallel to the x3-direction, whereas a compressive stress

decreases them. By examining the out-of-plane magnetization component m2 along the line

through the vortex, we can quantitatively obtain the changes in vortex, as shown in figure 7g.

With respect to the x1-direction, the vortex becomes narrower under tensile loading while wider

under compressive loading.

5. Conclusion
In conclusion, we have proposed a continuum constraint-free phase field model for ferromagnetic

materials. Unlike conventional phase field models which take m(m1, m2, m3) as the order

parameters, the constraint-free phase field model uses the polar and azimuthal angles (ϑ1, ϑ2). As

a result, the constraint on magnetization is satisfied automatically within the model itself, and no

additional numerical strategy for the phase field evolution is needed. The model was developed

in a thermodynamic framework. Based on a configurational force system for (ϑ1, ϑ2) and the

second law of thermodynamics, a set of thermodynamically consistent constitutive relations and

a generalized evolution equation for the order parameters (ϑ1, ϑ2) have been obtained. As it has

been shown in §3 that the model leads to a straightforward three-dimensional finite-element

implementation, which requires no numerical treatment on the constraint and has one less degree

of freedom.

The presented numerical simulations evidence that the model can readily predict the

fundamental phenomenon in ferromagnetic domain switching. Reproduction of precession and

damping-dependent precessional switching behaviour shows that the model gives a physically

sound switching dynamics. Results on domain structure in a free-standing thin film demonstrates

that the magnetization rotates around the vortex core and gradually twists out of the plane.

The magnetization distribution around the vortex and the vortex width agree well with

experimental observations. Under an external magnetic field, the vortex motion has a component

perpendicular to the magnetic field, which is also consistent with experimental observations.
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Ferromagnetic switching of 180◦ domain configuration is damping-dependent. Magnetization

rotates out of plane and a vortex tends to form in the case of small damping, whereas

magnetization is constrained into in-plane rotation in the case of large damping. Examples have

been given for ferroelastic switching, i.e. domain evolution under mechanical loading. It is found

that a tensile loading increases the fraction of domains along the tensile direction, whereas

a compressive loading increases the fraction of domains perpendicular to the compressive

direction. Accordingly, the vortex will change from a circular shape to an elliptical shape.

It can be concluded from the simulations that a three-dimensional model and implementation

is indispensable, and the switching mechanism of magnetization is spatial. Furthermore, the

ferromagnetic domain evolution is strongly damping dependent. These two features have not

been well considered in the conventional phase field models in the literature. In our future work,

the mesoscopic response of ferromagnetic materials will be investigated by using this model.
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Appendix A
With ṁi = Aµiϑ̇µ and m = [sin ϑ1 cos ϑ2 sin ϑ1 sin ϑ2 cos ϑ1]T, the LLG equation (2.30) can be

written as

⎡

⎢

⎣

ϑ̇1 cos ϑ1 cos ϑ2 − ϑ̇2 sin ϑ1 sin ϑ2

ϑ̇1 cos ϑ1 sin ϑ2 + ϑ̇2 sin ϑ1 cos ϑ2

−ϑ̇1 sin ϑ1

⎤

⎥

⎦
= −γ0µ0

⎡

⎢

⎣

sin ϑ1 cos ϑ2

sin ϑ1 sin ϑ2

cos ϑ1

⎤

⎥

⎦
×

⎡

⎢

⎣

Heff
1

Heff
2

Heff
3

⎤

⎥

⎦

+ α

⎡

⎢

⎣

sin ϑ1 cos ϑ2

sin ϑ1 sin ϑ2

cos ϑ1

⎤

⎥

⎦
×

⎡

⎢

⎣

ϑ̇1 cos ϑ1 cos ϑ2 − ϑ̇2 sin ϑ1 sin ϑ2

ϑ̇1 cos ϑ1 sin ϑ2 + ϑ̇2 sin ϑ1 cos ϑ2

−ϑ̇1 sin ϑ1

⎤

⎥

⎦

= −γ0µ0

⎡

⎢

⎣

sin ϑ1 sin ϑ2Heff
3 − cos ϑ1Heff

2

cos ϑ1Heff
1 − sin ϑ1 cos ϑ2Heff

3

sin ϑ1 cos ϑ2Heff
2 − sin ϑ1 sin ϑ2Heff

1

⎤

⎥

⎦

+ α

⎡

⎢

⎣

−ϑ̇1 sin ϑ2 − ϑ̇2 sin ϑ1 cos ϑ1 cos ϑ2

ϑ̇1 cos ϑ2 − ϑ̇2 sin ϑ1 cos ϑ1 sin ϑ2

ϑ̇2 sin2 ϑ1

⎤

⎥

⎦
. (A 1)

Left multiplying (A 1) with the matrix

[

− cos ϑ1 cos ϑ2 sin ϑ1 − cos ϑ1 sin ϑ2 sin ϑ1 sin2 ϑ1

− sin ϑ2 cos ϑ2 0

]

(A 2)

can give

[

ϑ̇2 sin ϑ1

−ϑ̇1 sin ϑ1

]

= −γ0µ0

[

cos ϑ1 cos ϑ2Heff
1 + cos ϑ1 sin ϑ2Heff

2 − sin ϑ1Heff
3

− sin ϑ1 sin ϑ2Heff
1 + sin ϑ1 cos ϑ2Heff

2

]

+ α

[

ϑ̇1

sin2 ϑ1ϑ̇2

]

⇒
[

ϑ̇2 sin ϑ1 − αϑ̇1

−ϑ̇1 sin ϑ1 − α sin2 ϑ1ϑ̇2

]

= −γ0µ0

[

cos ϑ1 cos ϑ2Heff
1 + cos ϑ1 sin ϑ2Heff

2 − sin ϑ1Heff
3

− sin ϑ1 sin ϑ2Heff
1 + sin ϑ1 cos ϑ2Heff

2

]
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⇒ 1

γ0

[

α − sin ϑ1

sin ϑ1 α sin2 ϑ1

][

ϑ̇1

ϑ̇2

]

= µ0

[

cos ϑ1 cos ϑ2 cos ϑ1 sin ϑ2 − sin ϑ1

− sin ϑ1 sin ϑ2 sin ϑ1 cos ϑ2 0

]

⎡

⎢

⎣

Heff
1

Heff
2

Heff
3

⎤

⎥

⎦

⇒ 1

γ0
Lµγ ϑ̇γ = µ0AµjH

eff
j . (A 3)

Incorporating the external magnetic field gex
j /µ0, the effective field can be derived as

Heff
j = − 1

µ0M

δH

δmj
+

gex
j

µ0
= − 1

µ0M

(

∂H

∂mj
− 2Aemj,ii

)

+
gex

j

µ0
. (A 4)

Thus,

µ0AµjH
eff
j = − 1

M
Aµj

∂H

∂mj
+ 2Ae

M
Aµjmj,ii + Aµjg

ex
j

= − 1

M

∂H

∂ϑµ

+ 2Ae

M
(Pµγ ϑγ ,ii + Pµγ ,iϑγ ,i) + ζ ex

µ

= −πµ + Πµj,j + ζ ex
µ . (A 5)

Combining (A 3) and (A 5) yields

Πµj,j − πµ + ζ ex
µ = 1

γ0
Lµγ ϑ̇γ (A 6)

which is the same as the evolution equation in (2.28).
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