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Abstract— In this study, an improved bit-array representation
method for structural topology optimization using the Genetic Al-
gorithm (GA) is proposed. The issue of representation degeneracy
is fully addressed and the importance of structural connectivity
in a design is further emphasized. To evaluate the constrained
objective function, Deb’s constraint handling approach is further
developed to ensure that feasible individuals are always better
than infeasible ones in the population to improve the efficiency of
the GA. A hierarchical violation penalty method is proposed to
drive the GA search towards the topologies with higher structural
performance, less unusable material and fewer separate objects
in the design domain in a hierarchical manner. Numerical results
of structural topology optimization problems of minimum weight
and minimum compliance designs show the success of this
novel bit-array representation method and suggest that the GA
performance can be significantly improved by handling the design
connectivity properly.

I. INTRODUCTION

Structural optimization deals with optimal design of load-
bering structures. Structural topology optimization is one of
the most important subset approaches of structural optimiza-
tion which aims to find the best possible structure that meets
different multidisciplinary requirements such as functionality
and manufacturing [1]. Generally, structural topology opti-
mization is a powerful tool which can help the designer select
suitable initial structural topologies for conceptual design and
more importantly, it is identified as economically the most
rewarding task in structural design because it can achieve far
greater savings than conventional (sizing or shape) optimiza-
tion [2]–[4].

Structural topology optimization has yet been identified
as one of the most challenging tasks in structural design.
Various optimization methods have been developed over the
past fifteen years since the pioneer work of Bendsøe and
Kikuchi [3] and it is well recognized that structural topology
optimization as a generalized shape optimization problem has
received wide attention and experienced considerable progress
recently, as reviewed in detail by Rozvany [2]. Those exten-
sively developed methods can be classified as a few families

of structural topology optimization methods [5], [6]. One of
the most established families of methods is the one based
on the homogenization approach proposed by Bendsøe and
Kikuchi [3], in which the structural form is represented by a
sponge-like material with micro-scale cells with voids and the
material throughout the structure is redistributed by using an
optimality criteria procedure. Moreover, as an important alter-
native approach of this family of homogenization methods, the
power-law approach [7], which is also called the SIMP (Solid
Isotropic Microstructure with Penalization) method in [8] and
originally introduced by Bendsøe in 1989 [9], has got a fairly
general acceptance during the past few years [2]. Another
important family of structural optimization methods is based
on the Evolutionary Structural Optimization (ESO) method
proposed by Xie and Steven [4], in which the material in a
design domain which is not structurally active is considered
as inefficiently used and can thus be removed by using some
element rejection criteria. Both the homogenization method
and the ESO method have been further developed by a large
number of researchers and two different families of methods
have thus been established [2], [5], [6]. It should be pointed out
that although computationally effective, both cannot perform
a global search and thus do not necessarily converge to
the global optimal solution for the given objective function
and constraints [2]. Another emerging family of structural
topology optimization methods is the one using the Genetic
Algorithms (GAs), which are gradually recognized as a kind
of powerful and robust stochastic global search method [2].
More recently, GAs have been increasingly employed in the
structural topology optimization field [6], [10]–[20].

It is well known that for the GAs, the choice of a represen-
tation method is of vital importance. Currently, the bit-array or
binary-string representation method has been widely adopted
[10]–[14]. The bit-array representation method [11], [15],
which is similar to the binary-string representation method
adopted by Jakiela and his co-workers [10], [13], as well as
Fanjoy and Crossley [14], is an intuitive and straightforward



method. However, the design connectivity of each individual
cannot be guaranteed since each element can be either solid or
void and extra constraint on the connectivity is not involved
in the bit-array representation itself. This issue can even lead
to the failure of the GA to find a feasible solution, as reported
in [15]. Another representation method is the Voronoi-based
representation [11], [15], in which a finite number of Voronoi
sites being labeled 0 or 1 are used to define the Voronoi
diagram and to represent a partition of the design domain into
two subsets. Although good results on the topological optimum
design problems have been obtained [11], [15], the problem of
design connectivity still exists in this representation method.

It has been well recognized that design connectivity is an
important issue for the structural topology design [14]. How-
ever, this issue of design connectivity has to be fully addressed
yet. Although most of the bit-array or binary string repre-
sentation GAs have included the connectivity analysis [10],
[11], [13]–[15], those design connectivity handling approaches
cannot well bias the GA search to favor the formation of
connected topologies from randomly generated disconnected
topologies through evolution. Furthermore, they may cause the
problem of representation degeneracy, analogous to recessive
genes [14], which is acknowledged to be generally bad for the
GA optimization [11].

The objective of the present study is to further address
the design connectivity issue in the structural topology op-
timization using the bit-array representation GA. The number
of connected objects is explicitly used as an equality con-
straint function and a hierarchical violation penalty method
is proposed. An identical initialization method is also pro-
posed. Numerical results based on the minimum compliance
and minimum weight design problems demonstrate the good
performance of the present GA in terms of accuracy and
computational cost.

II. IMPLEMENTATION OF THE GA WITH A BIT-ARRAY
REPRESENTATION METHOD

A. Chromosome Representation

In this study, the bit-array representation is adopted as
the population chromosome representation method to define
the distribution of material and void in a two-dimensional
topology design domain, as shown in Figure 1, in which ‘1’
represents material and ‘0’ void. This is a straightforward and
natural representation method [14] and the decoding step is
quite simple and intuitive. However, disconnected structures,
as shown in Figure 2, and checkerboard patterns, as shown in
[13], which are not desirable in the practical applications, are
also included in this representation. To improve the GA per-
formance, additional strategies must be taken to bias the GA
search towards connected structures and feasible individuals
during the GA evolution.

B. Objective Function

In the field of structural topology optimization, the impor-
tance of the design connectivity should be highlighted. In the
present study, different from all the previous work dealing
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Fig. 1: Decoding step of the bit-array representation
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Fig. 2: Connected objects in a design domain

with the design connectivity issue [10], [11], [13]–[15], the
number of connected objects in the design domain is explicitly
adopted as an equality constraint function. Since all the other
constraints such as the constraints on the volume fraction or
the maximum displacement may be taken as inequality con-
straints, the general single-objective constrained optimization
problem can be written as

Minimize: f(x) , x ∈ R

subject to gi(x) ≤ 0 , i = 1, 2, . . . , I
nc − 1 = 0

(1)

where x is the solution matrix (bit-array) in the design domain
R, f(x) the objective function, gi(x) the i-th inequality
constraint function, I the number of inequality constraints, nc

is the number of connected objects in R, as shown in Figure
2, in which 3 connected objects can be found.

This constrained optimization problem is next converted
into an artificial unconstrained optimization problem by adopt-
ing Deb’s constraint handling approach [21], which can be
written as

F (x) =

{
f(x) if x ∈ F

f̃ + viol(x) otherwise
(2)

where F (x) is the artificial unconstrained objective function,
F the feasible region of the design domain R, f̃ the objective
function value of the worst feasible solution in the population,
and viol(x) the summation of all the violated constraint
function values.

C. Hierarchical Violation Penalty Method

A hierarchical violation penalty method is proposed to bias
the GA search towards a combination of connected structures
with better performance, fewer connected objects and less



unusable material in the design domain. Here a connected
object is referred to as a group of elements represented in the
regular mesh in which each element shares at least one element
face (edge) with all the other elements of the group directly
or indirectly through other elements. Thus, a connected object
defined here is different from the connected elements defined
in [10], [13] or connected structure defined in [14] or viable
structure defined in [11], in which the support regions and
loading regions must be connected properly. To transfer the
loads to the support, the loading regions and the support
regions must be properly connected. Furthermore, if there are
more than one connected objects, it is impossible to transfer
loads between those objects [14].

The basic idea of the proposed hierarchical violation penalty
method is to drive the GA search towards connected structures
and better performance based on different penalty multipliers.
Multiple objects are driven into the formation of a single object
by penalizing both the number of objects and the area of
unusable objects. Single objects are driven into the formation
of the ones with better performance.

According to the hierarchical violation penalty method, if
the number of connected objects of the topology in the design
domain is more than 1, the summation of all the violation
values viol(x) can be formulated as

viol(x) = Γc (nc − 1) + ΓaÃ , (3)

where Γc is the penalty multiplier for the number of connected
objects of the topology in the design domain to drive the
search towards fewer connected objects and Γa is the penalty
multiplier for the minimum area Ã (in terms of number of
objects) of all the disconnected objects, rather than total area
of all the unusable objects that do not connect the loading
regions and the support regions together [11], to favor the
occurrence of load bearing objects. The values of these two
penalty multipliers are problem dependent, but the former
should be much larger than the latter to ensure that the number
of connected objects is more heavily penalized. In the present
numerical implementations, it is adopted that Γc = A0, in
which A0 is the area of the whole design domain in terms
of number of elements, and Γa = 1.

According to the hierarchical violation penalty method,
if the number of connected objects of the topology in the
design domain is equal to 1, different penalties will be applied
according to the violation on the loading bearing ability and
the violation on the inequality constraint functions. If this
single connected object in the design domain connects both
the support regions and the loading regions together, then the
connected object turns out to be a connected structure and thus
the finite element analysis can be performed. Based on the
results of the finite element analysis, if there is any violation
of the inequality constraints, the summation of all the violation
values viol(x) will be formulated as

viol(x) = Γn

∑

i

gi(x) , (4)

in which gi(x) is normalized by formulating it to have a

maximum violation of 1 [22], and the problem dependent
penalty multiplier Γn is assigned as Γn = 1 in the present nu-
merical implementation to favor the occurrence of connected
structures. However, if the resulting single connected object
of the topology in the design domain does not connect both
the support regions and the loading regions properly, then the
connected object turns out not to be a load bearing structure
and thus the finite element analysis need not be performed. In
this case, viol(x) will be given a problem dependent prescribed
worst value to obtain a near zero fitness to help eliminate
such individuals in the population. In the present numerical
implementation, it is adopted that viol(x) = (A0)

2.
Therefore, this hierarchical violation penalty method can

drive the genetic algorithm search towards topologies with ei-
ther higher structural performance or fewer connected objects
in the design domain or less unusable material. Furthermore,
the problem of representation degeneracy has been fully ac-
counted for by the hierarchical penalty.

D. Rank-Based Fitness Assignment

Rank-based fitness assignment usually behaves in a robust
manner. In the present study, Baker’s linear ranking algorithm
[23] with a selective pressure of 2 is used. The fitness of each
individual in the population is defined as

F̂ (xi) =
2 (ni − 1)

Nind − 1
, (5)

where F̂ (xi) is the fitness of the i-th individual, ni the position
of the i-th individual in the individuals rank, and Nind the
population size.

E. Population Initialization

Usually, population initialization is achieved by generating
the required number of individuals using a random number
generator that uniformly distributes numbers in the desired
range. However, by using this initialization method on the bit-
array representation, it is often found that there is no connected
structure in the initial population and the population in the
early generations and the GA may thus fail to converge if
the finite element mesh is not too coarse. To guarantee the
existence of connected structures in the population for such
problems, an alternative population initialization method is
also proposed. In this method, all individuals in the initial
population are identical and they are designs where the whole
design domain is filled with material (i. e. there are no void
elements). With appropriately selected GA operators, the con-
vergence of this GA can also be achieved since the diversity of
the population in the early generations can be achieved mainly
through mutation operation.

F. Other GA Operators

Other GA operators include the SUS (Stochastic Universal
Sampling) selection method, the uniform crossover method,
binary mutation, and an elitist strategy to ensure that the most
fit individuals in the population propagate through successive
generations.



III. RESULTS AND DISCUSSION

With those introduced GA operators, the proposed bit-
array representation GA is applied to evolutionary structural
topology design problems. Unless otherwise stated, the follow-
ing settings are used in the numerical experiments presented
below: standard SGA evolution with a population size of 100
and a generation gap (the fractional difference between the
new and old population sizes [24]) of 0.9 and a mutation
rate of 0.01; all runs are stopped after 500 generations; all
the runs are carried out using MATLAB; all the number of
function evaluations are referred to the number of the finite
element analysis based on a connected structure with a single
connected object; and all the FE function evaluations are based
on Sigmund’s corresponding FEA code in [7], in which a
planar stress square element is used; the results obtained for
each problem are based on 20 independent runs of the SGA;
and all the CPU time is based on a desktop computer with
an Intel Pentium IV processor of 2 GHz. As to the physical
property of the plates, it is also assumed that E t = 1, where
E is Young’s elasticity modulus and t the thickness of the
plate, and Poisson’s ratio ν = 0.3.

A. Minimum Compliance Design

The example presented here is a minimum compliance
optimal topology design problem [7], which can be expressed
as

Minimize: C (x) , x ∈ R

subject to V (x)/V0 ≤ f
(6)

where x is a solution vector, C(x) the compliance of the
topology, V (x) and V0 the material volume and the design
domain volume, respectively, and f the prescribed volume
fraction.

This example will demonstrate the performance of the
present GA in dealing with structural topology optimization of
a clamped beam with a high volume fraction (f = 0.7), which
can be classified as a generalized shape optimization problem
[2] and usually FE-based topology optimization algorithms
should be involved. As shown in Figure 3, a symmetric design
domain of the size 2H × H (H = 5) discretized into a
24 × 12 mesh is used and the loading of P = 1 is applied.
This problem is similar to the one in the standard topology
optimization literature (see [25]).

�
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H

L=2H

Fig. 3: Design domain of a 2× 1 clamped beam with a
volume fraction of 0.7.

The result of Figure 4 is obtained by use of the 99
line MATLAB code [7] of Sigmund’s power-law approach

together with a filtering technique for controlling geometric
complexity and ensuring existence of solutions to the topology
optimization problem (6). It can be seen that the boundary of
the geometry is quite fuzzy. Since the power-law approach
is a continuous material density re-distribution of the finite
elements in the design domain, integrating the result of Figure
4 into an automated structural design procedure would be a
major difficulty. Usually, it is left to the designer to use a
particular approach to finish the post-processing task of the
fuzzy topology [26]. Figure 5 displays that better geometry
can also be obtained by using a finer mesh of 60×30, however,
the computational cost would also increase more significantly
(204 times larger in CPU time) than the improvement in the
compliance value (3.69% better).

Fig. 4: Optimal topology obtained by the power-law
approach [7], C = 50.37 (24× 12 mesh).

Fig. 5: Optimal topology obtained by the power-law
approach [7], C = 48.51 (60× 30 mesh).

The result of Figure 6 is the best topology obtained by
use of the present bit-array representation GA together with
a hierarchical violation penalty method to bias the GA search
towards a combination of connected structures with better per-
formance, fewer connected objects and less unusable material
in the design domain. It can be seen that the boundary of the
optimal geometry is quite distinctive (black and white design)
and the optimal compliance is better than those of the previous
two. The success of the present bit-array representation method
together with the GA is thus demonstrated. Furthermore, the
efficiency of adopting Schoenauer’s penalization approach [11]
on the area of the disconnected objects, in which the total area
of the unusable objects is used, in the present hierarchical
violation penalty method is also studied. The corresponding
best topology is shown in Figure 7. It can be seen that good
result can also be obtained with a bit worse compliance value
(0.91% higher). The result of Figure 8 also suggests that the
penalization on the minimum area, rather than the total area,
of the disconnected objects would behave better, which may



contribute to the higher efficiency of the former in reducing
the total number of disconnected objects.

Fig. 6: Optimal topology obtained by the present GA,
C = 47.14 (minimum area penalization).

Fig. 7: Optimal topology obtained by the present GA,
C = 47.57 (total unusable area penalization).
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Fig. 8: Convergence of the bit-array representation GA
(averaged over 20 runs).

B. Minimum Weight Design

The minimum weight optimal topology design problem can
be expressed as

Minimize: W (x) , x ∈ R

subject to D(x) i
max −D i

lim
≤ 0 , i = 1, 2, . . . , J

nc − 1 = 0
(7)

where W (x) the weight of the topology, D(x) i
max the max-

imal displacement under loading i, D i

lim
the prescribed dis-

placement limit of loading i and J the total number of load
cases. In the present study, only one load case is considered.

The minimum weight optimal topology design problem in
[15] is adopted in this study to compare the results of the

present bit-array representation with those of the Voronoi-bar
representation presented in [15], in which each individual is
a list of Voronoi-bars. A cantilever plate of aspect ratio 2× 1
with the left boundary fixed and a unit point force applied
vertically downward at half-height of the right boundary is
studied. The plate is discretized into a 20× 10 mesh, and the
limit on the maximal displacement is D i

lim
= 220.

The minimum weight design of the 2× 1 plate using the
present GA is carried out. For this instance, the average CPU
time of one generation is 4.1 s. Figure 9 displays results
of those best topologies of the 2× 1 plate. It can be seen
that the two best topologies given by the present bit-array
representation are with lower weight values 0.29 and 0.295,
respectively, and these are corresponding improvements of
12.1% and 10.6%, compared to that of the best topology
given by the Voronoi-bar representation [15] (with a higher
weight value of 0.33). Figure 10 shows the best convergence
characteristics of the present bit-array representation GA. As
expected, the GA with random initial population converges
faster than that with identical initial population due to the
relatively higher diversity produced by the former. Hence,
it is demonstrated that the present bit-array representation
outperforms the Voronoi-bar representation in accuracy and
computational cost for the 2× 1 plate while using the GAs.

(a) Voronoi-bar [15],W (x) = 0.33

(b) Bit-array (with random initial population),
W (x) = 0.29, Dmax = 219.48

(c) Bit-array (identical initial population),
W (x) = 0.295, Dmax = 216.22.

Fig. 9: Comparison of the best topologies of the 2× 1 plate.
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Fig. 10: Convergence of the bit-array representation GA on
the 2× 1 plate (of the best GA run).

IV. CONCLUSION

A high performance bit-array representation method for
structural topology optimization using the GA is proposed.
The importance of design connectivity is further emphasized
by using the number of connected objects explicitly as an
equality constraint function and the issue of representation
degeneracy is fully addressed. A hierarchical violation penalty
method is proposed to penalize the violated constraint func-
tions in a hierarchical way to eliminate the representation
degeneracy and drive the GA search towards the combination
of better structural performance, fewer connected objects and
less unusable material in the design domain. The problem
of representation degeneracy is thus alleviated and the GA
convergence to connected structures can be well guided. With
appropriately selected GA operators, the proposed bit-array
representation GA is applied into the minimum weight design
problems. Numerical results show that the present bit-array
representation method GA outperforms the popular power-
law approach in the optimal compliance value and the quality
of the geometry boundary due to its effective discrete global
search capacity, furthermore, in GAs the present bit-array rep-
resentation outperforms the Voronoi-bar representation method
in terms of accuracy and computational cost due to its signif-
icant advantage in evolving into load bearing structures.
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