
A Constra in t -Or iented Service
Creat ion E n v i r o n m e n t

Bernhard Steffen*, Tiziana Margaria*,
Andreas Claflen*, Volker Braun*,
Rita Nisius t, Manfred Reitenspiefl t

Intelligent Network (IN) services are customized telephone services, like
e.g., 1) 'Free-Phone', where the receiver of the call can be billed if some
conditions are met, 2) 'Universal Private Telephone', enabling groups of
customers to define their own private net within the public net, or 3) 'Part-
ner Lines', where a number of menus leads to the satisfaction of all desires.
The realization of these services is quite complex and error prone.

The current trend in advanced IN services clearly evolves towards de-
coupling Service Processing Systems from the switch network (see e.g. [3]).
The reasons for this tendency lie in the growing need for decentralization of
the service processing, in the demand for quick customization of the offered
services, and in the requirement of rapid availability of the modified or re-
configured services. Service Processing Systems are those elements of the
IN architecture which provide service processing logic and control but not
connection control and management, which are provided by the underlying
switch system. In particular, they include Service Creation Environments 1,
which are interactive environments responsible for the creation, modifica-
tion, customization and provision of new services.

Service Creation Environments for the creation of IN-services are usu-
ally based on classical 'Clipboard-Architecture' environments, where ser-
vices are graphically constructed, compiled, and successively tested. Two
extreme approaches characterize the state of the art: The first approach
guarantees consistency, but the creation process is strongly limited in its
flexibility to compose Service Independent Building Blocks (SIBs) to new
services. The second approach allows flexible compositions of services, but
there is little or no feedback on the correctness of the service under cre-
ation during the development: the validation is almost entirely located after
the design is completed. Thus the resulting test phase is lengthy and costly.

*Universitiit Passau, Innstr. 33, D-94032 Passau (Germany), tel: +49 851 509.3090,
fax: +49 851 509.3092, {steffen, t iz iana, classen,v, braun}@fmi, uni-paseau, de.

ISiemens Nixdorf]nformationssysteme AG, Otto-Hahn-Ring 6, D-81739 Munich
(Germany), tel: +49 89 636.42393, fax: -{-49 89 636.48976, rei@rust.mch.sni.de .

I The Service Creation Environment Function is a major component of the IN archi-
tecture ([I, 4]).

419

Our environment is used for the reliable, aspect-driven creation of tele-
phone services in a 'divide and conquer' fashion: initial prototypes are suc-
cessively modified until each component satisfies the current requirements.
The entire service creation process is supported by thematic views that
focus on particular aspects of the service under consideration. Moreover,
the service creation is constantly accompanied by on-line verification of the
validity of the required features and the executability conditions for inter-
mediate prototypes: design decisions that conflict with the constraints and
consistency conditions of the intended service are immediately detected
via model checking. Thus, in addition to the facilities offered by classical
'Clipboard'-Architectures' , our approach is characterized by the following
four properties:

�9 during the entire creation process there exists a current executable
prototype that can be tested and animated,

�9 the support through thematic views, which provide the required global
context and hide unnecessary details, allows the designer to choose a
particular aspect of interest, and to develop and investigate the ser-
vices under that point of view. This supports a much more focussed
service development, which concentrates on the design of the aspect
currently under investigation,

�9 a macro facility allows to define whole subservices as primitive enti-
ties, which can be used just as SIBs. Macros may be defined on-line
and expanded whenever the interna of a macro become important.
This supports a truly hierarchical service construction.

�9 the global consistency of each design step with implementation-related
or service-dependent frame conditions is automatically verified. Thus
sources for typical failures can be immediately detected even in the
presence of macros.

Figure 1 summarizes the global structure of our approach, which supports
an arbi t rary decomposition of the design process. This is necessary, since
the same Service Creation Environment is shared by teams of users with
completely different profiles. According to [2] at least the following user
profiles are envisaged:

�9 The service programmer has advanced programming skills and uses
the SCE to create new generic functions,

�9 The service designer has logical skills and uses the above functions
to create new services,

�9 The service provider is familiar with the specific customer needs and
enters customer specific data into the data files.

420

I Consistency Rules 1

. o , : ~ ' 7 [i, Service Libraries)

lCompilation
IN-Service

FIGURE 1. The Service Creation Process

We offer the needed design flexibility by means of the second of the following
three phases:

. In a first step, an existing service of similar application profile is
loaded from the service library, or a completely new design from
scratch is done (under model checking control). Of course this design
is supported by the macro facitility. Alternatively, initial executable
prototypes could automatically be generated from the set of under-
lying consistency conditions and constraints, a feature, which is not
part of the current version of our service creation environment.

. The second step consists of aspect-driven modification: the user
chooses the aspect of interest, generates the corresponding view ab-
stracting from all irrelevant details, and modifies it where necessary.
This is iterated until all relevant aspects have been treated. Due to
the on-line verification with the model checker, the executability is
preserved and erroneous design steps are immediately detected. It is
in this phase, where macros may be required to be expanded in order
to resolve 'internal errors'.

3. Current prototypes can at any time be tested, compiled, executed,
and, if satisfactory, stored in a data base.

It should be noted that the macro facility covers the standard stepwise
refinement approaches of the usual tools for service creation. In fact, in
combination with our concept of views, macros allow an enormously flex-
ible service development. In addition, views support the realization of a

421

very flexible access control mechanism, by allowing designers and service
providers the definition of customer specific views with restricted modi-
fication potential. Views provide in fact a natural division of the central
design process (2nd step) into levels. In particular this allows us to tailor
the environment for the specific needs of the service designer, the service
provider, the customizer, and the user. The view-specific hiding can be used
to automatically take care of access permissions.

Implementat ion

The implementation of the Service Creation Environment is based on
METAFrame (see [6]). It is currently available for SUN SparcStations un-
der UNIX, for PCs under LINUX, and for Siemens RM Machines under
SINIX. Its graphical interface as well as the hypertext browser are built on
top of the Tcl/Tk graphics library [5]. Target language is the HLL, whose
interpreter is implemented in C++.

Acknowledgements

We are grateful to Michael von der Beeck, Achim Dannecker, Philipp
Florschfitz, Carsten Friedrich, Andreas Holzmann, Marion Klein, Dirk
Koschfitzki, Gerald Lfittgen, Falk Schreiber, Markus Schweighofer, and
Matthias Seul for their cooperation in the design and implementation of
MF, TAFrame . We also thank the Siemens Nixdorf IN team and the GMRS
team for their precious interaction in the definition of the characteristics
of the system and for their valuable contributions to the realization of the
current product.

1 REFERENCES

[1] J. Aitken: "Intelligent Networks", Seminar, Logica UK Ltd., London,
April 26-27, 1995.

[2] P. K. Bohacek, J. N. White: "Service Creation: The Real Key to In-
telligent Network Revenue", Proc. Workshop Intelligent Networks '94,
Heidelberg, May 24-26, 1994.

[3] E. Crabill, J. Kukla: "Service Processing Systems]or AT~T's Intelli-
gent Networt?', AT&T Techn. Journal, Vol.73(6), 1994, pp.39-47.

[4] ITU CS1 Recommendations, 1993.

[5] J.K. Ousterhout: "Tcl and the Tk Toolkit," Addison-Wesley, April 1994.

[6] B. Steffen, A. Cla~en, T. Margaria: "The METAFrame : An Environment
]or Flexible Tool Management," Proc. TAPSOFT'95, Aarhus (DK),
May 1995, LNCS N.915, pp.791-792.

