
J Sched

DOI 10.1007/s10951-012-0281-1

A constraint programming-based approach to a large-scale energy

management problem with varied constraints

A solution approach to the ROADEF/EURO Challenge 2010

Felix Brandt · Reinhard Bauer · Markus Völker ·

Andreas Cardeneo

© Springer Science+Business Media, LLC 2012

Abstract This paper addresses a large-scale power plant

maintenance scheduling and production planning problem,

which has been proposed by the ROADEF/EURO Chal-

lenge 2010. We develop two lower bounds for the problem:

a greedy heuristic and a flow network for which a minimum

cost flow problem has to be solved.

Furthermore, we present a solution approach that com-

bines a constraint programming formulation of the problem

with several heuristics. The problem is decomposed into an

outage scheduling and a production planning phase. The first

phase is solved by a constraint program, which additionally

ensures the feasibility of the remaining problem. In the sec-

ond phase we utilize a greedy heuristic—developed from

our greedy lower bound—to assign production levels and re-

fueling amounts for a given outage schedule. All proposed

strategies are shown to be competitive in an experimental

evaluation.
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1 Introduction

In this work we take the perspective of a large utility com-

pany, tackling their problems in modeling and planning pro-

duction assets, i.e., a multitude of power plants. Our goal is

to fulfill the respective demand of energy over a time hori-

zon of several years, while minimizing the total operating

cost of all machinery.

Determining optimal maintenance schedules and produc-

tion plans is not easy because of the number of alternatives

to assess. As the exact electricity demand of each forthcom-

ing day is unknown and depends on a large variety of fac-

tors (season, weather, holidays, etc.), this leads to the need

of multiple uncertainty scenarios. Additionally, the increas-

ing proportion of renewable energies in today’s energy mix

makes things more complicated for an utility company, be-

cause it has to feed the energy of third-party solar or wind

power plants into its electricity networks and regulate its

own power plants accordingly.

The problem discussed in this paper was proposed by the

ROADEF/EURO Challenge 2010 (Pocheron et al. 2010), a

competition announced by the French Operational Research

and Decision Support Society (ROADEF) and the Euro-

pean Operational Research Society (EURO). The model has

been developed by the French utility company Electricité de

France (EDF).

The examined problem comprises three fields of opti-

mization: maintenance scheduling, production planning and

determining refueling amounts. It is a tactical model, neither
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considering short-term operational restrictions (like intra-

day load following) nor containing strategic decisions (like

adding new power plants). However, the proposed model al-

lows a generic formulation of other concerns like electricity

network stability, safety considerations, availability of staff

and tools, as well as legal restrictions. All of these limita-

tions can be expressed as mathematical constraints.

1.1 Our contribution

We present two lower bounds for the overall problem. One is

a fast greedy heuristic, the other is based on a flow network

and yields closer bounds at the cost of high computational

effort.

Our presented solution approach decomposes the prob-

lem into an outage scheduling phase and a power assign-

ment phase. First, valid outage schedules are found by a CP

approach with a randomized branching strategy (based on

marginal cost) that prefers cheaper outage dates. All pro-

duction level and refueling constraints are modeled into the

CP in an approximate fashion to nearly guarantee the feasi-

bility of the remaining problem. The latter phase utilizes a

greedy production assignment and refueling heuristic, which

is based on our greedy lower bound. Finally, rerunning the

second phase with the realized cost from the first run yields

our best results. As these procedures run very fast, the CP

is solved in a randomized fashion and the whole process is

repeated until a given time limit is reached.

Along with the presented solution methods we show our

experimental results. All considered problem instances have

been provided by the challenge and are extracted from real

world data. Our solution approach performs competitive and

provides good results for all proposed instances.

1.2 Related work

There exists a vast amount of literature concerning pro-

duction planning of power generating facilities. Different

models have been proposed that track either maintenance

scheduling (Foong et al. 2008; Satoh and Nara 1991) or

production planning (Ngundam et al. 2000; Dentcheva and

Römisch 1997). A more general problem addressed fre-

quently in the literature is the unit commitment problem

(Padhy 2004; Feltenmark et al. 1996; Sen and Kothari 1998).

When applied to power systems, the objective usually is to

find low-cost short-term production plans (typically between

24 and 168 hours).

A former model proposed by EDF, comprising a subset

of constraints and only considering maintenance scheduling,

was solved by a combination of constraint programming and

local search (Khemmoudj et al. 2006). While both models

only accept solutions that fulfill all of the problem’s con-

straints, we note that most other models from the literature

employ penalties if constraints are violated, rather than look-

ing for exact solutions.

Meanwhile, there also exists some literature consider-

ing the ROADEF/EURO Challenge 2010. Godskesen et al.

(2010) prove the NP-hardness of the problem by describing

a reduction from 1-in-3-SAT. Additionally, they describe a

solution approach which consists of three phases. First, a

simplified constraint programming model of the problem is

solved. The solution is then improved by local search and in

a final step overproduction is handled in greedy fashion. The

experimental results indicate that the presented approach is

very competitive. Lusby et al. (2010) describe a Benders

decomposition approach for the problem. To cope with the

non-linearity of the problem, their approach is divided into

two stages. The first phase is used to produce feasible inte-

ger solutions for a subset of the constraints, in the second

phase it is checked whether these solutions can be modi-

fied such that they also satisfy the remaining constraints.

Given sufficient time, the algorithm returns optimal solu-

tions. However, according to the authors it was unable to

compete with the heuristical approaches for large instances

due to the time limit. Gardi and Nouioua (2011) use a ran-

domized local search technique to tackle the problem. They

especially focus on an efficient evaluation of the effects of

local search moves. This makes it possible to visit more fea-

sible solutions within the given time limit. According to the

provided experimental results, this approach also seems to

be very competitive.

Finally, we note that this text is based on the thesis

(Brandt 2010).

1.3 Overview

In the following we briefly outline the structure of this paper:

we start with a sketch of the considered problem in Sect. 2.

Two methods for computing lower bounds are developed in

Sect. 3. The structure of the solution approach is reported in

Sect. 4 while Sects. 5 and 6 give details on the first and sec-

ond phase of the approach, respectively. Finally, the experi-

mental results are stated in Sect. 7 followed by a conclusion

in Sect. 8.

2 Problem statement

The given model extends over a period of time (e.g.,

5 years). This period is split into uniform time steps of con-

figurable length (e.g., 1 day). The main entities of the model

are a set of various power plants and a set of uncertainty

demand scenarios. For each scenario we are looking for a

production assignment, such that the sum of energy pro-

duced by all available power plants equals the demand dur-

ing each time step. The need for multiple scenarios arises
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Fig. 1 Sample plots illustrating the development of production and

unit cost over time of a type 1 power plant for an exemplary scenario.

The upper plot shows the minimum/maximum allowed production lev-

els together with a valid production plan. The lower plot shows the cost

per unit of energy produced by this plant

from the numerous uncertainties that have to be taken into

account such as unknown energy demand, generation units

availability or spot market prices.

In the considered model there are two kinds of facility.

The first, type 1 power plants, can operate continuously and

their fuel supply is outside the scope of the problem. During

each time step they can produce an amount of energy from a

certain range that depends on the scenario and time step (see

Fig. 1). Production at these power plants induces costs that

are proportional to the power output and also depend on the

scenario and time step. Power plants of this type might be

coal- or gas-fired, or even virtual power plants for exporting

and importing energy, whose available power levels and unit

costs we cannot influence.

Facilities of the second kind, type 2 power plants, rep-

resent nuclear power plants. These plants have only limited

capacities to store fuel and, as running out of it would stop

the production of energy, they have to be refueled regularly

(see Fig. 2). Refueling can only take place during an outage,

i.e., when a plant is offline for several weeks, and is more

complex than just adding fuel—a certain amount of fuel has

to be removed to make the addition of new fuel possible (see

Eq. (9)). Hence, the operation of a type 2 power plant is or-

ganized in so called cycles—successions of an offline period

(an outage with refueling and maintenance) and the follow-

ing production campaign. The event of taking a plant offline

(online) is called decoupling (coupling). It is not always nec-

essary to schedule all cycles of a type 2 power plant before

the end of the considered time horizon, i.e., outages can be

postponed. But the order of a power plant’s cycles is fixed

and so all successive cycles would have to be postponed,

too.

There are two specialties of type 2 power plants included

in the model. Firstly, running a plant at less than the speci-

fied maximum production amount, called modulation, is un-

desirable for technical reasons. Therefore, the aggregated

modulation during a production campaign is limited. Sec-

ondly, if the fuel level of a plant is below a certain threshold,

Fig. 2 Sample plots illustrating the production and fuel levels over

time for a type 2 power plant. The upper plot shows maximum and

actual production levels. The gray area represents the allowed produc-

tion interval. The corresponding fuel level is depicted in the lower plot.

Note that outage dates and refueling amounts are equal in all scenarios

then the production level of the plant has to follow a given

profile, called imposed power profile, and cannot any longer

be chosen freely until the next outage.

Contrary to type 1 power plants, production at type 2

power plants is billed via the amount of fuel reloaded. In

the considered model, the fuel unit cost depends on the cy-

cle and power plant. For each type 2 power plant a number

of (fuel-related) production constraints apply. Furthermore,

outages of different type 2 power plants are dependent on

each other to fulfill resource, staff, grid stability, production

safety and legal restrictions.

To conclude, the proposed subject consists of modeling

the production assets and finding an optimal outage schedule

while satisfying all the given constraints. It includes three

dependent subproblems: determining a schedule of type 2

power plant outages, choosing a refueling amount for each

outage and setting up a production plan, i.e., a quantity of

energy to produce by each plant at each time step for each

scenario. The objective is to minimize the expected cost of

production.

A complete description of the model can be found in

(Brandt 2010) and the ROADEF/EURO Challenge 2010

subject document (Pocheron et al. 2010). A sample produc-

tion plan is given as Fig. 3.

2.1 General definitions

2.1.1 Indices

A dataset comprises various sets of entities. Let S denote the

set of demand scenarios, J the set of type 1 power plants

and I the set of type 2 power plants. The timeline consists

of T uniform time steps spanning over W weeks in total,

where T is a multiple of W. The corresponding set for the

time steps is defined as T = {0, . . . ,T−1} and for the weeks

as W = {0, . . . ,W−1}.
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Fig. 3 A sample production plan showing the units of demand (thick

line in the middle) per time step and the available capacity of all type 1

(light gray) and type 2 (dark gray) power plants. The top line indicates

the gross production capacity of all plants, i.e. without any outages.

Note that in the presented plan there is a trend to schedule outages dur-

ing times of low demand (data are taken from instance 08, scenario 0)

Let K denote the number of cycles of each type 2 power

plant and K = {0, . . . ,K−1} the corresponding set. K is

equal for all type 2 power plants. Furthermore, let the cycle

and production campaign each plant starts with (i.e., dur-

ing time step 0) be denoted as the initial cycle (k = −1).

Throughout this paper K, T and W are also used to denote

the end of the time horizon.

The following lower case indices will be used throughout

this document to access single entities of the given type: s ∈

S , j ∈ J , i ∈ I , t ∈ T , w ∈ W , k ∈ K.

2.1.2 Decision variables

Decoupling dates: Each type 2 power plant regularly goes

offline for refueling and maintenance. Let hai,k ∈ {−1} ∪

W denote the week of decoupling of plant i in cycle k.

Note that there are two special cases: for the initial cycle

of each plant we define hai,−1 := 0 and if a cycle is not

scheduled, i.e., its decoupling date is postponed behind the

time horizon, then hai,k will be set to −1.

Refueling amounts: During each outage every type 2 power

plant can be supplied with a certain amount of fuel. Let

ri,k ∈ R
≥0 denote this amount of plant i in cycle k. We

define the refueling amount of postponed cycles as 0.

Production levels: In a solution all power plants (i.e., both

types) need to have an absolute real-valued production

level assigned for each time step and scenario. This level

of power plant j (resp. i) during time step t in scenario s

is denoted by pj,s,t (resp. pi,s,t ) ∈ R
≥0.

Note that a power plant’s production levels may vary bet-

ween demand scenarios of a dataset, while outage dates and

refueling amounts are first-stage decisions, i.e., equal in all

scenarios.

2.1.3 Parameters

Global parameters

DEMs,t demand in time step t of scenario s

D duration of each time step

Parameters of each type 1 power plant j

For each time step t of scenario s exist:

PMIN
s,t
j minimum production

PMAX
s,t
j maximum production

C
s,t
j production unit cost

Parameters of each type 2 power plant i

PMAXt
i maximum production in time step t

XIi initial fuel level, i.e., in time step 0

Ci,T final refund per unit of residual fuel

The following parameters are provided for each cycle k:

DAi,k outage duration in weeks (note: DAi,−1 := 0)

Ci,k refueling unit cost

RMINi,k minimum refueling amount

RMAXi,k maximum refueling amount

MMAXi,k maximum modulation during cycle

Qi,k refueling coefficient

BOi,k imposed production threshold

PBi,k imposed power profile

AMAXi,k upper fuel bound before refueling

SMAXi,k upper fuel bound after refueling

Additionally, the parameters MMAXi,−1, BOi,−1 and

PBi,−1 are also provided.
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2.1.4 Auxiliary Constructs

Definition 1 Given an arbitrary type 2 power plant i and a

production cycle k, let t−i,k denote the first time step of this

cycle (which is also the first time step of the outage), t∗i,k de-

note the first time step of this cycle’s production campaign

and t+i,k denote the first time step after the end of this cycle.

For a cycle that is not scheduled all three variables equal T.

Formally we define:

hai,k �= −1 =⇒ t−i,k = hai,k · T/W

hai,k �= −1 =⇒ t∗i,k = (hai,k + DAi,k) · T/W

hai,k+1 �= −1 =⇒ t+i,k = hai,k+1 · T/W

Note that t+i,k generally corresponds to t−i,k+1 with excep-

tions for the initial cycle, where t−i,−1 = t∗i,−1 = 0, and the

last cycle, where t+i,K−1 = T.

Definition 2 Let x(i, s, t) denote the fuel level of plant i at

the beginning of time step t in scenario s. For each plant and

scenario, x(i, s, t) depends on the fuel level of the previous

time step and the production level and refueling performed

during the previous time step. Note that x(i, s,T) denotes

the fuel level at the end of the time horizon.

2.2 Constraints

The problem contains a variety of constraints that deal

for example with allowed production levels, fuel level re-

strictions, and maintenance requirements. A brief tabular

overview of the constraints is given in Table 1. For further

details on the constraints and exact definitions we refer to

Brandt (2010).

2.3 Objective function

While satisfying all given constraints (CT 1–21) the sum

of the expected production costs of all type 1 power plants

over all scenarios and the total refueling cost of all type 2

power plants is to be minimized. Besides, there is a refund

for residual fuel. The objective function is formalized as fol-

lows:

∑

i∈I

∑

k∈K

Ci,k ·ri,k

︸ ︷︷ ︸

type 2 refueling cost

+
1

| S |

∑

s∈S

∑

t∈T

∑

j∈J

C
s,t
j ·pj,s,t · D

︸ ︷︷ ︸

type 1 production cost

−
1

| S |

∑

s∈S

∑

t∈T

∑

i∈I

Ci,T ·x(i, s,T)

︸ ︷︷ ︸

type 2 residual fuel refund

Note that the refueling amounts and refueling unit costs are

constant in all scenarios. Contrary, the unit production costs

Table 1 Overview of the model’s constraint types

Constraint Description

CT 1 demand equals production

CT 2 bound production of type 1 power plants

CT 3 no production during maintenance

CT 4/5 bound production of type 2 power plants

CT 6 power profile imposition

CT 7 bounds on refueling

CT 8 initial fuel level

CT 9 fuel consumption during production

CT 10 fuel variation during refueling

CT 11 bounds on fuel before and after refueling

CT 12 maximum modulation

CT 13A earliest and latest date of outages

CT 13B order of outages

CT 14–18 minimum spacing between outages

CT 19 limited resources

CT 20 maximum number of parallel outages

CT 21 maximum offline power capacity

of type 1 power plants and residual fuel amounts of type 2

power plants can vary between scenarios and have to be av-

eraged.

3 Lower bounds

In this section we present two strategies for computing lower

bounds for the overall solution cost of a given dataset. As a

preparatory step, we introduce a lower bound for a type 2

power plant’s unit production cost in Sect. 3.1. The first pre-

sented lower bound is the source of a simple greedy produc-

tion planning heuristic presented in Sect. 6.

A more sophisticated lower bound, which also considers

most of the fuel level and refueling constraints, is presented

in Sect. 3.3. It employs a flow network to model production

levels and refueling amounts.

3.1 Type 2 power plant unit production cost

The production of type 2 power plants is charged with the

fuel reloaded during each outage and thus the exact cost of

production per time step is unknown during production plan-

ning. In this section, we set up a simple lower bound for the

unit production cost (UPC) of each type 2 power plant in a

given dataset. This lower bound enables us to compare the

UPC of all plants and—in a next step—assign production to

the cheapest plants.

There are several hurdles to overcome while transforming

reloading costs into production costs. First of all the initial

fuel level of each plant is provided for free and there is a



J Sched

refund for residual fuel at the end of the time horizon. Fur-

thermore, refueling unit costs vary with each plant and cycle

(CT 7) and refueling is more complex than just adding fuel

(CT 10).

For this bound we assume that type 2 power plants can

produce in each time step, i.e., there are no scheduled out-

age periods. Furthermore, we relax the constraints for power

profile imposition (CT 6), fuel level tracking (CT 7–11),

maximum modulation over a cycle (CT 12), and all outage

dependencies (CT 13–21).

In the remainder of this section, we set up a lower bound

on the UPC ci of a type 2 power plant i. Therefore, we first

define the total cost Ci of a plant i, which is extracted from

the objective function (cf. Sect. 2.3) as the sum of costs from

all refuelings reduced by the refund for residual fuel at the

end of the time horizon:

Ci :=
∑

k∈K

Ci,k ·ri,k − Ci,T ·x(i, s,T) (1)

We relate the total cost Ci to the amount of energy produced

by plant i and define ci as follows:

ci :=
Ci

∑

t∈T pi,s,t · D
(2)

Since all type 2 power plant parameters (cf. Sect. 2.1.3) are

independent of the concrete scenario, we ignore s in the

following without loss of generality. To transform refueling

costs into costs of production, we make an aggregate analy-

sis starting with some helpful definitions.

Given an arbitrary type 2 power plant i and a cycle k, we

define the refueling difference d(i, k) between the fuel level

after refueling and the previous fuel level plus the refueling

amount as

d(i, k) := x
(

i, s, t−i,k + 1
)

−
(

x(i, s, t−i,k) + ri,k
)

.

This is a simplification of the reloading constraint CT 10,

where we neglect fuel level thresholds BOi,∗ and the refu-

eling ratio Qi,k . By using d(i, k), we can formulate a first

lemma which holds for all scheduled cycles:

Lemma 1 Given an arbitrary type 2 power plant i and a

cycle k, the amount of fuel gained from all sources (initial

fuel level, amount of refueling) equals the amount of fuel

delivered to all consumers (production, residual fuel level):

x
(

i, s, t−i,k

)

+ ri,k + d(i, k) =

t+i,k−1
∑

t=t−i,k

pi,s,t · D+x
(

i, s, t+i,k

)

(3)

Proof We derive this lemma from the given constraints that

influence the fuel level during a cycle. Starting with the fuel

level variation during a single time step of a production cam-

paign (CT 9), we aggregate over all production time steps of

this cycle:

x
(

i, s, t+i,k

)

= x
(

i, s, t∗i,k
)

−

t+i,k−1
∑

t=t∗i,k

pi,s,t · D

According to CT 3, we can substitute the time step t∗i,k in the

production sum by t−i,k as there is no production in between

these time steps. Similarly, corresponding to CT 10, the fuel

level at t∗i,k equals the level at t−i,k + 1. We get

x
(

i, s, t+i,k

)

= x
(

i, s, t−i,k + 1
)

−

t+i,k−1
∑

t=t−i,k

pi,s,t · D

By replacing the fuel level after refueling x(i, s, t−i,k + 1)

with the simplified reloading formula from the definition of

the refueling difference d(i, k) we gain Eq. (3). �

Equation (3) can be summarized over all cycles of a

plant i to relate the fuel levels/variation to i’s aggregated

production. Since generally t+i,k = t−i,k+1, the initial and

residual fuel levels of successive cycles can be canceled out.

Furthermore, the initial fuel level can be set according to

CT 8:

XIi +
∑

k∈K

ri,k +
∑

k∈K

d(i, k) =
∑

t∈T

pi,s,t · D+x(i, s,T) (4)

For each type 2 power plant i, let Ci := mink(Ci,k) denote

the minimum refueling cost. To get rid of varying refueling

unit costs, we substitute the unit cost Ci,k of each cycle by

Ci in the following. This way, we get a lower bound for the

total cost of plant i from Eq. (1):

Ci ≥ Ci

∑

k∈K

ri,k − Ci,T ·x(i, s,T) (5)

By replacing the refueling amounts of Eq. (5) with Eq. (4)

(solved for the sum of refuelings) and inserting this to

Eq. (2), we estimate ci :

ci ≥ Ci

+
Ci(−XIi −

∑

k∈K d(i, k)) − (Ci,T −Ci) · x(i, s,T)
∑

t∈T pi,s,t · D

(6)

We assume a non-negative numerator in Eq. (6), thereby ig-

noring all degenerate cases where a plant has negative to-

tal cost Ci . Given upper bounds for the sum of refueling

differences d(i, k), the sum of production levels pi,s,t and

the amount of residual fuel x(i, s,T), we have found a com-

putable lower bound for ci .
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During any campaign, the fuel level never exceeds the

maximum fuel level allowed after refueling. Hence, the

residual fuel level is limited by

x(i, s,T) ≤ max
(

XIi,max
k

(SMAXi,k)
)

(7)

Assuming maximum production and exploiting CT 4, the

sum of production is limited by

∑

t∈T

pi,s,t ≤
∑

t∈T

PMAXt
i (8)

Lemma 2 The sum of refueling differences
∑

k∈K d(i, k)

can be bounded from above by

max
κ∈K

(

BOi,κ +

(
κ−1
∑

k=0

BOi,k

Qi,k+1

)

−
Qi,0 −1

Qi,0

BOi,−1

)

.

Proof Remember the refueling equation from CT 10:

x
(

i, s, t−i,k + 1
)

=
Qi,k −1

Qi,k

(

x
(

i, s, t−i,k

)

− BOi,k−1

)

+ ri,k + BOi,k (9)

We insert this into the definition of the refueling difference

d(i, k) to approximate the amount of fuel gained or lost dur-

ing refueling in the given outage:

d(i, k) = BOi,k −
Qi,k −1

Qi,k

BOi,k−1 −
1

Qi,k

x
(

i, s, t−i,k

)

Assuming that there is no fuel left before refueling, we get

an upper bound for d(i, k):

d(i, k) ≤ BOi,k −
Qi,k −1

Qi,k

BOi,k−1

Note that d(i, k) might be negative. We now aggregate

d(i, k) for the first κ cycles utilizing a telescoping series:

∑

0≤k<κ

d(i, k) = BOi,κ +

(
κ−1
∑

k=0

BOi,k

Qi,k+1

)

−
Qi,0 −1

Qi,0

BOi,−1

Since we do not consider any outages here, we cannot deter-

mine how many cycles of each plant will be exactly sched-

uled and as d(i, k) might be negative, the sum over all cy-

cles is probably not the maximum. In order to limit the

sum of d(i, k), we choose the maximum reached when only

scheduling the first κ cycles. �

By inserting Eqs. (7) and (8) as well as Lemma 2 into

Eq. (6), we get the sought lower bound of the unit production

cost ci of a type 2 power plant i.

Theorem 1 For an arbitrary type 2 power plant i we can

calculate a lower bound of

Ci −
Ci(XIi +�i) + (Ci,T −Ci) · max(XIi,maxk(SMAXi,k))

∑

t∈T
PMAXt

i ·D

for the unit production cost ci where Ci is the minimum re-

fueling cost of i and �i is defined as

�i := max
κ∈K

(

BOi,κ +

(
κ−1
∑

k=0

BOi,k

Qi,k+1

)

−
Qi,0 −1

Qi,0

BOi,−1

)

.

3.2 An auction-based lower bound

The basic idea of this approach is that each plant offers its

production capacity at a certain price that depends on the

scenario and time step. The production levels are then as-

signed in a greedy way to the cheapest plants. We relax the

imposed power profile constraint (CT 6), as well as all fuel

level tracking (CT 7–12) and outage scheduling constraints

(CT 13–21). As the unit production costs of the type 2 power

plants we use the lower bound presented in Sect. 3.1.

Definition 3 The gross production amounts (as an interval

[pmin,pmax]) and unit costs offered by all plants are defined

in the following table:

type 1 power plant o type 2 power plant o

pmino PMIN
s,t
o 0

pmaxo PMAXs,t
o PMAXt

o

costo Cs,t
o ci

Subtracting already assigned production levels gives the

net amount of production that can be offered. Since we re-

laxed all fuel tracking constraints, the auction can be run for

each time step of each scenario independently. Algorithm 1

presents such a single auction consisting of two steps. First,

the minimum required production level of each plant is as-

signed. Afterwards, as much production as possible is as-

signed to the cheapest plants until the demand is covered.

Lemma 3 Given an arbitrary scenario s and a time step t ,

Algorithm 1 finds a cheapest possible production assignment

with respect to CT 1, 2 and 4.

Proof The conformance with CT 1, 2 and 4 can easily be

shown by using invariants on Algorithm 1. We will proof the

remaining statement by contradiction, assuming that Algo-

rithm 1 produced an assignment p, but there exists a cheaper

assignment p′. In this case, there have to be two plants ϕ and
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ϕ′ whose production in p and p′ differs and which have dif-

ferent unit costs as follows:

pϕ,s,t > p′
ϕ,s,t (10)

pϕ′,s,t < p′
ϕ′,s,t (11)

cos tϕ′ < cos tϕ (12)

Since both solutions have to meet the minimum offers, Algo-

rithm 1 must have assigned different values in the maximum

offer step. According to Eq. (12), the cheaper plant ϕ′ is pro-

cessed before plant ϕ. From Eq. (11), it follows that pϕ′,s,t is

strictly less than the maximum amount offered by ϕ′, which

implies that the assigned production level was bounded by

the demand and all more expensive plants (especially ϕ) do

not get any production assigned. But this is a contradiction

to Eq. (10) because pϕ,s,t has to be strictly greater than 0. �

Hence, executing Algorithm 1 for all scenarios and time

steps yields a cheapest production plan for the model with-

out outages and fuel tracking. Algorithm 2 does this and re-

turns the average total cost of production per scenario.

Algorithm 1: AUCTION (s, t)

Output: Total cost of assigned production for the

given scenario and time step

begin

demand ←− DEMs,t

foreach plant o do
po,s,t ←− pmino

demand ←− demand − pmino

foreach plant o ascending by costo do
produce ←− min(demand,pmaxo − po,s,t )

po,s,t ←− po,s,t + produce

demand ←− demand − produce

return
∑

j∈J costj · pj,s,t · D+
∑

i∈I costi · pi,s,t · D

end

Algorithm 2: AUCTIONS

Output: Average cost of assigned production across all

scenarios

begin
cost ←− 0

foreach s ∈ S do

foreach t ∈ T do
cost ←− cost + AUCTION(s, t)

return cost
| S |

end

From Lemma 3 we know that Algorithm 2 aggregates

lower bound production assignments for each time step and

thus finds a global cheapest production assignment for the

offers of Definition 3. By formalizing the result of Algo-

rithm 2 and transforming it into the original objective func-

tion one can show the following lemma.

Lemma 4 Given production intervals from Definition 3,

then Algorithm 2 returns a lower bound of the objective

function’s value for a given dataset.

Since we neither care for outages nor for fuel levels, this

bound is not as close to real solutions as one might wish

and we will present a more sophisticated bound in the next

section.

3.3 A flow-based lower bound

In this section, we present a flow network that models a

power assignment and considers outage restrictions (CT 13)

as well as fuel consumption in an approximate fashion

(CT 7–12) to deduce a tighter lower bound of the objec-

tive function for a given dataset. Still, all outage dependency

constraints (CT 14–21) are relaxed. The network operates on

a single scenario. Hence, the overall lower bound of an in-

stance corresponds to the average cost realized by the flow

network in all scenarios. This cost can be computed by any

standard black-box network-flow solver. In this text, we only

give an intuition and present the main ideas. A formal defi-

nition of this approach as well as a sketch of the proof of its

lower bound property can be found in Brandt (2010).

The previously shown auction-based bound has two ma-

jor drawbacks, which do not appear in the flow-based bound.

Firstly, the auction strongly underestimates the unit produc-

tion cost of type 2 power plants. Although this is not a big

problem when distributing demand (we assume all type 2

power plants are nearly equally underestimated), it clearly

distorts any lower bound. Secondly, the auction overesti-

mates type 2 power plant production capacity because nei-

ther outages are considered nor the amount of fuel consumed

over time is restricted.

3.3.1 Intuition

The network consists of two logical parts (see Fig. 4). The

left part handles the distribution of the demand level of each

time step to the power plants. The lower right segments

model the internals of type 2 power plants, more precisely:

the sources of fuel, which is consumed for production. The

network’s commodity is fuel, i.e., production levels and de-

mands are multiplied by their duration (see CT 9). Arcs are

annotated with minimum and maximum capacities, as well

as the cost per unit of flow.
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Fig. 4 Sketch of the flow network: the left part performs the power assignment, while the lower right parts assign the fuel consumed by type 2

power plants to a potential cycle, where it is charged. Only the dashed arcs incur cost
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For each time step node (t), there is a certain amount of

fuel required to cover the demand level. This amount is dis-

tributed among all power plants’ production nodes (type 1:

j, type 2: PN). Since the costs of type 1 power plants are

charged with the produced amounts of energy, the respec-

tive t → j arc captures this costs.

To bill the production of a type 2 power plant, the amount

of fuel which is consumed during each time step has to

be mapped to its source (either the initial fuel level or a

specific outage). Therefore, an arc is added from the PN

of each time step to the aggregation nodes (AN) of all

cycles that might be active during this time step. To re-

strict the overall fuel consumption during a cycle, an arc

with limited capacity from AN to its corresponding trans-

fer node (TN) is added. From a cycle’s point of view,

there are two sources of fuel incident to the cycle’s out-

age node (ON): the residual fuel of the previous cycle

(ON→TN) and the refueling done during the cycle’s outage

(ON→target). To model the residual fuel levels in the net-

work, an arc with negative cost (the refund) from the source

directly into the TN of the last cycle of each type 2 power

plant is introduced. Furthermore, a bypass arc of zero cost

is added for technical reasons. Its capacity equals the sum

of capacities from all residual arcs. This way, a minimum

cost flow problem has to be solved for the flow amount:
∑

t DEMs,t +max(bypass). We relax CT 6 and all depen-

dencies between outages of different plants (CT 14–21) in

the presented lower bound.

In our flow network the refueling amount cannot be han-

dled directly (see CT 10). Therefore, we define the simpler

reloading difference δ(i, s, k), which can be embedded in

the network.

δ(i, s, k) := x
(

i, s, t−i,k + 1
)

− x
(

i, s, t−i,k

)

From constraints CT 7, 10 and 11 one can derive a lower

bound DMINi,k and upper bound DMAXi,k for δ(i, s, k):

[DMINi,k,DMAXi,k]

:=

[

RMINi,k −
AMAXi,k

Qi,k

,RMAXi,k

]

+ BOi,k −
Qi,k −1

Qi,k

BOi,k−1

Nevertheless, the real cost of refueling is required for the

lower bound and has to be reconstructed. This is done

by splitting the cost into three components: one depend-

ing on the fuel level before refueling, another depend-

ing on the refueling difference, and a third fixed off-

set:

Ci,k ·ri,k =
Ci,k

Qi,k

· x
(

i, s, t−i,k

)

︸ ︷︷ ︸

initial fuel level

+ Ci,k ·δ(i, s, k)
︸ ︷︷ ︸

reloading difference

+ Ci,k ·

(
Qi,k −1

Qi,k

BOi,k−1 −BOi,k

)

︸ ︷︷ ︸

global cost offset

(13)

Besides the refueling issues, the compliance with CT 3

and CT 12 is not fully enforced in our flow network. As the

outage dates are not determined yet, it is unknown during

which time steps a power plant is shut down (CT 3). But

since the network allows that the consumed fuel is gathered

from any cycles that might be active during this step, this

constraint is modeled indirectly in a weaker form. Maximum

modulation (CT 12) effectively creates a minimum produc-

tion amount during a production campaign. Unfortunately,

since the production campaign’s duration is not fixed, this

amount can only be bound by the minimum duration and is

therefore not a strong restriction.

3.3.2 Handling non-scheduled cycles

At building time of a concrete flow network instance, the

number of scheduled cycles of each power plant in a final

(and maybe optimal) solution is unknown. But, since parts

of the network will be set up per cycle, we have to take care

that the cost induced by modeled but postponed cycles does

not destroy the lower bound property. We guarantee this by

relaxing the problematic network properties, i.e., arc capac-

ities and cost.

First, we identify three categories of cycles: mandatory

cycles which have to be scheduled in any solution, impossi-

ble cycles which cannot be scheduled in any solution1 and

optional cycles.

In the following let Kmin
i denote the number of the last

mandatory cycle and Kmax
i denote the number of the last

optional cycle of a type 2 power plant i. When building a

concrete network instance, only the first Kmax
i cycles of each

power plant are added. For each optional cycle the minimum

capacity of the AN → TN arc is set to 0. Furthermore, the

cost components identified in Eq. (13) have to be adapted to

behave gracefully if they belong to an unscheduled cycle.

The cost component of the initial fuel level factor models

the opportunity cost of lost (or not gained free) fuel during

an outage. As there is no such loss for unscheduled cycles,

the cost of the ON→TN arc for an optional cycle is set to

0. Furthermore, the final fuel level of a type 2 power plant

might have to pass several optional cycles in our flow net-

work. Hence, the maximum fuel level before and after refu-

eling (see CT 11) of each optional cycle has to be modified

1Such cycles can be identified by a constraint reasoning, see Sect. 5.
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for the flow network:

AMAX′
i,k

:=

⎧

⎨

⎩

XIi if k = 0

max(AMAXi,k,SMAXi,k−1) if k = Kmin
i +1

max(AMAXi,k,SMAX′
i,k−1) else

SMAX′
i,k := max

(

AMAX′
i,k,SMAXi,k

)

Furthermore, the refueling amount CT 7 has to be relaxed

(0 ≤ ri,k ≤ RMAXi,k) and the range of the reloading differ-

ence δ(i, s, k) has to be adapted for optional cycles:

[

DMIN′
i,k,DMAX′

i,k

]

:=
[

min(0,DMINi,k),DMAXi,k

]

The global cost offset also has to be adapted to always re-

turn a lower bound. Therefore, the minimum subsum when

scheduling any possible number of optional cycles is chosen

as the effective global cost offset of power plant i:

min
Kmin

i ≤κ≤Kmax
i

(
κ

∑

k=0

Ci,k ·

(
Qi,k −1

Qi,k

BOi,k−1 −BOi,k

)
)

In Sect. 7.3 we show how the presented lower bounds

compare to the best known solutions that have been found

for the test instances.

4 Overall solution process

Since there is probably no way to solve even medium-sized

instances exactly in a reasonable time, we develop several

heuristics. Therefore, we decompose the problem into an

outage scheduling and a power assignment phase. Outage

dates hai,k are fixed in the first phase, while power levels

pj,s,t/pi,s,t and refuelings ri,k are calculated in the second

phase for a given outage schedule.

Section 5 deals with the outage scheduling phase. Due

to the large number of constraint types (see Sect. 2.2) and

their dependencies we use a CP formulation to find a feasi-

ble schedule. In Sect. 6, we present a valid production as-

signment heuristic for a given set of outages. Therefore, we

utilize a demand auction derived from the lower bound pre-

sented in Sect. 3.2.

The overall solution process is of randomized, iterative

nature. In a preparatory step, the CP-model of the outage

scheduling part is initialized. An iterative step starts with

searching for a solution of the outage scheduling part. If

no feasible solution is found after a given number of back-

tracking steps, the whole iterative step is terminated and the

next iteration starts. As soon as a feasible solution has been

found, the power assignment phase is executed. Afterwards,

the found solution is compared with the best solution found

Fig. 5 Illustration of the overall solution process

so far and the next step starts. The whole process ends when

a given timelimit is reached.

Note that the branchers used in the outage scheduling part

are partly randomized and hence new solutions are found in

every step. An overview of the process is given in Fig. 5.

In Table 2 we give an overview at which point of the solu-

tion process we take care of each constraint type of the prob-

lem. We mark parts of our heuristics with an orange square

if the consideration of the given constraint is necessary, i.e.,

not checking this property in the particular step might result

in invalid solutions. A green dot stands for a sufficient mean

to achieve this constraint, i.e., after performing this step the

remaining solution space cannot fail this constraint.

5 Outage scheduling

The first step of the presented solution is to search for fea-

sible and promising outage schedules, i.e., a fixed week of

decoupling for each outage such that the scheduling related

constraints CT 13–21 are fulfilled and the expected produc-

tion cost is low. As this subset of constraints does not guar-

antee the feasibility of the remaining production assignment

and refueling problem, the constraints CT 1–12 are consid-

ered in an approximate fashion.
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Table 2 Illustration at which step each constraint type is considered.

In the outage scheduling part, we restrict the variables’ domains (DO),

add the given constraints (CT) to our CP model or add our own addi-

tional (AC) constraints. The production assignment part consists of a

preprocessing (PP) step, the calculation of minimum (MN) and max-

imum (MX) offers for the auctions (AU) of each time step and the

fixation of refueling (RF) amounts. Orange squares symbolize a step

where ignoring the constraint might result in invalid solutions. Green

dots mark a step whose entire resulting search space fulfills the con-

straint, i.e., we do not need to care anymore about it

Table 3 Finite domain integer variables instantiated for each cycle of

a type 2 power plant i. The Initial column comprises the predefined

values of this variable for the initial cycle k = −1, while the Min and

Max columns represent the domain limits for all successive cycles

Var. k = −1 k > −1 Description

Initial Min Max

schi,k 1 0 1 Is campaign scheduled?

deci,k 0 TOi,k TAi,k Date of decoupling

ref i,k 0 RMINi,k RMAXi,k Amount of fuel provided

prei,k 0 0 AMAXi,k Fuel before refueling

posti,k XIi 0 SMAXi,k Fuel after refueling

We use a CP formulation to find a feasible outage sched-

ule as well as reasonable lower and upper bounds for the

refueling amounts. To keep the number of variables at a min-

imum, only the fuel levels before and after each outage are

part of the model. Furthermore, the initial cycle k = −1 of

each type 2 power plant is included in the model and all

its decision variables are assigned to suitable values. The

model contains five variables per cycle: a boolean variable

to decide if the outage is scheduled or not (schi,k) as well

as integer variables for the decoupling date (deci,k), refuel-

ing amount (ref i,k), and the fuel levels before and after each

outage (prei,k and posti,k). The domains of the variables and

the values for the initial cycle are presented in Table 3.

The following sections sketch our CP formulation in a

bottom-up fashion. First the relations within a cycle and be-

tween successive cycles of a type 2 power plant are intro-

duced, then three additional constraints are presented that

approximate the fuel consumption to create effective spac-

ing constraints between successive outages. Finally, the cho-

sen branching strategy is explained.

5.1 Basic modeling

The key variable of each cycle is the decoupling date deci,k .

If there is no CT 13 for a cycle, the CP model does not

bound deci,k to easily handle unscheduled (or “postponed”)

cycles. The decision to schedule a cycle is reduced to the

decision to schedule the outage’s decoupling date before the

time horizon. Accordingly, if for any reason an outage can-

not be scheduled before the time horizon, then the CP does

not schedule it:

schi,k ⇐⇒ deci,k < W (14)

Although no production levels are planned in the CP, it is

crucial to track fuel levels in order to keep the remaining

production assignment problem feasible. The change of the

fuel level in an outage can easily be taken from CT 10:

posti,k =
Qi,k −1

Qi,k

(prei,k −BOi,k−1) + ref i,k +BOi,k (15)

So far, the formulated constraints model a single cycle. Ac-

cording to CT 13, the order of cycles is fixed:

deci,k+1 ≥ deci,k +DAi,k (16)

To complete the model, all instances of CT 14 to CT 21

have to be added. This can be done with little effort by using

scheduling or linear constraints.

5.2 Additional constraints

In the following, three additional constraints are formulated

that relate the fuel levels of successive cycles to each other

and set up lower and upper bounds for the duration of pro-

duction campaigns. Although these constraints do not for-
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Table 4 Forward propagation parameters to calculate the upper limit

and lower limit of prei,k+1

Upper limit Lower limit

start min(deci,k) + DAi,k max(deci,k) + DAi,k

end max(deci,k+1) min(deci,k+1)

fuel min(posti,k) max(posti,k)

modulation 0 MMAXi,k

mally guarantee the feasibility of the remaining problem,2

our experience shows that this is the case in almost all situ-

ations.

5.2.1 Fuel level propagation

A core requirement to track a type 2 power plant’s fuel

level is to approximate the minimum and maximum fuel

consumption during a production campaign. The consump-

tion depends on the coupling and decoupling dates, the re-

spective maximum production levels, the maximum allowed

modulation, and the present fuel level.

Relating all the fuel levels of a type 2 power plant to each

other requires the ability to reason from posti,k (fuel level

after refueling) to prei,k+1 (fuel level before refueling of the

next cycle) and vice versa. Therefore, we consider a mini-

mum and a maximum production scenario. Maximum pro-

duction is done with the given maximum production level

PMAXt
i of each time step. Similarly, minimum production

is modeled by adding the allowed modulation MMAXi,k to

the fuel level and also assuming maximum production.

First, we limit the final fuel level of the production cam-

paign prei,k+1 by performing a maximum and minimum

production starting with posti,k . The maximum possible fi-

nal fuel level is reached by taking the upper domain limit

of the opening fuel level, choosing the shortest duration

of the production campaign and fully exhausting modula-

tion. Analogously, the minimum possible final fuel level is

reached by taking the lower domain limit of the opening fuel

level, choosing the longest duration and no modulation. Ta-

ble 4 gives an overview of the used parameters, while Fig. 6

illustrates the process.

To receive a real benefit from the fuel level propagation,

its opposite direction also has to be implemented, i.e., rea-

soning from prei,k+1 to posti,k . Calculating the maximum

fuel level of a previous time step can be done by using CT 9

as long as production is not imposed and by searching for the

right segment of the imposed power profile function PBi,k

2In some degenerate cases the principle of maximizing the available

type 2 production capacity might turn out wrong. If there is little de-

mand over a longer period of time, then type 2 power plants might not

be able produce enough to comply with CT 11 and CT 12. But, this

was not the case in the provided datasets.

Fig. 6 Fuel level propagation: by assuming maximum production

(lower line) and minimum production (upper line) starting with posti,k
fuel the domain of the final fuel level prei,k+1 can be bound

otherwise. Just as in the forward calculation, the maximum

allowed fuel level at the beginning of the production cam-

paign is reached by taking the upper domain limit of the

final fuel level, choosing the longest possible duration of the

production campaign and using no modulation. Backward

propagation of the minimum fuel level is of little use and

therefore skipped.

5.2.2 Outage spacing

Given the minimum fuel level before a production campaign

min(posti,k) as well as the maximum after it max(prei,k+1)

and the plant’s maximum production levels for all time steps

in between, it is possible to deduce the minimum period of

time the plant needs to run to consume this fuel difference.

Scheduling the neighboring outages in a shorter distance

still would result in a feasible outage schedule but give an

infeasible production assignment problem.

Consequently, an outage spacing constraint has to be

added to the model. In forward direction, the date of decou-

pling deci,k+1 can be shifted until the fuel level falls below

max(prei,k+1) starting maximum production at the earliest

coupling date with a minimum fuel level (see Fig. 7). Anal-

ogously, the latest possible decoupling date of a cycle deci,k

can be determined by a reasoning going backward in time

and starting at the latest possible decoupling date of the next

cycle max(deci,k+1) with max(prei,k+1) fuel and maximum

production up to the week where the fuel level exceeds the

lower bound of posti,k .

5.2.3 Online propagator

Besides a minimum spacing between outages it is useful to

set up a maximum spacing. If the scheduled production cam-

paigns are too long, then the plant will run out of fuel and

demand has to be covered by more expensive plants. Hence,

we restrict the latest date of decoupling to the week when the

plant will run out of fuel. The date which achieved the best

results in our preliminary experiments is determined by per-

forming maximum production, starting with max(posti,k)
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Fig. 7 Outage spacing: starting maximum production at the earli-

est possible date with the minimum fuel level min(posti,k), the ear-

liest date of the next outage can be delayed to the time step, where

the current fuel level falls below the maximum allowed fuel level

max(prei,k+1) before the next outage

Fig. 8 Online propagator: the latest possible decoupling date of the

upcoming outage is limited to the week where the plant runs definitely

out of fuel

fuel at the latest possible coupling date (see Fig. 8). In case

a plant definitely runs out of fuel before the next decoupling

date, deci,k+1 is set to its domain minimum.

Note that by adding this constraint the CP model might

become infeasible. Although this problem did not occur in

any experiment, the model should be rerun without this con-

straint if no solution is found in a reasonable amount of time.

5.3 Branching strategy

As some of the constraints are not modeled precisely in the

CP, we do not solve a classical branch-and-bound constraint

optimization problem but rather use the constraint solver to

produce a small number of feasible and promising outage

schedules for further inspection. While constraint propaga-

tion ensures the feasibility of the solution, the branching

strategy has to be chosen carefully to select cheap sched-

ules first. We identify cheap outage dates by their additional

cost, i.e., the cost of shifting production capacity to a more

expensive plant. This additional cost can be approximated

by the marginal cost, i.e., the unit cost of the most expensive

power plant still scheduled for production, realized by the

lower bound presented in Sect. 3.2.

In a preprocessing step, we run the lower bound calcula-

tion once before starting the search. This provides for each

scenario and time step the marginal cost assuming that all

plants are available. By using these marginal costs, an ap-

proximation of the additional cost when scheduling an out-

age during a certain week can be quantified (see Fig. 9). Ag-

gregating these additional costs over all affected time steps

of a specific decoupling date gives the additional cost of the

whole outage.

After preprocessing a depth first search is started in the

search tree. As it is common in CP setups, the chosen

branching strategy consists of two decisions: variable selec-

tion and value selection. At each branching step our strategy

selects an unfixed decoupling variable and assigns it to a

certain week in the first branch, while excluding the chosen

week from the second branch’s search space. In constraint

satisfaction setups the quality of a branching is primarily

measured by how early the CP solver detects that no feasi-

ble solution exists in the current subtree. Generally, it is a

good idea to assign closely related decision variables within

a few branching steps to detect infeasible situations as early

as possible. Therefore, our variable selection strategy will

consider only the first (i.e., minimum k) unassigned decou-

pling date deci,k of each type 2 power plant at each branch-

ing step. Among those the variable with the minimal domain

minimum is chosen.

In the preprocessing step the additional costs for each

possible decoupling date of an outage were determined. To

prefer cheaper decoupling dates our value selection strat-

egy chooses decoupling dates that incur low additional costs

with a high probability. Formally, for a given outage the mth

best out of n still available decoupling dates is chosen with

probability P[m] := 0.5m. The most expensive date is cho-

sen with the residual probability P[n] := 1 −
∑n−1

m=1 P[m] =

0.5n−1.

Our proposed search strategy stops at the first found fea-

sible solution. If no solution is found after 2 · | I | · K back-

track steps the search is restarted from the root node. This is

necessary as our randomized branching strategy might get

stucked in infeasible regions of the search space.

6 Production assignment

Now, we present a power assignment heuristic derived from

the auction-based lower bound presented in Sect. 3.2. Power

assignments are performed for a given outage schedule (i.e.,

all hai,k are fixed) and assign the resulting decision vari-

ables: production levels pj,s,t/pi,s,t and refueling amounts

ri,k . We use the same auction method and type 1 power plant

offers as presented in Sect. 3 but augment the offers of type 2

power plants by their current fuel level and consumed mod-

ulation, i.e., the difference between the maximum and real-

ized production throughout the current campaign.

The auction is run in ascending order of the time steps

and for all scenarios in parallel. This way, it is easy to adjust
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Fig. 9 Illustration of the additional costs that arise when scheduling

an outage. The plants production capacities are represented by the

boxes ordered by ascending cost (light = cheap, dark = expensive).

Capacities below the lower marginal costs line are utilized for produc-

tion. When putting a plant on outage between the time steps t and t ′,

its production capacity has to be transferred to the next more expensive

plants (checkered region), resulting in new marginal cost (upper line)

the fuel levels from the previous time step and fix an out-

age’s refueling amount consistently at the second time step

of the outage.

Although cheap production is the ultimate goal, some-

times a type 2 power plant has to be utilized at any cost to

comply with the given constraints. Fortunately, the provided

datasets suggest that type 2 power plant production is gener-

ally cheaper than type 1 power plant production. But this is

nowhere stated explicitly and we do not take it for granted.

Nevertheless, we assume in this section that it is desirable

for each type 2 power plant to produce as much as possible

and adjust our refueling strategy accordingly.

6.1 Type 2 power plant preprocessing

During each production campaign a certain amount of fuel

has to be consumed to reach the fuel level limits that ap-

ply before or after the upcoming refueling (see CT 11). In

Sect. 5.2.1 we introduced a constraint that assured this prop-

erty between successive outages. In this preprocessing step

we define this limit for each time step, relying on the fact

that the assignment problem is feasible.

We start at the last time step and move backward in time.

Since all outage dates are known at this state of the solution

process, a maximum allowed fuel level of each time step can

be assigned by assuming maximum production in each time

step and minimum refueling during each outage. See Algo-

rithm 3 for a pseudo-code illustration of this preprocessing

step.

Note that these maximum fuel levels impose a minimum

production if the current fuel level comes close to its maxi-

mum.

6.2 Type 2 power plant offers

Besides the maximum allowed fuel levels, we have to take

care of several other constraints when assembling the of-

fered production amounts of a type 2 power plant.

Algorithm 3: PREPROCESS (i)

Output: Vector of upper bounds of fuel levels after

production for each time step

begin

// init last element of the result

vector

fuelmaxT ←− ∞

foreach scheduled k ∈ K in descending order do

// back propagation of the max

fuel

for t = t+i,k − 1 to t∗i,k do
fuelmaxt ←−

PREVIOUS(i, t, fuelmaxt+1)

// fuel level limit after

refueling

fuelmaxt−i,k+1 ←−

min(max(posti,k), fuelmaxt∗i,k
)

// reconstruct fuel before min

refueling

fuelmaxt−i,k
←−

Qi,k

Qi,k −1
(fuelmaxt−i,k+1 −

min(ref i,k) − BOi,k) + BOi,k−1

// fuel level limit before

refueling

fuelmaxt−i,k
←− min(max(prei,k), fuelmaxt−i,k

)

return fuelmax

end

Firstly, offers have to comply with imposed power pro-

files if the fuel level threshold BOi,k is under-run. This is

achieved by setting an imposed power level as the minimum

offer. If the fuel levels of each time step are tracked, this pro-

duction level can be easily calculated. Algorithm 4 gives a
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Algorithm 4: MINOFFER (i, k, s, t)

Output: Minimum required amount of production

begin
amount ←− 0

// Is this a production time step?

[CT3]

if t∗i,k ≤ t then

// Imposed power profile

active? [CT6]

if fuelleveli,t < BOi,k then

amount ←− PBi,k(fuelleveli,t ) · PMAXt
i

else

// maximum fuel level [CT11]

if fuelleveli,t > fuelmaxi,t then
amount ←−

(fuelleveli,t − fuelmaxi,t )/D

consumed_modulation =
∑t

τ=t∗i,k
(PMAXτ

i −p(i, s, τ )) · D

// maximum modulation [CT12]

if consumed_modulation > MMAXi,k

then
amount ←−

max(amount, (consumed_modulation−

MMAXi,k)/D)

return amount
end

pseudo-code notation of the process of calculating minimum

offers and considers the constraints CT 6, 11 and 12.

CT 6: If the production is imposed, the exact level is calcu-

lated and set as the minimum offer.

CT 11: If the current fuel level exceeds the maximum al-

lowed fuel level of this time step, it is not possible to reach

the maximum fuel level before or after refueling of the next

cycle. Therefore, the minimum offer is set such that the fuel

level is reduced to its maximum allowed value.

CT 12: If the consumed modulation of the current cycle (in-

cluding the time step of the auction) would exceed the

allowed maximum modulation, the minimum offer is set

such that the modulation equals MMAXi,k .

For time steps where a type 2 power plant is offline or

its production is imposed, the maximum production was al-

ready set by the minimum offer. During all other time steps,

the only constraints limiting maximum production are CT 4,

stating the maximum production of the plant, and CT 9, lim-

iting the fuel level to non-negative values. Algorithm 5 as-

sembles the maximum offered production amount.

Algorithm 5: MAXOFFER (i, k, s, t)

Output: Maximum available amount of production

begin
amount ←− 0

// Is this a production time step?

[CT3]

if t∗i,k ≤ t then

// production not imposed?

[CT6]

if fuelleveli,t ≥ BOi,k then

// choose minimal upper

bound from [CT4/5] and

[CT9]

amount ←−

min(fuelleveli,t/D,PMAXt
i −p(i, s, t))

return amount
end

6.3 Refueling amounts

Finally, we have to decide how much fuel to reload during

each outage. If the auction is run for a time step in which

a refueling for plant i has to be performed, the current fuel

levels of i in all scenarios are known because the previous

auctions have already been executed. Since the maximum al-

lowed fuel levels of all scenarios were calculated in the pre-

processing step, a possible refueling interval for each sce-

nario can be determined. The intersection of these intervals

is the globally possible refueling interval of the considered

outage.

Since the realized fuel level in each scenario is less or

equal to its upper bound found in the preprocessing step we

can conclude the following: Given an arbitrary type 2 power

plant i and cycle k, the intersection of the scenarios’ refuel-

ing intervals ri,k is not empty.

We still have to decide which value to take from the

refueling interval of the outage. A higher amount of re-

fueling probably results in higher utilization of the plant.

This seems desirable, as the provided instances suggest that

type 2 power plant production is generally cheaper than pro-

duction by type 1 power plants. On the other hand, a larger

refueling results in more residual fuel and thus a worse re-

fueling difference, i.e., more lost fuel during refueling (see

CT 10). Algorithm 6 demonstrates the calculation of the

concrete value.

6.4 Tuning refueling amounts

The basic refueling strategy presented in Sect. 6.3 is fast to

compute, but not desirable for several reasons. Firstly, if the

plant is operating at its maximum allowed fuel level, its pro-

duction level is imposed in order to stay below the maximum
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Algorithm 6: REFUELING (i, k, t)

Output: The reloading amount to perform

begin
a ←− RMAXi,k

foreach scenario s do

a ←− min
(

a, fuelmaxi,t−i,k+1 −

BOi,k −
Q−1

Q
(fuellevels,t−i,k

− BOi,k−1)
)

return a
end

allowed fuel level at the end of the production campaign (cf.

Sect. 6.2). So, the plant might have to produce although it

is not among the cheapest plants. Secondly, reloading more

fuel is expensive and as more fuel is reloaded, there is prob-

ably a higher loss of fuel at the end of the production cam-

paign. On the other hand, reloading too little amounts of fuel

results in less production, and hence also higher cost.

To determine a good refueling amount, we set up a model

to forecast the profit induced by a certain refueling amount.

We estimate this profit from the cost of refueling, the pro-

duction amounts, and an approximation of the lost fuel at

the end of the production campaign. The cost of refueling

and the cost of lost fuel can be easily determined. The key

idea to transfer production amounts into revenue is to run

the production assignment phase twice. In the first run, we

store the marginal cost realized for each time step. These

costs are used in a second run as the price of each produced

unit of energy.

At the instant when a concrete refueling amount is cho-

sen, the decoupling dates dec∗
i,k have already been fixed and

the fuel level before refueling of the plant is known for each

scenario. Algorithm 7 gives a pseudo-code notation, how to

determine the profit for a given refueling amount.

As an analytical approach is hard, our heuristic just calcu-

lates the profit for different refueling amounts (see Fig. 10).

We assume that the revenue function is unimodal and per-

form a ternary search to choose the refueling amount with

the highest expected profit.

7 Evaluation

7.1 Implementation and testing environment

We implemented our solution in C++ and utilize two ex-

ternal libraries. For the solution of the outage scheduling

phase (cf. Sect. 5) we extend the constraint programming

toolkit Gecode 3.3.2 (GECODE 2010). To solve the mini-

mum cost flow problem of the network-based lower bound

(cf. Sect. 3.3) we use the implementation of the cost-scaling

algorithm from the Lemon Graph Library 1.2 (LEMON

Graph 2010).

Algorithm 7: PROFIT (s, i, k, fuel level f , refueling r ,

marginal cost c)

Output: Estimated profit of the cycle when refueling r

begin
profit ← −r · Ci,k

f ← fuel level, when refueling r on top of f

for time step t ← t∗i,k to t+i,k do
prod ← production with respect to the fuel

level, modulation, unit cost, . . .

profit ← profit + prod · ct

if next cycle is scheduled then

profit ← profit −
Ci,k+1

Qi,k+1
· f

else
profit ← profit + f · Ci,T

return profit

end

Fig. 10 Fuel level tuning: a sample plot of the profit gained for dif-

ferent refueling amounts. The data are taken from A05, power plant 0,

cycle 1

All code has been compiled with GCC 4.3, using op-

timization level 3. Experiments have been performed on

one core of a 2x dual-core AMD Opteron Processor 2218

clocked at 2.6 GHz, equipped with 1 MB L2 Cache per core

and 32 GB RAM. This setup is slightly less powerful than

the reference setup used in the competition (2x quad-core In-

tel Xeon 5420 at 2.5 GHz, 12 MB L2 Cache, 8 GB RAM).

Our solution runs as a single thread and does not consume

more than 8 GB of memory per process.

7.2 Provided datasets

Three datasets (A, B and X) have been provided by the

ROADEF/EURO Challenge 2010. Set A contains six small

instances, while B and X comprise five big instances each.

Their key figures are shown in Table 5. Note that the ratio

between type 1 and type 2 power plants is nearly 1 in set A,

while B and X comprise 2–3 times more type 2 power plants

than type 1 power plants. As most of our constraint types are
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Table 5 Overview of the instances provided by the ROADEF/EURO

Challenge 2010. Column 14* is the sum of CT 14–18. The column for

CT 19 was omitted since each instance (except A00 which had none)

contained exactly one constraint of this type

Set # Constraints

J I S W T 13 14* 20 21

A00 1 2 2 89 623 4 1 0 0

A01 11 10 10 250 1750 46 11 1 1

A02 21 18 20 250 1750 84 17 1 1

A03 21 18 20 250 1750 80 18 1 1

A04 31 30 30 250 1750 122 23 1 1

A05 31 28 30 250 1750 120 22 1 3

B06 25 50 50 277 5817 222 77 50 5

B07 27 48 50 265 5565 192 70 50 5

B08 19 56 121 277 5817 114 86 50 5

B09 19 56 121 277 5817 114 86 50 5

B10 19 56 121 265 5565 235 86 50 5

X11 25 50 50 277 5817 239 77 50 5

X12 27 48 50 263 5523 207 70 50 5

X13 19 56 121 277 5817 260 86 50 5

X14 19 56 121 277 5817 256 86 50 5

X15 19 56 121 263 5523 245 86 50 5

related to type 2 power plants the B and X instances require

much more effort.

All instances—except the dummy-instance A00—contain

six cycles for each type 2 power plant. From the original

problem description we derive that a time step’s duration in

real time is between 8 and 24 hours. The demand scenarios

show similar characteristics and seem realistic (e.g., clear

seasonal oscillation). Instances B08 and B09 are a bit spe-

cial as they contain less outage date range constraints CT 13,

which dramatically increases the search space, making it

harder to find good solutions. Furthermore, in B08 and X13

all refueling amounts are fixed (i.e., RMINi,k = RMAXi,k).

All instances contain one type 1 power plant that is

able to cover the complete demand—at extremely high cost

though. This plant can be seen as a backup plant to keep

the problems feasible. As it is never desirable to utilize this

plant, we omit it in all plots and figures.

To make solution qualities comparable, the ROADEF

/EURO Challenge 2010 defines a so called score on each

result, which corresponds to the result’s deviation from the

best known solution in percent. Assume that R is our solu-

tion and R′ the best known solution so far, then the score is

calculated as:

score(R) :=
cost(R)

cost(R′)
− 1

Table 6 Lower bounds in millions: we compare both lower bounds

with respect to the obtained objective function value and its score (de-

viation from the best known solution, cf. Sect. 7.2)

Set Auction Network

Value Score Value Score

A00 8 676 507 M −0.66 % 8 701 730 M −0.34 %

A01 160 847 M −5.13 % 165 560 M −2.35 %

A02 130 148 M −10.09 % 139 991 M −4.15 %

A03 137 744 M −10.80 % 148 454 M −3.87 %

A04 82 428 M −23.45 % 102 326 M −8.30 %

A05 94 379 M −24.99 % 112 467 M −10.61 %

B06 36 338 M −56.44 % 69 592 M −16.58 %

B07 38 263 M −52.86 % 68 528 M −15.58 %

B08 28 410 M −65.32 % 62 594 M −23.60 %

B09 30 000 M −63.30 % 63 991 M −21.72 %

B10 30 389 M −60.92 % 63 747 M −18.03 %

X11 33 377 M −57.81 % 66 931 M −15.40 %

X12 36 740 M −52.65 % 66 558 M −14.22 %

X13 25 789 M −66.27 % 62 155 M −18.70 %

X14 26 903 M −64.68 % 63 045 M −17.23 %

X15 28 444 M −62.13 % 61 866 M −17.62 %

where cost returns the result’s value of the objective func-

tion. In the competition teams are ranked by their average

score for all B and X instances.

7.3 Lower bounds

In this section we evaluate the proposed lower bounds, the

results can be seen in Table 6. Both methods yield sta-

ble deviations from the best known results. Obviously, the

network-based lower bound gives far better results than the

auction-based bound. The reason is that the network is de-

signed to overcome the disadvantages of the auction (un-

derestimated unit cost of type 2 power plants and overesti-

mated production capacity). In the flow network, the cost of

production by type 2 power plants is really mapped onto a

concrete outage and billed with the refueling. Furthermore,

the network models outages by limiting the production of

the power plants over a certain period of time, while outages

are not considered in the auction approach.

Therefore, the remaining gap between the network-based

lower bound and an optimal solution originates mainly from

the unconsidered spacing and resource constraints (CT 14–

21) and the caveats against optional outages.

The lower bounds for instances from sets B and X differ

much more from their best known solution than instances

from set A do. This probably results from the larger num-

ber of outages and spacing constraints in the respective in-

stances. Consequently, the influence of the spacing con-

straints, which are not modeled in the lower bound, grows
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Fig. 11 Robustness of our solution: we show the scores (cf. Sect. 7.2)

of 50 iterations on the B and X instances. Ticks mark single solutions.

The thick vertical lines mark the median score of each instance. Note

that the average expected score (dotted line) after one iteration of each

instance is less than 6 %

and makes real solutions close to the lower bound hard to

obtain.

As the obtained scores of our lower bounds are similar

among the instances from sets B and X, we assume that these

instances are somewhat equally hard to solve. Thus, a good

solution should also yield similar scores for all instances.

The computational effort to compute the bounds differs

dramatically: while the auction-based bound requires less

than 10 seconds to compute, solving the flow-network for

all scenarios takes up to an hour for the biggest datasets.

7.4 Best solutions

At last, we present the best solutions found by our final ap-

proach (see Table 7). For insights on the impact of different

components of the method we refer to Brandt (2010).

For all experiments we used a computation time as al-

lowed in the ROADEF/EURO Challenge 2010, i.e., 30 min-

Table 7 Best solutions in millions. We compare the costs of the best

known results as published after the competition (see Pocheron et al.

2010) to our best achieved results

Set Best known solution Own best solution Score

A00 8 730 985 M 8 735 652 M 0.05 %

A01 169 538 M 169 661 M 0.07 %

A02 146 048 M 146 226 M 0.12 %

A03 154 429 M 154 775 M 0.22 %

A04 111 591 M 112 106 M 0.46 %

A05 125 822 M 126 509 M 0.55 %

B06 83 424 M 87 901 M 5.37 %

B07 81 174 M 84 535 M 4.14 %

B08 81 926 M 86 308 M 5.35 %

B09 81 750 M 87 092 M 6.53 %

B10 77 767 M 81 587 M 4.91 %

X11 79 116 M 82 718 M 4.55 %

X12 77 589 M 80 171 M 3.33 %

X13 76 449 M 80 345 M 5.10 %

X14 76 172 M 79 921 M 4.92 %

X15 75 101 M 76 901 M 2.40 %

utes per instance for dataset A and 60 minutes per instance

for datasets B and X. First of all, we note that our obtained

solution quality for A instances is much better than for B and

X instances. This probably originates from some nice prop-

erties of the A instances: they comprise less spacing con-

straints and outages to schedule, thus the search spaces are

smaller.

Among the B and X instances we achieve good results

with a robust deviation from the best known solution (see

Fig. 11), but we have not been able to improve the best

known results for the provided instances. Across these in-

stances we gained an average score of 4.66 % which would

result in the second best rating in the competition. However,

we have to acknowledge that probably most of the partic-

ipating teams are able to improve their results after all in-

stances have been revealed or provide solutions to instances

they failed to solve in the competition.

8 Conclusion

In this paper we developed a constraint programming and

greedy heuristics based approach for the problem posed by

the ROADEF/ EURO Challenge 2010, which contained an

industry scale power plant production planning problem in

an uncertain and highly constrained environment. The over-

all objective function was to reduce the total operating cost.

We developed two approaches that compute lower bounds

for the problem. One is a fast greedy heuristic, the other is
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based on a flow network and yields closer bounds at the

cost of high computational effort. We decomposed the main

problem into two stages: outage scheduling and produc-

tion assignment. For the first stage we formulated the given

model as a constraint program and added further constraints

which ensure the feasibility of the remaining production as-

signment problem. In the second stage we utilized a greedy

heuristic—developed from our greedy lower bound—to as-

sign production levels and refueling amounts for a given

outage schedule.

We implemented all the proposed methods and evalu-

ated their performance on 16 challenge instances. Further

work might be done to improve the lower bounds by a bet-

ter preprocessing (e.g., to reduce the outage date domains).

Besides, local search techniques are not considered yet and

might be able to improve the presented solution approach.

Finally, we related this work to the results obtained by the

participating teams of the ROADEF/EURO Challenge 2010.

Our approach is able to solve all proposed instances, which

only 4 of 21 finalist teams did, and achieves competitive re-

sults with an average deviation from the best known results

of less than 5 %. This corresponds to the second best score

achieved in the competition.
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