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Abstract

In this paper, we consider the application a con-
straint satisfaction problem solving (CSP) framework
recently developed for deadline scheduling to more
commonly studied problems of schedule optimization.
Our hypothesis is two-fold: (1) that CSP scheduling
techniques can provide a basis for developing high-
performance approximate solution procedures in op-
timization contexts, and (2) that the representational
assumptions underlying CSP models allow these pro-
cedures to naturally accommodate the idiosyncratic
constraints that complicate most real-world applica-
tions. We focus specifically on the objective crite-
rion of makespan minimization, which has received the
most attention within the job shop scheduling litera-
ture. We define an extended solution procedure some-
what unconventionally by reformulating the makespan
problem as one of solving a series of different but re-
lated deadline scheduling problems, and embedding a
simple CSP procedure as the subproblem solver. We
summarize results of an empirical evaluation of our
procedure performed on a range of previously stud-
led benchmaxk problems. Our procedure is found
to provide strong cost/performance, producing solu-
tions competitive with those obtained using recently
reported shifting bottleneck search procedures at re-
duced computational expense. To demonstrate gen-
erality, we also consider application of our procedure
to a more complicated, multi-product hoist schedul-
ing problem. With only minor adjustments, our pro-
cedure is found to significantly outperform previously
published procedures for solving this problem across
a range of input assumptions.

Introduction

Constraint satisfaction problem solving (CSP) models
and heuristics have increasingly been investigated as a
means for solving scheduling problems (Cheng & Smith
1994; Minton et al. 1992; Muscettola 1993; Sadeh 1991;
Smith & Cheng 1993). Much of this work has focused
on variations of the job shop deadline problem, and
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a number of effective procedures have been developed
in this context. A job shop deadline problem involves
synchronization of the production of n jobs in a facility
with m machines, where (1) each job j requires execu-
tion of a sequence of operations within a time interval
specified by its ready time rj and deadline dj, and (2)
each operation Oi requires exclusive use of a desig-
nated machine Mi for a specified amount of processing
time pi. The objective is to determine a schedule for
production that satisfies all temporal and resource ca-
pacity constraints.

Our interest in this paper is in investigating the ap-
plicability of CSP procedures for deadline scheduling
to problems of schedule optimization. We focus specifi-
cally on the problem of minimizing schedule makespan,
which has received the most attention in the Oper-
ations Research (OR) scheduling literature. In this
problem, jobs do not have individual deadlines; the
objective is instead to complete all jobs in the least
amount of time possible. Thus, the problem cannot be
formulated strictly as a CSP.

We define a procedure for makespan minimization
by reformulating the problem as a series of distinct but
related deadline scheduling subproblems, and search-
ing for the smallest feasible "common deadline" for
all jobs. This allows us to take direct advantage of a
previously developed deadline scheduling procedure as
the core subproblem solver. In the sections below, we
first summarize the embedded CSP scheduling proce-
dure (called PCP), then define the extended procedure
(Multi-PCP) for finding the mininmm common dead-
line, and finally discuss two computational studies.

PCP

We take as our starting point a state-of-the-art heuris-
tic procedure for deadline scheduling called Prece-
dence Constraint Posting (PCP) (Smith & Cheng 1993;
Cheng & Smith 1994). There are different ways to for-
mulate the deadline scheduling problem as a CSP. In
PCP, the problem is formulated as one of establishing
sequencing constraints between those operations con-
tending for the same resource. In CSP terms, we have
a set of decision variables Orderinglj for each (Oi, Oj)
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such that M/ = Mj, which can take on two possible
values: Oi -~ Oj or Oj -~ Oi.

Problem Representation

The PCP scheduling model can be formalized more
precisely as a type of general temporal constraint net-
work (GTCN) (Meiri 1991). In brief, a GTCN T con-
sists of a set of variables {X1 .... ,Xn} with continu-
ous domains, and a set of unary or binary constraints.
Each variable represents a specific temporal object, ei-
ther a time point (e.g., a start time stl or an end time
eti ) or an interval (e.g. an operation Oi). A constraint
C may be qualitative or metric.

A qualitative constraint C is represented by a dis-
junction (Xi ql Xj) V ... V (Xi qk Xj), alternatively ex-
pressed as a relation set Xi {ql .... , qk} Xj, where qi rep-
resents a basic qualitative constraint. Three types of
basic qualitative constraints are allowed:

1. interval to interval constraints - The GTCN defini-
tion of (Meiri 1991} includes Allen’s 13 basic tem-
poral relations (Allen 1983): before, after, meets,
met-by, overlaps, overlapped-by, during, contains,
starts, started-by, finishes, finished-by, and equal.
For convenience, we additionally include the rela-
tions before-or-meets and after-or-met-by, which rep-
resent the union of relation pairs (before, meets} and
(after, met-by) respectively (Bell 1989).

2. point to point constraints - The relations identified
in (Vilain & Kautz 1986), denoted by the set {<,=
, > }, are allowable here.

3. point to interval or interval to point constraints - In
this case, the 1O relations defined in (Ladkin & Mad-
dux 1989) are specifiable, including before, starts,
during, finishes, after, and their inverses.

A metric constraint C is represented by a set of in-
tervals {I1,..., Ik } = {[at, bl] .... , [ak, bk]}. Two types
of metric constraints are specifiable, k unary con-
straint Ci on point Xi restricts Xi’s domain to a given
set of intervals, i.e. (Xi E I1) V ... V (XI E I~). 
binary constraint C’ij between points Xi and Xj re-
stricts the feasible values for the distancc A~ - Xi, i.e.,
(A] - Xi E It) V ... V (X/- Xi EIk). A special time
point X0 can be introduced to represent the "origin".
Since all times are relative to X0, each unary constraint
Ci can be treated as a binary constraint Col.

A GTCN forms a directed constraint graph, where
nodes represent variables, and a edge i ---- j indicates
that a constraint Cij between variables Xi and A’j is
specified. We say a tuple X = (zl .... , zn) is a solution
if X satisfies all qualitative and metric constraints. A
network is consistent if there exists at least one solu-
tion. Figure 1 depicts the constraint graph for a simple
2 job, 2 machine deadline scheduling problem.

An enumerative scheme for solving a GTCN is given
in (Meiri 1991). Let labeling ofa general temporal
constraint network, T, be a selection of a single dis-
junct (relation or interval) from each constraint spec-
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Figure h Constraint Graph for simple 2job, 2 machine
problem

ified in T. In the graph of Figure 1 there are 4 possi-
ble labelings, owing to the {before-or-meets, after-or-
met-by} relation sets introduced to avoid resource con-
tention between operation pairs (O1, 02) and (03, 04).
Since any basic qualitative constraint can he trans-
lated into at most four metric constraints (Kautz 
Ladkin 1991) (e.g., Oi before-or-meets Oj translates to
eti <_ stj ), any labeling of T defines a Simple Temporal
Problem (STP) network - a metric network contain-
ing only single interval constraints (Dechter, Meiri, 
Pearl 1991). T will be consistent if and only if there
exists a labeling whose associated STP is consistent.

For any STP network, we can define a directed edge-
weighted graph of time points, Gd, called a distance
graph. An STP is consistent if and only if the cor-
responding distance-graph Ga has no negative weight
cycles. The minimal network of the STP can be spec-
ified by a complete directed graph, called the d-graph,
where each edge, i --. j, is labeled by the shortest path
length, spij= from point i to point j irl Gd (Dechter,
Meiri, & Pearl 1991). An STP network can be solved in
O(n3) time by the Floyd-Warshall’s all-pairs shortest-
paths algorithm, where n is the number of variables in
tim STP network.

Thus, a simple, complete procedure for solving a
GTCN is to enumerate all labclings, solve each cor-
responding STP and combine results. We can incre~e
the efficiency of this enumeration procedure by running
a backtracking search over a meta-CSP network, whose
variables correspond to arcs in the GTCN that can be
labeled in more than one way and whose domains are
simply the set of possible labelings. In the case of the
deadline schedulifig problem, this leads to the set of
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decision variables V = {Orderingij} previously iden-
tified, and a worst case complexity of O(nS21vI).

Basic Solution Procedure

The PCP scheduling model (Smith & Cheng 1993;
Cheng & Smith 1994) augments this basic backtrack-
ing search procedure to incorporate simple analysis of
the temporal flexibility associated with each sequenc-
ing decision that must he made. This analysis is uti-
lized in two ways: (1) to specify dominance conditions
that allow identification of unconditional decisions and
early search space pruning, and (2) to provide heuristic
guidance for variable and value ordering (i.e., decisions
as to what variable to assign next and what value to
assign).

Specification and use of dominance conditions in
PCP derives directly from the concept of Constraint-
Based Analysis (CBA) originally developed in (Er-
schler, Roubellat, & Vernhes 1976; 1980). This work
utilized calculations of the temporal slack associated
with an unordered operation pair to distinguish among
cases where neither ordering alternative, just one or-
dering alternative, or either alternative remains feasi-
ble. For example, if slack( Oi -~ Oj ) = l ftj -esti-(pi+
pj) < 0 then Oi cannot be sequenced before Oj. These
conditions are applied to detect and post any "forced"
sequencing constraints at each step of the search, and
to detect inconsistent solution states.

In (Cheng & Smith 1994), these dominance condi-
tions are generalized to account for the wider range
of constraints that are specifiable in a GTCN. Sup-
pose Orderingij is a currently unassigned variable in
the meta-CSP network, and consider the d-graph asso-
ciated with the current partial solution. Let si, ei, sj,
and ej be the start and end points respectively of oper-
ations Oi and Oj, and further assume sp~j is the short-
est path length from ei to sj and spji is the shortest
path length from ej to si. Then, four mutually exclu-
sive cases can be identified:

Case 1. If spij >_ 0 and spj~ < 0, then Oi -< Oj
must be selected.

Case 2. If spji >_ 0 and spij < 0, then Oj -~ Oi
must be selected.

Case 3. If spji < 0 and spij < 0, then the partial
solution is inconsistent.

Case 4. If spji ~_ 0 and spij >_ O, then either
ordering relation is still possible.

We note that the "slack-based" dominance condi-
tions of (Erschler, Roubellat, & Vernhes 1976) rep-
resent a special case of the above conditions; under
classical job shop scheduling assumptions (i.e., fixed
processing times, simple job precedence constraints)
slack(O~ -~ Oj) = sp~j. However, many practical
scheduling problems require satisfaction of more com-
plex temporal constraints (e.g., bounded delays be-
tween job steps, mininmm and maximum processing

time constraints, inter-job synchronization). Under
such more complex modeling assumptions, shortest
path information provides stronger dominance criteria.

The second distinguishing aspect of PCP is its use
of sequencing flexibility analysis for variable and value
ordering, which dictates how the search should proceed
in the undecided states (case 4 above). Intuitively, 
situations where several Orderingij decisions remain
to be made, each with both possibilities still open, we
would like to focus attention on the decision that has
the least amount of sequencing flexibility. Conversely,
in making the selected ordering decision, we intuitively
prefer the ordering relation that leaves the search with
the most degrees of freedom.

One very simple estimate of the sequencing flexibil-
ity associated with a given Orderingij is the minimum
shortest path length, wij -- min(spij,spj~), which
gives rise to a variable ordering heuristic that selects
the Ordering~j with the minimum wij. This heuris-
tic makes reasonable sense; at each step, the decision
which is closest to becoming forced is taken. How-
ever, its exclusive reliance on wij values can lead to
problems. Consider two ordering decisions Ordering~j
with associated shortest path lengths spij = 3 and
spji = 100, and Orderingkl with spkl --- 4 and spik : 4.
In this case, there are only limited possibilities for fea-
sibly resolving Orderingkl and deferring this decision
may well eliminate them, while a feasible assignment
to Ordering~j is not really in any jeopardy.

To hedge against these situations, PCP instead bases
variable ordering decisions on a slightly more com-
plex notion of biased shortest path length. Specifi-
cally, bspij = spij/V/S and bspji = spjl/V~ are com-
puted, where S = min{spij, spji}/max~spij, spji) es-
timates the degree of similarity between the two val-
ues sp~i and spji. The sequencing flexibility associ-
ated with a given decision Ordering0 is redefined to
be wij = min(bsp~j, bspj~), and the decision selected
during variable ordering is the decision with the min-
imum wij. The value ordering heuristic utilized in
PCP simply selects the ordering relation implied by
maz(bspij, bspji), i.e. the sequencing constraint that
retains the most temporal flexibility is posted.

A More Efficient, Approximate Procedure

The dominance conditions and variable/value ordering
heuristics that distinguish the basic PCP procedure do
not, of course, change the exponential worst case be-
havior of the backtracking search required to guarantee
completeness. To provide a more computationally effi-
cient procedure for embedded use in solving makespan
minimization problems, we introduce a backtrack-free
variant of the basic PCP procedure. This approximate
solution procedure, referred to as "One-Pass PCP", is
defined as follows. Whenever an ordering decision is
recognized as Case 3 (i.e., no feasible ordering), the
search does not backtrack, but instead the unresolv-
able decision is set aside, and the search is allowed to
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proceed with other, still resolvable ordering decisions.
Once all feasibly resolvable decisions have been made,
the set U of unresolvable (Case 3) decisions is then re-
considered. For each Orderingij in U, deadlines di and
dj are relaxed (increased) by Imax(spij, sp/i)l and the
corresponding precedence relation (which is now fea-
sible) is posted. This procedure thus always produces
a solution, albeit one that may not satisfy all original
problem constraints. Its worst-case time complexity
is O(n31VI), where IVI is tile number of ordering de-
cisions that must be made. In the next section, we
define an extended procedure for makespan minimiza-
tion that incorporates One-Pass PCP as its subprob-
lem solver.

MULTI-PCP

Our approach to designing an extended procedure for
makespan minimization is motiwted by the concept
of problem duality exploited in the MULTIFIT algo-
rithm (Coffman, Garey, & Johnson 1978) in the con-
text of multiprocessor scheduling. Suppose that we
are given an instance of a makespan problem, denoted
by I1M(I) where I represents the problem data associ-
ated with this problem instance. If we know the min-
imum makespan for IIM(I) to be C~nax, then we can
reduce IIM(I) to a special deadline problem IID(I, 
where each job is assigned a 0 ready time and a com-
mon deadline d, with d = C~nax. For any d > C~a~,
we are assured that a feasible solution to IIo(I, d) ex-
ists. More important, C~,a~ defines a unique common
deadline such that for d < C*~, IID(I,d) has no fea-
sible solution. This dual relationship between prob-
lems IIM(I) and IIo(I, d) implies that. the makespan
problem IIM(I) can be reformulated as a problem 
finding the smallest common deadline, drain, for which
IID (I, d) has a feasible solution.

Given an algorithm for optimally solving the dead-
line problem II5(I, d), it is straightforward to con-
struct an search procedure for determining d,nin (and
its associated schedule). We start with known upper
and lower bounds dv and dL on the common deadline
d,nin; at each step, we attempt to solve IID(l,d) for
d = (dr + dL)/2. If a feasible schedule is found, dv
becomes d; otherwise, dL becomes d. We continue the
search until dv = dL, retaining the schedule with the
best. makespan as we go.

There is a complication, however, in utilizing this bi-
nary search procedure in conjunction with a heuristic
deadline scheduling procedure like "One-Pass PCP".
The search may fail to yield the best solution if the
deadline scheduling procedure does not ensure mono-
tonicity in solution results across an interval of com-
mon deadlines. This property implies that if a feasible
solution cannot be found for a given common dead-
line dl, then a solution will also not be found for any
common deadline d2 < dl, and likewise if a solution is
found for a given dl, then a solution will also be found
for any d2 > d~. It is not difficult to construct exam-
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ples which demonstrate that One-Pass PCP does not
possess this property, and consequently the assump-
tions underlying use of binary search are no longer
valid. For this reason, we instead define our extended
makespan minimization procedure, which we will re-
fer to as Multi-PCP, in terms of a more conventional
k-iteration search; One-Pass PCP is applied k times
with different common deadlines evenly distributed be-
tween dL and dr. While k-iteration search obviously
also provides no guarantee of finding the optimal solu-
tion, empirical analysis has indicated that, with proper
selection of k, use of k-iteration search leads to consis-
tently better makespan minimization performance.

The only remaining issue concerns initial establish-
ment of upper and Lower bounds on d,,,in. A lower
bound dr, is provided by the procedure originally de-
scribed in (Florian, rl’repant, & McMahon 1971}, where
each machine is sequenced independently in order of
earliest operation start times and the maximum job
completion time is then selected. An upper bound dv
can be obtained through application of one or nmre
priority dispatch rules. In the experiments reported
below, a set of six well-known priority rules - SPT,
LPT, LFT, EFT, MOR, and LOR- were applied, tak-
ing the best makespan generated as dv [Please refer
to (Panwalker & Iskander 1977) for details concerning
these priority rules.] For all runs, the bound k on the
nulnber of iterations performed was set to 8.

Benchmark Problem Results

We applied the above defined Muiti-PCP procedure
to two sets of previously studied benchmark problems
within the Operations Research (OPt) literature. The
first. ("small") problem set consists of 39 job shop prob-
lems with sizes varying from 6-job by 6-machine to 15-
job by 15-machine. The first three problems, Mt06,
Mtl0, and Mt20, are the long standing problems of
(Fisher & Thompson 1963). The remainder are taken
from the 40 problems originally created by (Lawrence
1984); of these 40 problems, we include only the 36
problems for which optimal solutions have been ob-
tained. The second ("large") set of benchmark prob-
lems, are the problems more recently defined by (Tail-
lard 1993). This set consists of 80 larger job shop prob-
lems with sizes ranging from 15-job by 15-machine to
100-job by 20-machine. For each problem in this set,
Taillard reported the "best solution" obtained with a
tabu search procedure that was run for extended time
intervals.

We take as a principal comparative base, the shift-
ing bottleneck family of procedures (Adams, Balas, 
Zawack 1988; Balas, Lenstra, & Vazacopoulos 1993),
which has produced performance comparison stan-
dards within the OR makespan scheduling literature.
The shifting bottleneck procedures - SB1, SB3 and SB4
- provide a series of increasingly more accurate ap-
proximate procedures for makespan minimization at
increasingly greater computational expense. We corn-
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Table 1: Mean ~ deviation from optimal solution for
Multi-PCP, SB1, SB3, and SB4 across small bench-
mark problem categories

Job x
Machine M ltiPoP Is l I sB31

mt06 0.00 7.27 0.00 0.00
mtl0 2.04 2.37 5.48 1.08
mt20 2.32 5.41 2.92 2.92
10x5 1.47 1.59 1.44 1.44
15x5 0.00 0.00 0.00 0.00
20x5 0.00 0.00 0.00 0.00
I0 x I0 2.44 4.94 3.16 2.25
15 x I0 3.78 6.34 2.72 2.72
20 x I0 3.12 6.57 1.37 0.96
30 x I0 0.30 0.00 0.00 0.00
15 x 15 4.15 6.16 3.09 3.01

All ] 1.72 [3.01 I 151 I 1.24 I

Table 2: Mean CPU time (in seconds) for Multi-PCP,
SBI, SB3, and SB4 across small benchmark problem
categories

Job x
Machine Multi-PCP [ SB1 SB3 SB4

rot06 0.05 0.12 0.78 1.45
mtl0 0.38 0.72 2.21 7.76
rot20 1.38 0.28 1.99 3.62
10x5 0.13 0.12 0.40 0.56
15x5 0.22 0.15 0.12 0.12
20 x5 0.07 0.16 0.14 0.14
I0 x I0 0.26 0.67 1.61 3.20
15 x I0 1.04 1.20 3.41 5.74
20 x I0 2.51 1.61 3.86 7.50
30 x I0 4.85 2.58 4.13 4.13
15 x 15 1.29 4.55 13.34 26.79

Average 1.19 [1.21[ 2.96 [5.29

pare the performance of each of these procedures and
Multi-PCP in terms of two measures: % deviation from
the optimal solution (or % deviation from the best tabu
search solution in the case of the large problem set)
and amount of computation time required. Results
for SB1 were obtained on a Sun SPARC 10 worksta-
tion using an implementation kindly provided to us by
Applegate and Cook (for detail please see (Applegate
& Cook 1991)). Results for SB3 and SB4 were taken
from (Balas, Lenstra, & Vazacopoulos 1993), with the
reported Sun SPARC 330 computation times trans-
lated to reflect expected performance on a SPARC 10.
Multi-PCP computation times were also obtained on
a SPARC 10. All procedures considered were imple-
mented in C. Since SB3 and SB4 results have not been
reported for the large problem set, comparison here is
restricted to Multi-PCP and SB1.

Table 1 summarizes the performance results ob-

tained on the small benchmark problem set (with re-
sults aggregated according to problem size for the
Lawrence problems). Associated computation times
axe given in Table 2. Computation times were found
to be identical for both Multi-PCP configurations at
the level of precision reported and are thus listed only
once. [Detailed results for each individual problem for
both problem sets axe reported in (Cheng & Smith

1905).]

The makespan minimization performance of Multi-
PCP on the small problem set falls within the per-
formance continuum defined by the shifting bottleneck
procedures. On average, Multi-PCP is seen to perform
better than SB1 and very close to SB3, with SB4 yield-
ing the best overall makespan performance. Relative
performance was found to vary across different prob-
lem subsets. On the three classic Fisher and Thompson
problems, Multi-PCP found equivalent or better solu-

tions than both SB1 and SB3 in all cases, and failed to
match the performance of SB4 in just one case. There
is little difference in performance on the very small,
6-machine problems; all procedures produce optimal
or near optimal solutions in these problem categories.
The results on the larger, 10-machine problem cate-
gories reveal perhaps the most significant comparative
performance trend. For problems with low ratios of
number of jobs to number of machines, Multi-PCP ex-
hibits its strongest comparative performance. In the
case of the 10xl0 problem category, MuIti-PCP per-
formed better on average than both SB1 and SB3, and
very close to SB4. Conversely, Multi-PCP was found
to be less effective (comparatively) on problems with
high job to machine ratios. On the 30x10 problems
(which turn out to be the easiest 10-machine problems
for all procedures), all three shifting bottleneck proce-
dures were able to obtain optimal solutions, whereas
Multi-PCP failed to find the optimum for 2 of the
5 problems in this category. Computationally, Multi-
PCP’s solution times on this problem set are seen to
be comparable overall to those of SBI.

Table 3 extends the performance comparison of
Multi-PCP and SB1 to the larger problem set of Tail-
lard. Corresponding average computation times by
problem category are given in Table 4. Ignoring the
scalability problems encountered with the tested SB1
implementation (it couldn’t solve some problems due
to memory problems), the results at larger problem
sizes make much more explicit the comparative per-
formance trends observed at the 10-machine problem
level. Multi-PCP is seen to consistently outperform
SB1 at low job-to-machine ratios, while the inverse
is true at high job-to-machine ratios. Both proce-
dures achieve increasingly better solutions at higher
job-machine ratios (consistent with Taillard’s observa-
tion that these problems are easier), but in no cases
does either Multi-PCP or SB1 achieve the best solu-
tions generated by extended Tabu search.

Examination of relative computational costs indi-
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Table 3: % deviation from the best. solution for Multi-
PCP and SB1 across large benchmark problem cate-
gories

Multi-PCP
Job x Multi-PCP w/ Relax SBI

Machine mean a meal ff mean a
15 x 15 5.74 0.74 5.57 0.78 9.00 2.05
20 x 15 7.52 1.82 7.27 1.49 10.15 2.14
30 x 15 9.88 2.57 9.65 2.47 8.38 3.06

50 x 15. 7.39 2.31 7.21 2.26 2.66t 1.57
20 x 20 7.60 1.54 7.33 1.33 9.98 2.29
30 x 20 11.76 2.43 11.64 2.37 13.05 2.55

50 x 20. 8.77 0.96 8.34 1.06 5.33t 1.82
100 x 20 4.88 1.41 4.88 1.41 -$

All. 8.38 1.72 8.14 1.65 8.36 2.21

t SB1 able to solve nine out of ten problems.
:~ SB1 unable to solve any of the 100x20 problems.
¯ Average performance is measured with respect to prob-
lems solved by both procedures.

Table 4: CPU seconds for Multi-PCP and SB1 on the
large benchmark problems

Job x
Machine
15 x 15
20 x 15
30 x 15
50 x 15
20 x 20
30 x 20
50 x 20
I00 x 20

Multi-PCP
mean o"

SB1
mean o"

1.20 0.08
3.42 0.33
11.90 0.85
68.11 7.12
3.73 0.32
15.51 0.77
94.90 6.28
857.36 38.43

5.10 1.39
7.63 1.06
14.68 1.72
141.33 104.84
15.64 2.91
31.58 4.03
165.83 94.75

cates some additional scalability trends and tradeoffs.
Multi-PCP was found to consistently produce solutions
in less computation time than SB1; the largest differ-
ential (roughly 4 times as fast) was observed in the
problem categories with the smallest job-to-machine
ratios, and, on average, Multi-PCP obtained solutions
in about half as much CPU time as SB1. Multi-PCP
was also found to be much more predictable with re-
spect to computational cost. The variance in Multi-
PCP solution times across all problem categories was
extremely low in comparison to SB1.

The Hoist Scheduling Problem
The above study relates the performance of Multi-
PCP to state-of-the-art makespan minimization pro-
cedures; perhaps somewhat surprising, it shows that
Multi-PCP’s use of a CSP scheduling model in con-
junction with fairly simple search control heuristics
yields respectable performance (although certainly not
outperforming all previously reported results). A com-
plementary consideration is its broader applicability to
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more idiosyncratic problem formulations.
To demonstrate generality, we consider application

of Multi-PCP to a less-structured makespan minimiza-
tion problem: the multi-product version of the hoist
scheduling problem(Yih 1994). The problem finds its
origin in printed circuit board (PCB) electroplating fa-
cilities. In brief, a set J of jobs, J = {J1 ..... Jn} each
require a sequence of chemical baths, which take place
within a set M of m chemical tanks, M = {l ..... m}.
Execution of a particular chemical bath operation Oi
requires exclusive use of tank rnl. The processing time
of any Oi required for a job j is not rigidly fixed: in-
stead there is a designated minimum time, p~,in, that
j must stay" in the tank for the bath to accomplish
its intended effect and a maximum time, p~a~, over
which product spoilage occurs. All jobs move through
the chemical tanks in the same order, though a given
job may require only a subset of the baths and thus
"skip" processing in one or more tanks along the way.
All job movement through the facility is accomplished
via a single material handling hoist, H, which is ca-
pable of transporting a job initially into the system
from the input buffer, from tank to tank, and finally
out of the system into the output buffer. H can grip
only a single job at a time, moves between any two ad-
jacent stations (input buffer, tanks, or output buffer)
at constant speed s, and has constant loading and un-
loading speeds, L and U, at any tank or buffer. The
facility itself has no internal buffering capability’; thus
jobs must be moved directly from one tank to the next
once they have entered the system. The objective is
to maximize facility throughput (or equivalently mini-
mize makespan) subject to these process and resource
constraints.

Most previous work in hoist scheduling has con-
sidered simplified versions of this problem (e.g., sin-
gle product only, multiple products but no tank skip-
ping}. To our best knowledge, only (Yih 1994) has re-
ported procedures for solving the general hoist schedul-
ing problem defined above.

Extensions

The GTCN formalism introduced in Section requires
only slight extension to model the hoist scheduling
problem. The only constraints that are not directly
formulatable are those relating to synchronization of
competing hoist (or material movement) operations;
in this case, basic qualitative relations are insufficient.
as they do not allow accounting of the "setup" time
that may be required to position the hoist at the load-
ing location. To overcome this limitation, we extend
our representation of qualitative constraints to option-
ally include a metric quantifier. For purposes here,
it is sufficient to include only the following two ex-
tended relations: before-or-meets[lagtime] and after-
or-met-by[lagtime], where lagtime >_ 0 designates a
minimum metric separation between the related in-
tervals. Thus, whereas the constraint Oi before-or-

From: AIPS 1996 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved. 



meets Oj implies eti <_ stj, the extended constraint
Oi before-or-meets[hq] Oj implies eti + hq <_ stj. For
each pair of hoist operations Oi and Oj belonging to
different jobs, we specify the constraint Oi {before-
or.meets[hlj], after-or-met-by[hid } Oj, where hij =
s * ]destinationl - originj ] and hji = s* ]destinationj -
origini [. [see (Cheng & Smith 1995) for a complete dis-
cussion of how other aspects of the hoist problem are
modeled and a simple example].

The presence of sequence-dependent setups also im-
pacts the variable and value ordering heuristics utilized
with the base PCP procedure. Recall from Section ,
that these heuristics rely on shortest path lengths as a
basic indicator of sequencing flexibility. In essence, the
shortest path from eti to stj for operations Oi and Oj,
designated spij, indicates the current maximum fea-
sible separation between these two points. However,
shortest path lengths provide only a partial (distorted)
view of ma.xinmm separation if sequence-dependent
setup delays are required. To sharpen the heuristics,
we generalize the basic measure of flexibility in PCP
to incorporate sequence-dependent lag times. Assume
hq to be the lag time required if Oi is processed before
Oj, and hji be the lag time required if Oj is processed
before O~ (i.e., the constraint specified in the network
is Oi { before.or-meets[hq], after-or-met.by[hid} Oj ).
We revise the dominance conditions and search control
heuristics specified in Section by simply substituting
the extended calculation (spo - hij) for spij and, like-
wise, substituting (spjl - hji) for spji. Note that these
revised definitions continue to accommodate the basic
{before, after} relation (in which case, hq and hji are
both set to the smallest possible temporal increment),
as well as the basic {before-or-meets, after-or-met-by}
relation set (where hq,hji = 0).

Results

To assess performance, we carried out computational
study following the same experimental design of (Yih
1994). A PCB electroplating facility with 5 chemical
tanks was assumed. All problems generated consisted
of 100 jobs, each with randomly generated routings and
tank processing time constraints, and all assumed to
be simultaneously available. Since material flow is uni-
directional, differences in job routings correspond to
which and how many tanks are skipped. Experiments
were conducted to evaluate performance along two di-
mensions relating to facility constraints and operation:
first as function of the relative speed of the hoist to
mean tank processing time, and second as a function
of the degree of flexibility provided by tank processing
time constraints. To calibrate results, problems were
also solved using the hoist scheduling procedure previ-
ously developed by Yih (Yih 1994), designated below
as the "Yih94 algorithm". Both procedures were im-
plemented in C and run on a Sun SPARC 10 worksta-
tion.

In configuring Multi-PCP for these experiments, a
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Figure 2: Solution improvement for increasing ratio of
mean processing time / hoist speed

simpler, "basic algorithm", used in (Yih 1994) as 
baseline for comparison, was incorporated to provide
the upper bound du on the common deadline inter-
val; dL was obtained by computing the mininmm total
required processing time (including hoist operations)
for each job and taking the maxinmm. To provide a
more computationally competitive alternative to Yih’s
"real-time" procedure, a simple problem decomposi-
tion method(N. Hirabayashi & Nishiyama 1994) was
also employed; the input problem was partitioned into
subproblems with equal numbers of jobs (10 for these
experiments) and solved independently by Multi-PCP,
with the results then randomly combined to produce
the overall solution - yielding overall solution times of
about 100 seconds.

We present only the results obtained from one of the
experiments performed, on problem sets designed to
vary the ratio 7 = [~mln[s, where Lbmln is the mean min-
imum processing time of tank operations and s is the
speed of the hoist in moving between adjacent system
locations. Figure 2 summarizes the the performance
of Multi-PCP and Yih94 in this experiment. Values
plotted for each 7 ratio represent the average % im-
provement over the basic algorithm on 10 randomly
generated problems.

Both procedures are seen to generate the largest im-
provement for values of 7 in the range of [10,25], with
improvement rates degrading as 7 becomes larger or
smaller. In the case of Yih94, no improvement is ob-
tained at either of the extreme points tested. Multi-
PCP, alternatively, yields an improvement rate of 8%
at the smallest 7 value, and as 7 becomes increasingly
larger, its improvement rate stabilizes at about 15%.
Across all experiments, Multi-PCP is seen to produce
solutions that, on average, are 15% better (in rela-
tion to the baseline solution) than those obtained with
Yih94.

Details of the full experimental design and all results

Cheng 51

From: AIPS 1996 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved. 



obtained are reported in (Cheng & Smith 1995), and
only strengthen the performance comparison.

Concluding Remarks

We haw’ described a procedure for makespan schedul-
ing based on formulation of the problem as a series
of CSPs and iterative application of a CSP scheduling
procedure with fairly simple search control heuristics.
It was shown to produce strong performance in rela-
tion to shifting bottleneck procedures on benchmark
scheduling problems. Perhaps more significant how-
ever, is the procedure’s generality. Real-world applica-
tions are often complicated by additional temporal syn-
chronization and resource usage constraints, and solu-
tion procedures which rely on problem structure that
is peculiar to the canonical job shop problem formula-
tion are of little use in such contexts. CSP scheduling
models like Multi-PCP, alternatively, are based on very
general representational assumptions and naturally ex-
tend to accommodate richer problem formulations.
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