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Abstract, If we agree to use one of v possible messages to communicate one of k 
possible source states, then an opponent can successfully impersonate a trans- 
mitter with probability at least k/v, and can successfully substitute a message with 
a fraudulent one with probability at least (k -- 1)/(v - 1). We wish to limit an 
opponent to these bounds. In addition, we desire that the observation of any two 
messages in the communication channel will give an opponent no clue as to the 
two source states. We describe a construction for a code which achieves these 
goals, and which does so with the minimum possible number of encoding rules 
(namely, v-(v - t)/2). The construction uses a structure from combinatorial design 
theory known as a perpendicular array. 
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1. Authentication and Secrecy 

In  this paper  we study the properties of codes with respect to secrecy and authentica-  

tion. We are interested in the unconditional, or theoretical, security provided by 
such codes. Tha t  is, we assume that any opponen t s  have unl imited computa t ional  
resources. The theory of uncondit ional  secrecy is due to S h a n n o n  [12]. More recently, 
S immons  has developed an analogous theory of uncond i t iona l  authenticat ion.  

We shall use the model of au thent ica t ion  theory as described by Simmons  in 
[13 ] - [15 ] .  In  this model there are three part icipants:  a transmitter,  a receiver, 
and  an  opponent .  The transmitter wants  to communica t e  some informat ion to 
the receiver, whereas the opponent wants to deceive the receiver. The opponen t  
can either impersonate  the receiver, mak ing  him accept a fradulent message as 
authentic ,  or  modify a message which has been sent by the transmitter.  

More  formally we have a set of k source states S, a set of v messages M, and a set 
of b encoding rules E. A source state s ~ S is the in format ion  that the t ransmit ter  
wishes to communica te  to the receiver. The t ransmi t te r  and reciever will have 
secretly chosen an  encoding rule e ~ E beforehand. An encoding rule e will be used 
to determine the message e(s) to be sent to communica t e  any source state s. It  is 
possible that  more than one message can be used to determine a part icular  source 
state (this is called splitting). However, in order  for the receiver to be able to 
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determine uniquely the source state from the message sent, there can be at most one 
source state which is encoded by any given message m ~ M (i.e., e(s) ~ e(s') ifs ~ s'). 

We are interested in the security of such a code with respect to both secrecy and 
authentication. Suppose an opponent  observes i distinct messages being sent over 
the communications channel (where i > 0). He knows that the same key is being 
used to transmit the i messages, but he does not know what that key is. If  we consider 
the code as a secrecy system, then we make  the assumption that the opponent  can 
only observe the messages being sent. Our  goal is that the opponent be unable to 
determine any information regarding the i source states from the i messages he has 
observed. 

In [8] and [11] the following scenario for authentication is investigated. As before, 
an opponent observes i distinct messages. The opponent then sends a message m' 
to the receiver, hoping to have it accepted as authentic (this message m' must be 
distinct from the i messages already sent). In [8] Massey calls this a spoofing attack 
of order i. We remark that the special cases i = 0 and i = 1 have been studied 
extensively by Simmons and other people (see [1] and [13]-[16]).  The case i = 0 
is called the impersonation game, and the case i = 1 is called the substitution game. 

For  any i, there will be a probability distribution on the set of i source states 
which occur. We ignore the order in which the i source states occur, and assume 
that no source state occurs more than once. Also, we assume that any set of i source 
states has a nonzero probability of occurring. Given a set of i source states S, 
we define p(S) to be the probability that  the source states in S occur. 

Given the probability distributions on the source states described above, the 
receiver and transmitter will choose a probabili ty distribution for E, called an 
encoding strategy. If splitting occurs, then they will also determine a splitting strategy 
to determine m ~ M, given s ~ S and e s E (this corresponds to nondeterministic 
encoding). Once the transmitter/receiver have chosen encoding and splitting strat- 
egies, we can define for each i _> 0 a probabil i ty denoted Pd~, which is the probabili ty 
that the opponent can deceive the transmitter/receiver with a spoofing attack of 
order i. 

In this paper we consider only codes without splitting. We shall use the following 
notation. Given any encoding rule e, we define M(e) = {e(s): s e S}, i.e., the set of 
messages permitted by encoding rule e. For  a set M'  of distinct messages, and 
an encoding rule e, define fe(M') = {s: e(s) ~ M'}, i.e., the set of source states which 
will be encoded under encoding rule e by a message in M'. Also, for a set M'  of 
distinct messages, define E(M')  = {e s E: M '  _~ M(e)}, i.e., the set of encoding rules 
under which all the messages in M'  are permitted. It is useful to think of a code as 
being represented by a b x k matrix, where the rows are indexed by encoding rules, 
the columns are indexed by source states, and the entry in row e and column s is e(s). 

Theorem 1 [8, p. 123. In an authentication system without splitting, 

k - i  
Pd~ > .. 

Proof. Suppose the opponent  observes the i messages in the set M'  = {m 1 . . . . .  mi} 
in the channel. For m ~ M \ M ' ,  let payoff (m, M')  denote the probabili ty that 
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message m would be accepted as authentic. Then we have 

p(e).  p(S = fe(M')) 
payoff(m, M') = e~E(M'u{m}) 

p(e).  p(S  = f , ( M ' ) )  
e ~ E(M') 

It is not difficult to calculate 

payoff(m, M')  = k - i. 
m~M\M' 

Hence, there exists some m ~ M ' \ M  such that payoff(m, M')  > (k -- i)/(v --  i). For  
every set M'  of i source states, the opponent  can choose such an m. This proves that 
Pd  i >_ (k - i)/(v - i). [] 

Following Massey [8], we say that the authentication system is L-fold secure against 
spoofing if Pdl = (k - i)/(v - i) for 0 < i < L. 

When we consider the secrecy properties of a code, we desire that no information 
be conveyed by the observation of the messages which are transmitted. We say 
that a code has perfect L-fold secrecy if, for every set M t  of at most L messages 
observed in the channel, and for every set St of at most IMll  source states, we have 
p(S~ IM1) = p(S~). That is, observing a set of at most  L messages in the channel does 
not help the opponent determine the L source states. 

The purpose of this note is to give a simple construction for a system which 
achieves perfect 2-fold secrecy and is 1-fold secure against spoofing, and does so 
with the minimum possible number of keys, as given by the following bound. 

Theorem 2. I f  a code achieves perfect  L- fo ld  secrecy and is (L - 1)-fold secure 
against  spoofing, then 

Proof. Let M 1 be a set ofi _< L -- t messages which are permitted under a particular 
encoding rule. Let x be any message not in M~. Suppose there is no encoding rule 
under which all messages in M1 w {x} are valid. Then a suitable modification of the 
proof  of Theorem 1 shows that we would have Pd~ > (v - i)/(k - i), a contradic- 
tion. Hence, it follows that every L-subset of messages is valid under at least one 
encoding rule. 

Now, pick any L-subset of messages M2. In order to achieve perfect L-fold 
secrecy, the messages in M 2 must encode every possible L-subset of source states. 

is a valid set of messages under at least ( L  k )  encoding rules. Now, if Hence, M2 

we count L-subsets of messages, we get 

This completes the proof. []  

In the remainder of the paper we study the existence of codes where the bound 
of Theorem 2 is met with equality. Hence, we define an optimal  L-code to be a code 
which achieves perfect L-fold secrecy, is (L - t)-fold secure against spoofing, and 
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p o se y ( ; )  rules a  onst u t on opt m l  oodes 

Section 2. We remark that a construction for codes which provide perfect 1-fold 
secrecy and are l-fold secure against spoofing was given in [16]. 

2. Constructions for Optimal 2-Codes using Perpendicular Arrays 

Our interest is in constructing optimal L-codes. We can do this for L = 2 using a 
type of combinatorial  design known as a perpendicular array. These arrays were 
first studied in [9], and have been investigated by several researchers in combi- 
natorial design theory since then (see [5] - [7] ) .  A perpendicular array PA(n, k) is 
a v . (v  - 1)/2 x k array, A, of the symbols {1 . . . . .  v}, which satisfies the following 
property: 

for any two columns i and j of A, and for any two distinct symbols x, 
y e {1 . . . . .  v}, there is a unique row r such that {A(r, i), A(r , j ) }  = {x, y}. 

We have the following construction using perpendicular arrays. 

Theorem 3. I f  there exists a PA(v, k), where k > 2, then there is a code for  k source 
states with v messages and v . (v  - 1)/2 encoding rules, which achieves perfect 2-fold 
secrecy and is O-fold secure against spoofing. 

Proof. We construct an encoding rule from each row r of the perpendicular array A: 
for each row r = (x 1 . . . .  , xk) of A, we define an encoding rule er(s) = (x,: 1 < s < k). 
We shall use each encoding rule with probabili ty 2/(v.(v - 1)). Let us first verify 
that Pd o = k/v. This follows immediately from the following easily proved property 
of perpendicular arrays: if k > 2, then every symbol occurs exactly (v - 1)/2 times 
in each column of a PA(v, k). Next, we check that we have perfect 2-fold secrecy. 
Again, this is an almost immediate consequence of the definition of a perpendicular 
array. Given any two messages m and rn', and given any two source states s and s', 
there is exactly one encoding rule e such that {e(s), e(s')} = {m, m'}. Hence, we have 
p(S = {s, s ' } l{m,  m '} )  = p(S = {s, s '}) .  [ ]  

The following example illustrates that a code constructed by means of Theorem 2 
will not necessarily be 1-fold secure against spoofing. 

Example 1. The following is a PA(5, 3): 

0 1 2 
1 2 3 
2 3 4 
3 4 0 
4 0 t 
0 3 1 
1 4 2 
2 0 3 
3 1 4 
4 2 0 
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Suppose the source probability distribution is (Pl, P2, P3), where Pl > P2 > P3" 
What  happens if the opponent observes the message 0 being transmitted? The 
conditional probability distribution on the encoding rules, given that message 0 is 
observed, is 

0 
' 2 ' 2 '  

If  the opponent  substitutes message 0 with message 1, it will be accepted as authentic 
with probability 

Pi + ~ + P_L = 1 Pl -- P3 
T 2 2 + ~  

In fact, the opponent 's  optimal substitution strategy is to replace any message m by 
the message (m + t) mod 5. This yields 

Pi -- P3 
Pdi = + --------~ 

A special type of perpendicular array will allow us to attain Pdl = (k - 1)/(v - 1). 
A PA(v, k) A is said to be cyclic (and is denoted CPA(v, k)) if any cyclic permutation 
of the columns of A yields an array which can be obtained from A by means of a 
suitable permutation of the rows of A. That  is, if (xl . . . . .  Xk) is a row of A, then 
(x2 . . . . .  Xk, Xl) is also a row of A. 

Example 2. A cyclic PA(5, s): 

0 1 2 3 4 
1 2 3 4 0 
2 3 4 0 1 
3 4 0 1 2 
4 0 t 2 3 
0 2 4 3 1 
1 3 0 4 2 
2 4 1 0 3 
3 0 2 1 4 
4 1 3 2 0 

We have the following 

Theorem 4. I f  there exists a CPA(v, k), then there is an optimal 2-code for  k source 
states with v messages. 

Proof. Let A be a CPA(v, k). Construct the code as in Theorem 2. We need only 
verify that Pdl = (k - 1)/(v -- 1). Let m and m'  be two distinct messages. We have 

p(e)" p(S = f~(m')) 
payoff(m, m') = e~ E(=,m') 

y" p ( e ) ' p ( S =  f , (m' ) )  
e e g ( m ' )  



124 D.R. Stinson 

p ( S  = L ( m ' ) )  
- -  e e ; E ( m , m ' )  

p ( S  = f+(m' ) )  
e ~ E ( m ' )  

~, p(S = fe(m')) 
= e e E ( m , m ' )  

(v -  1)/2 

Now, there are k- (k -- 1)/2 rows r of A for which m, m' occur in row r. For  each 
source state j, there are exactly (k - 1)/2 encoding rules e, where m, m' occur in 
row r and e , ( j )  = m. Then, 

k - 1  
p ( S  = f , ( m ) )  = - -  

e ~ E ( m . r a ' )  2 

Hence, payoff(m, m') = (k - 1)/(v - 1), as desired. This is true for any two messages 
m, m'. Hence, no matter what the opponent 's substitution strategy, he will deceive 
the receiver with this probability. [ ]  

Cyclic perpendicular arrays have been he subject of several recent papers, such 
as [3], [5], and [6]. It is not diMcult to see that the existence ofa  CPA(v, k) requires 
that v and k be odd, and that 2k[v . (v  - 1). For  k = 3 and 5, these conditions are 
necessary and sufficient for existence, with one exception: 

Theorem 5. 

(1) A CPA(v, 3) exists i f  and only i f  v - 1 or 3 modulo 6 [6]. 
(2) A CPA(v, 5) exists i f  and only i f  v -- 1 or 5 modulo 10, v # 15 [5]. 

For  k > 5, only sporadic results are known. One class of CPAs is given by 

Theorem 6 [3]. k is odd and v =- 1 modulo 2k is a prime power, then there is 

a CPA(v, k). 

We will discuss the construction of Theorem 6 in some detail in Section 3, but 
let us first observe that, although the existence of a CPA(v, k) is sufficient for the 
existence of an optimal 2-code, it is not necessary. We shall say that a PA(v, k) is 
pair-column balanced if, for every pair of symbols x, y, the following property is 
satisfied: 

Among the rows containing x and y, x and y each occur (k - 1)/2 times 
in each column. 

L e m m a  7. I f  there exists a pair-column balanced PA(v, k), then there exists an 
optimal 2-code fo r  k source states with v messages. 

Proof.  The proof is identical to that of Theorem 4. []  
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Example 3 (van Rees [173). 
following five rows modulo 1 I: 

A pair-column balanced PA( l l ,  3). Develop the 

0 1 2 
0 9 7 
0 3 6 
0 4 8 
0 5 10 

We have the following result concerning pair-column balanced PA(v, 3). 

Theorem 8. There exists a pair-column balanced PA(v, 3) for all odd v > 3, v ~ 5, 
17. Further, there does not exist a pair-column balanced PA(5, 3). 

Proof. This result follows easily from the following recursive pairwise balanced 
design construction for PAs [7, Lemma 4.1]. Let v be a positive integer, and let 
K _~ {2 . . . . .  v - 1}. A (v, K)-PBD (pairwise balanced design) is a set X ofv  elements 
(points) and a set B of subsets of X (blocks), such that every (unordered) pair of 
points occurs in a unique block B ~ B, and Inl ~ K for every B e B. Suppose we 
have a (v, K)-PBD, and, for every n ~ K, there exists a PA(n, k). Then we can 
construct a PA(v, k) by taking a PA(IBI, k) on symbol set B, for every B ~ B. It  is 
easy to check if every "input" PA(IB[, k) is pair-column balanced, then so is the 
resulting PA(v, k). 

Now, we already have that there is a pair-column balanced PA(n, 3) for every 
n -= 1 or 3 mod 6, and for n = t 1. In Theorem 3.3 of [4] it is shown that there exists 
a (v, {3, l l} ) -PBD for all v = 5 modulo 6, v _> 23. The above construction produces 
pair-column balanced PA(v, 3) for all these values of v. There remain only v = 5 
and v = 17 to consider. An exhaustive search [17] has shown that no pair-column 
balanced PA(5, 3) exists. The case v = 17 remains open. [ ]  

Apparently, no examples of pair-column balanced PA(v, 5) are known, other than 
the CPAs. 

3. Implementing Optimal 2-Codes 

In this section we describe the construction and implementation of the optimal 
2-codes guaranteed by Theorem 6. Suppose k is odd and v - 1 modulo 2k is a prime 
power. The perpendicular array PA(v, k) is constructed as follows [3]. Let co 
be a primitive element in the finite field GF(v), and let a = co tn-1)/k. For  each 
i = 1 . . . . .  (v - 1)/2k, for eachj  = 0, . . . .  k - I, and, for each fl ~ GF(v), define a row 

fl + co~j fl + co~l+j fl + coqt2+i ...  fl + coiak-l+i" 

This defines v. (v - 1)/2 rows, which is the right number, at least. It  is not difficult 
to see that the resulting array is indeed a PA(v, k). Also, it is clearly cyclic: the rows 
obtained by varying j, for fixed i and t ,  are all cyclic shifts. 

Hence, we can pick a random encoding rule e by generating a random 3-tuple 
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(i,j, r )  of the form described above. A source state s (0 < s < k - 1) would then 
be encoded as 

e(s) = [3 + o J ~ + L  

Also, given an encoded message m, we can solve for the source state s by means of  
the equat ion 

~ + J  = (m - ~)/co ~. 

Observe that this requires the calculation of  a logari thm in the finite field GF(v). 
This is made easier by the knowledge that  0 < s < k - I. Also, if v is a prime, and 
v - t has only small prime factors, then an algori thm of  Pohlig and Hel lman r l0 ]  
can be used which has computa t ional  complexi ty O((log v)~). 

Finally, let us consider the sizes of  messages and encoding rules, as a function of 
the authenticat ion security. Recall that  we have P d o  = k / v  and P d  1 = (k - 1)/(v - 1), 
where we have k source states, m messages, and v . ( v  - 1)/2 encoding rules. Since 
we want  P d  o and P d  I to be small, we might  consider taking v = k . ( k  - 1) + 1 
(assuming, of  course, that it is a prime power). In  this case we have P d  o ~ 1/(k  - 1) 
and P d  1 = 1/k. We require roughly 2- log2 k message bits in order to transmit log:  k 
bits of  source. If  we send two messages, then we transmit 2. log2 k bits of  source 
with 4.  log2 k bits of  message, with perfect secrecy. The encoding rule requires about  
4- log2 k bits. 

It is interesting to compare  these space requirements with that of the well-known 
"one-t ime pad." The one-time pad achieves perfect secrecy by requiring one bit of 
key (analogous to our  encoding rules) for every bit of  source. It is also well-known 
that this much key is required if perfect secrecy is to be attained. In  the example 
we have constructed above, we have two bits of  "key" for every bit of source 
communica ted  (when two messages are sent). If  we send only one message, then 
we have four bits of "key" for every bit of  source, but  we gain a high degree of  
security with respect to authentication. It bears repeating that these results cannot  
be achieved with less "key" (Theorem 2). 
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