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The uniform F-smoothness of 8 at H then follows from (29), (30),
and the last theorem of the preceding section.

It remaing only to show that the renormed version of 12 lacks the
A-properly. For 0 < i < oo, let 4; denote the point of I* such that §; =:
or 0 aceording as j = ¢ or j #; let 87 denote the same point considersd
as a member of the conjugate space ({%)*. Note that for ¢ = 1,2, ..,
and for [A| << 1, any hyperplane in V parallel to the hyperplane
V.= {geV:a; = 0} iz carried onto such a parallel hyperplane by the
transformation T,;. Note also that z; = . Since #; is concave, and
since S8y is supported at d; in V by a translate of Vi, it follows that U
is supported at the point Ady4-#;(4)6; by a hyperplane which containg
a translate of V; and also confainy the tangent to #; at this point. In
particular (using (23) and (24)), with ;= (1—g) 8,4+ 2668 and fy;)
= #5 relative to the new norm | |, we have

Yo = (1—38&)7" (67 —47).

As £€]0,2[ and as &y, 8y, ... 8 it follows that |ly—ull >1 for
7 % j. But of course #,, @, ... = 3, 80 the proof iy complete.
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A construction of basis in 00 (1%
by
Z. CIESIELSKI (Gdafsk)

The sequence {#,,n =1, 2, ...} of elements of a given real Banach
space [X, || ] is called basis in X whenever each zeX hag uniqgue, con-
vergent in the norm |||, expansion

oo
wzzanmn

with real coefficients a,, ay,... It iz well known that the coefficients
@ = &, (@) are linear functionals over [X, || |]] and they are called eoeffi-
ctent funclionals for the basis {m.}.

- There were two examples of seperable Banach gpaces mentioned
in the Banach monograph [1] (p. 238) for which it was not known how
to construct bases. One of the examples is the space 4 of holomorphie
funections in the interior and continuous on the boundary of the unit
dise with uniform norm. The second example is the space €MD),
I = 0,1}, of all functions with continuous partial derivatives of the
first order on I* with the norm

lle| = Jaf| -+ 1D 2l + || D]
where
ol = max{lz(s, i)|: s, teI*},

oz oz
Dyz{s, ) = 5‘;(8, 1) and Dya(s,f) = ﬁ(s,t).

The aim of this paper is to give an effective construction of a basis
in the Banach space [0W(I*), | V], Tt follows immediately from the
construction that thig result can be extended to the case of ((I*) with
arbitrary » > 1.

The construction depends heavily on the properties of the Franklin
orthonormal system {f,,n =0,1,...}.

To define the orthonormal Franklin system we need to recall the
definition of the Sehauder functions: s, =1, () =1t for tel, and for
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>0,1< k<2 smpp(l) = t—(2k—1) i -2 DK 1)
< 9=+ and slnmﬂ(t) — 0 elsewhere in I. The Schauder functions are
Bnearly independent and the Schmidi orthonormalization procedure
applied to {s,,n = 0,1, ...} leads to the Franklin functions

1— ‘2m+1

fn=2#'f‘wsw P => Gy = 0,3, ...
iz

The following result is due to Franklin (for a simple proof of. [2]):

THEOREM A. The orthonormal Hranklin set {fi,n =0,1,...} is
a basts in C(I) with uniform norm.

Another property of the Franklin system was established in [3],
Theorem 20,

13
TurEoREM B. The set of functions {1, f Falu) du, n=0,1,...} 48 a bosis
0

in C(I) and for each zeC(I)

s+ 300

n=0 0

da;(s]ffn wydwu, tel,

and the convergence is uniform on I.

For further purposes if is convenient to introduce the following
notation. Let N ={1,2,...} and let »: ¥NXN N (i=10,1,2) be
funetions defined ag follows:

PrEforn=p+1and m="%, 1< k<p,
P ptk for n="% and m = p-lal 1<k<p+1;
pPriforp =%k and m=p+1, 1< k< p,
Prpthiorn=p-+1land m=rk 1l<k<p+1;
plp+)+k for n =p+2 snd m=%,1 <k <y,
Pp+2)+kfor n="Fkand m =p+1,1<k<p+2.

(1) wo(n, m) =

2) win,m =

(3)  m(n, m) =

It is easily seen that the mappings »; are one-to-ome and onto.
# The following result can be found in [4] and [5]:

TororEM C. Ll {pu,n =1,2,...} and {p,,n=1,2,..
bases in O(I) and let for i =0,1,2

.} be two

0,0 = gals)ym(t)  whenever k = vy(n, m).

Then, for each &, {40,k =1,2,...} is & basis in [O(I), || ]
~ This is a good place to mention how the coefficient functionals
£} of the basis {40} are constructed in terms of the coefficient functionals

cm
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{&:3, {:7’”} corresponding to the bases {@,}, {pu}, respectively. For functions
2eC{I"F of the form 2(s,1) = #{s)y(¥), #, yC(I), we have

(4) Z(Z)(z) = En )Wm( )

To state our result we need additional notation:

whenever & = »;(n, m).

i
1) = ffﬂ-g (w)du,

Py =1 n=2,3,...;tl,
and )
HP(s,1) = Fo(s) Full) whenever & =ay(n,m), &,tel.

TerOREM. The set of functions [H®, k =
Banach space [OU(1), || ).

For the proof we need to consider three bases in o).

2Aceordmg' to Theorems B and € {H', k=1,2,...} is a basis in
) 1

Now let us define
H (s, 1) = fu_y(s)

2y ...y 5 a basis for the

B (2)

Applvmg Theorems A, B and C we find that {BM is again a basis
in [C(), | ]].
The third basis {HS, k = 1,4, ...} Is defined as follows:

HP s, 1) = Ful8)fmos (

Consequently, for each i = ¢,1,2 and for each z<C(I*) we have

whenever & = v (n, m).

whenever k = v, (n, m).

(5) w = M af(w)HY,
k=1

and the series converges in the maximum norm. Let

N

Za“’HQ’

Tt i3 easy to see from the definitions that D, H,(,g)(l,m) =Dy H{), y=0and

(8) S(l)

-Dl Hvo(n my = le(;b_l ) fOI' n > 1 m > 1

Dy H ,,U(n,-m) = H,,g(n,m_l, for n=1,m>1.

These formulas and (6) give

2 awo(n,mi

y ay(:ﬂ(n,m; () o Yolmm—1)3

B,

ﬂl(n 1.mt)y

2 8% () =
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where E| - {m,m): n>1, wln,m <N}, By={mn,m): m>1,

¥ {1y m) < N} . .
Now, let yeC(I7), 20 (L")

i-th variable, i.e. #(s,1) = 1-2,(8), % (s, 1) = 2(s) 1.
Let ,

13
Lyls, ) = [ylu, )iu, Ly(s,d) = [yls, u)du.
0

¢

,4=1,2, and let 2z be constant in the

It is clear that
(T +2) = (L) + o (1)

Now, by Theorems B and C and by (4)

aﬁg{n,m)(zl) =0 forn>1l,m=1;

alllay(2) =0 for nz=1,m>1.
Thus,
N (Ly+a) = af(Liy), b =ve(n,m)yn >1,
cho)(lz?l‘f‘zz) = aﬁ,ﬁ’(l’!'y),
Assuming that y(s, f) = 2(s)a(t), 2, w0 (I} we find by Theorems
A,B,C and by (4) that

ﬂn(r‘;)(n,m) (Ley) = oz ()

(8)

k== vy (n, m), m > 1.

form>1,mz1,

(9
) agg)('n.,m)(IZ Z/) = “ﬁ?(m.,m_u(?/) for n > 17 m > 1.

Sinee the I,’s are contimuons linear operators in C(I') and the a5

are confinuous linear functionals on (%) it follows thatb Formula:s (9)

can be extended immediately to arbitrary yeC(I®). In particular, if for

given #<0P(I*) we put y = Diz and & s, ) = 0(0, 1), n(s, 1) = (s, 0),
then formulas (8) and (9) give ‘

aﬁg%n,m)(m) =ty (Di@)  for n>1,m=1,

@y (#) = ol nmy(Daw)  for n=1,m>1.
Substituting this into (7) we obtain

—Dl Sg\ul) (m) = 2 agi)(m..—l,m) (-Dl ﬁ‘) Hyi)(n—l.m) ]

B
-D2 Sgg) (%) = Z agz)(n,mﬁl) (Dzm)HSAi)(n,m—l) .
By

These identities and definitions (1), (2) and (3) give for weC"M(I%)
D8 (x) = 8K, (Diw),

i=1,3,
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where the N's are uniquely determined by ¥ and N for each 4 goes to
infinity with N Since {HY} is a basis in €(1*) and for 30 (1% we have
that D;zeC(I?) it follows therefore that

1D — Di SR (@) = \Dsz— 8§, (Dia)]| — 0

and this completes the proof.

a8 N—»oo,

Added in proof. While the paper was in print the author learned
that the same basis was earlier constructed by 8. Schonefeld and his
paper is going to appear in the Bulletin of the American Mathematical
Society.
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