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A CONSTRUCTION OF HIGHER-ORDER

FINITE VOLUME METHODS

ZHONGYING CHEN, YUESHENG XU, AND YUANYUAN ZHANG

Abstract. We provide a method for the construction of higher-order finite
volume methods (FVMs) for solving boundary value problems of the two di-
mensional elliptic equations. Specifically, when the trial space of the FVM is
chosen to be a conforming triangle mesh finite element space, we describe a
construction of the associated test space that guarantees the uniform local-
ellipticity of the family of the resulting discrete bilinear forms. We show that
the uniform local-ellipticity ensures that the resulting FVM has a unique solu-
tion which enjoys an optimal error estimate. We characterize the uniform local-
ellipticity in terms of the uniform boundedness (below by a positive constant)
of the smallest eigenvalues of the matrices associated with the FVMs. We then
translate the characterization to equivalent requirements on the shapes of the
triangle meshes for the trial spaces. Four convenient sufficient conditions for

the family of the discrete bilinear forms to be uniformly local-elliptic are de-
rived from the characterization. Following the general procedure, we construct
four specific FVMs which satisfy the uniform local-ellipticity. Numerical re-
sults are presented to verify the theoretical results on the convergence order
of the FVMs.

1. Introduction

This paper continues the general theme of the recent paper [12] in studying
higher-order FVMs for solving the elliptic boundary value problems, with the focus
on the general construction of the test spaces. In [12], a theoretical framework was
developed for convergence analysis of FVMs, establishing the uniform boundedness
and the uniform ellipticity of the discrete bilinear forms for the methods and show-
ing that they lead to the optimal error estimate of the methods in the H1-norm,
and several specific constructions of the methods were provided. Specifically, the
uniform boundedness estimate of the discrete bilinear forms of FVMs was given
in the form different from finite element methods (FEMs), and a systematic study
of mesh geometric requirements was provided, which guarantee the uniform ellip-
ticity of the discrete bilinear forms. Although paper [12] provided a theoretical
framework for analysis of FVMs, it is desirable to supply a construction of the test

Received by the editor October 4, 2012 and, in revised form, June 19, 2013.
2010 Mathematics Subject Classification. Primary 65N30, 65N12.

Key words and phrases. Finite volume methods.
This work was supported in part by Guangdong provincial government of China through the

“Computational Science Innovative Research Team” program.

The first author was also supported in part by the Natural Science Foundation of China under
grants 10771224 and 11071264.

The second author was supported in part by US Air Force Office of Scientific Research under
grant FA9550-09-1-0511, by the US National Science Foundation under grants DMS-0712827,
DMS-1115523, and by the Natural Science Foundation of China under grants 11071286 and
91130009. All correspondence should be sent to this author.

©2014 American Mathematical Society
Reverts to public domain 28 years from publication

599

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mcom/
http://www.ams.org/jourcgi/jour-getitem?pii=S0025-5718-2014-02881-0


600 ZHONGYING CHEN, YUESHENG XU, AND YUANYUAN ZHANG

spaces which match the trial spaces for FVMs. The main purpose of this paper is
to present a general setting for the construction of test spaces in the case that the
trial spaces for FVMs are assumed to be standard conforming finite element (FE)
spaces and to provide the unified analysis for the FVMs constructed here. Even
though the construction given in this paper does not cover all FVMs known in
the literature (for example, the mixed FVMs (cf. [16,17,30]) and the cell-centered
FVMs (cf. [3, 23, 25]) are not included in this construction framework), it covers
all specific FVMs presented in [12] and most triangulation based FVMs in other
literature which employ conforming FE spaces as trial spaces. More importantly,
it provides many new interesting FVM schemes.

The FVM has a long history. Historically, it appeared under many different
names. Due to different starting points on algorithm constructions, FVMs were
also called finite difference methods on irregular networks (cf. [27, 37, 40]), gen-
eralized difference methods (cf. [33]), box methods (cf. [2, 26, 38]), finite volume
element methods (cf. [5]-[7]) and control-volume methods or covolume methods
(cf. [15]). The numerical solution of the linear system resulted from FVMs is an
important issue, which was addressed in [14,35]. FVMs can be regarded essentially
as special types of Petrov-Galerkin FEMs, in which the trial spaces are chosen
as finite element spaces so as to deal with complex geometry domains and enjoy
higher-order accuracy, while the choice of the test spaces needs a special care. We
divide the domain of the problem into a finite number of control volumes, and the
test spaces include characteristic functions of the control volumes so that the dis-
crete equation preserves the conservation laws on each control volume. Such local
conservativeness can be fundamentally important for simulations of many physical
models.

A key issue in the construction of FVMs is how the test space is chosen to
match the FE trial space. According to different choices of the test spaces in the
algorithm construction, the FVMs can be classified into three types: the Lagrange
FVMs, the Hermite FVMs and the hybrid FVMs. In the Lagrange FVMs, the trial
spaces are the Lagrange type FE spaces and the test spaces are spanned by the
characteristic functions of the control volumes in the associated volume partitions
(cf. [2,5–7,21,31,34,39,42]). In the Hermite FVMs, the trial spaces are the Hermite
type FE spaces and the test spaces are spanned by the generalized characteristic
functions of the control volumes in the associated volume partitions (cf. [10,32,33]).
The construction of test spaces in the two types of FVMs mentioned above is
based only on the volume partitions, and as a result, the volume partitions are
complex when a higher-order scheme is constructed. In the hybrid FVMs, the trial
spaces are the Lagrange or Hermite type FE spaces and the test spaces are spanned
by the lower-order generalized characteristic functions of the control volumes of
the volume partitions combined with certain linearly independent functions of the
trial spaces. FVMs of this type were initially constructed for a quadratic FVM
in [9]. The hybrid FVMs have not only the advantages of dealing with complex
geometric domains and preserving local conservation laws, but also simple volume
partitions for higher-order schemes and flexible algorithm construction which allows
us to construct many more new schemes. Moreover, we show that the theoretical
framework established in [12], which is applicable for the Lagrange and Hermite
type of FVMs with affine invariant volume partitions, is also applicable to FVMs
of this type, and the optimal error estimates can be derived when the primary
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triangulation satisfies certain geometric requirements. In other words, we may
establish a unified way to compute the geometric requirements for the Lagrange,
Hermite and Hybrid FVMs with affine invariant volume partitions, so as to obtain
their optimal error estimate.

A typical FVM includes characteristic functions of the control volumes as a
part of the basis of the test spaces to ensure that its resulting discrete equation
preserves the local conservation laws. This results in the corresponding discrete
bilinear form depending on the grids and being non-symmetric and non-conforming.
These features of the FVMs introduce a major obstacle for their numerical analysis.
Unlike the FEMs, the uniform boundedness and ellipticity of the bilinear form of
the FVMs cannot be inherited directly from the original variational form of the
boundary value problem. To overcome this challenge, we shall develop a general
convergence theorem for FVMs which shows that if two sequences of trial and test
spaces are connected by proper invertible linear mappings such that the uniform
boundedness and ellipticity of the discrete bilinear forms can be defined, then the
FVM equation has a unique solution and the convergence estimate can also be
derived. We then study the construction of test spaces for FVMs. By ensuring
that the test spaces have the same set of degrees of freedom as the associated trial
spaces, we can obtain the bases for the trial and test spaces by using the set of
degrees of freedom. By using these two bases, a natural invertible linear mapping
between the trial and test spaces can be obtained. There are hypotheses that the
volume partition, the set of degrees of freedom and the test space must be satisfied.
Under these hypotheses, we can establish the uniform boundedness of the resulting
discrete bilinear forms with the help of the equivalent discrete norms. In addition,
with the help of the equivalence, we reduce the uniform ellipticity of the discrete
bilinear forms to their uniform local-ellipticity. The geometric requirements of the
primary triangle mesh to ensure the uniform local-ellipticity will be established
under the hypotheses.

This paper is organized in eight sections. In section 2, we describe the framework
of FVMs for elliptic boundary value problems and provide a way of constructing
the test spaces. In section 3, we introduce the equivalent norms, which are im-
portant tools for the numerical analysis of FVMs. Section 4 is devoted to the
convergence analysis of FVMs. With the help of the equivalent norms, the optimal
error estimate of FVMs is derived under the uniform local-ellipticity of the discrete
bilinear forms. Moreover, superconvergence properties of the FVM solutions are
discussed. In section 5, algebraic and geometric sufficient and necessary conditions
for the uniform local-ellipticity are established. In section 6, we characterize the
admissible region which plays an important role in developing equivalent geomet-
ric conditions for the uniform local-ellipticity, and derive four types of convenient
sufficient conditions for the uniform local-ellipticity. In section 7, we present four
new FVM schemes derived from the general construction and study their uniform
local-ellipticity. In the last section, we present two numerical examples to verify
the convergence results of the FVMs.

2. General FVMs for elliptic boundary problems

In this section, we present a framework of FVMs for solving elliptic equations
and provide a convergence theorem which allows us to establish error analysis of
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FVMs. The general construction of the test spaces that match the conforming FE
trial spaces is also described here.

Let Ω be a polygonal domain in R
2 with boundary ∂Ω. Suppose that a := [aij(x)]

is a 2 × 2 symmetric matrix of functions aij ∈ W 1,∞(Ω) and that b ∈ L∞(Ω) and
f ∈ L2(Ω). We consider the Dirichlet problem of the second order partial differential
equation

(2.1)

{
−∇ · (a∇u) + bu = f, in Ω,
u = 0, on ∂Ω,

where u is the unknown to be determined. We assume that the coefficients in
equation (2.1) satisfy the elliptic condition

∑2
i,j=1 aij(x)ξiξj ≥ r

∑2
j=1 ξ

2
j , for some

r > 0, for all (ξi, ξj) ∈ R2 and b(x) ≥ 0, x ∈ Ω.
We shall use the standard Sobolev notation. For a non-negative integer k and a

subdomain D ⊆ R
2, let Hk(D) denote the Sobolev space with the norm ‖·‖k,D and

the corresponding semi-norm |·|k,D. When D = Ω, we use ‖·‖k and |·|k instead of

‖·‖k,D and |·|k,D for simplicity. By H1
0(Ω) we denote the subspace of H1(Ω) whose

functions have the vanishing trace on ∂Ω.
We now derive a variational form of equation (2.1) suitable for establishing the

FVMs. To this end, we need two partitions of the domain Ω. Let T := {K} be a
triangulation of Ω. We denote by T := {T } a family of triangulations T of Ω. Let
T ∗ := {K∗} be another partition of Ω associated with T . The partition T ∗ will be
called the volume partition or dual partition of T , and the elements in T ∗ will be
called control volumes or dual elements. On Ω, associated with each T and T ∗, we
define respectively the space H2

T (Ω) := {v : v ∈ L2(Ω), v|K ∈ H2(K), for all K ∈
T } and the space

H
1
T ∗(Ω) := {v : v ∈ L2(Ω), v|K∗ ∈ H

1(K∗), for all K∗ ∈ T ∗, and v|∂Ω = 0}.
For a domain E in R2 the Lebesgue integral of g on E is denoted by

∫
E
g, and

for a curve � in R2 the line integral of h on � is denoted by
∫
�
h. With T and the

associated T ∗, we define the discrete bilinear form for w ∈ H1
0(Ω) ∩ H2

T (Ω) and
v ∈ H1

T ∗(Ω) by setting

aT (w, v) :=
∑

K∗∈T ∗

{∫
K∗

(
∇wTa∇v + bwv

)
−
∫
∂K∗\∂Ω

v(a∇w) · n
}
,

where n is the outward unit normal vector on ∂K∗. Employing the Green formula
on the dual elements, we can show for w ∈ H1

0(Ω) ∩H2(Ω) and v ∈ H1
T ∗(Ω) that

aT (w, v) =

∫
Ω

(
−∇ · (a∇w) + bw

)
v.

Let (f, v) :=
∫
Ω
fv. The variational form for (2.1) is written as finding u ∈ H1

0(Ω)∩
H2

T (Ω) such that

(2.2) aT (u, v) = (f, v), for all v ∈ H
1
T ∗(Ω).

Unlike the standard variational form in the FEM, variational form (2.2) depends
on the discretization. As in the FEM theory, we can easily prove that u ∈ H1

0(Ω)∩
H2(Ω) satisfies equation (2.1) if and only if it satisfies (2.2).

The FVM is developed based on the variational form (2.2) by projecting the
spaces H1

0(Ω)∩H2
T (Ω) and H1

T ∗(Ω) respectively onto finite dimensional trial and test
spaces. We choose the trial space UT ⊂ H1

0(Ω) ∩H2
T (Ω) as a standard conforming
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finite element space with respect to T and demand that the test space VT ∗ ⊂
H1

T ∗(Ω) and dimVT ∗ = dimUT . The construction of the test space will be discussed
in detail later in this section. In this way, the FVM for solving (2.1) is a finite
dimensional approximation scheme which finds uT ∈ UT such that

(2.3) aT (uT , v) = (f, v) , for all v ∈ VT ∗ .

Since VT ∗ ⊂ H1
T ∗(Ω), v ∈ VT ∗ may have a jump between the adjoining control

volumes in T ∗, the integral along the boundary of K∗ ∈ T ∗ cannot be ignored in
the discrete bilinear form aT (uT , v). This is one of the major differences between
FVMs and the conforming FEMs.

Unlike the bilinear form in the FEMs, the discrete bilinear form aT (·, ·) in the
FVMs does not necessarily inherit the boundedness and ellipticity directly from the
original problem, because aT (·, ·) depends on the grids and is non-symmetric and
non-conforming. To tackle this difficulty, we next establish a convergence theorem
which serves as a guide for the numerical analysis of the FVMs. To this end, we
assume that there exist positive constants c and σ such that for all T ∈ T and
the associated T ∗ there are linear mappings ΠT ∗ : UT → VT ∗ with ΠT ∗UT = VT ∗

satisfying the conditions that
(C-1) |aT (w,ΠT ∗v)| ≤ c · eT (w)‖v‖1, for all w ∈ H1

0(Ω) ∩H2
T (Ω), v ∈ UT ,

(C-2) aT (w,ΠT ∗w) ≥ σ‖w‖21, for all w ∈ UT ,
where eT (·) is a norm on H1

0(Ω)∩H2
T (Ω). If there exists a constant c > 0 such that

condition (C-1) holds for all T ∈ T and the associated T ∗, we say that the family
AT := {aT (·,ΠT ∗ ·) : T ∈ T } of the discrete bilinear forms is uniformly bounded.
If there exists a constant σ > 0 such that condition (C-2) holds for all T ∈ T and
the associated T ∗, we say that the family AT is uniformly elliptic.

We present the convergence of the FVMs. Its proof is similar to that of Theorem
3.18 in [12].

Theorem 2.1. Let u ∈ H
1
0(Ω)∩H

2(Ω) be the solution of (2.1). If conditions (C-1)
and (C-2) hold, then for each T ∈ T the FVM equation (2.3) has a unique solution
uT ∈ UT , and there exists a positive constant c such that for all T ∈ T ,

‖u− uT ‖1 ≤ c inf
w∈UT

(‖u− w‖1 + eT (u− w)).

In the remaining part of this section we discuss a general construction of the
test spaces that match the trial spaces. Such a construction may be reduced to the
construction of a triple element on a reference triangle.

We choose the triangle K̂ with vertices P̂1 := (0, 0), P̂2 := (1, 0) and P̂3 :=
(0, 1) as the reference triangle. For a triangle K, there is a unique invertible affine

mapping FK from K̂ to K (cf. [32]). Since the trial space UT is a FE space with
respect to the triangulation T , from the FE theory (cf. [1, 4, 19]), it is determined
by the global continuity condition UT ⊂ H1

0(Ω)∩H2
T (Ω) and the FE triple element

(K̂, Σ̂,UK̂). For a positive integer m, we let Nm := {1, 2, . . . ,m}. The set of degrees
of freedom Σ̂ := {ζ̂i : i ∈ Nn̂} is a set of linearly independent linear functionals.

The trial space UK̂ on K̂ is a space of polynomials defined on K̂ with dimUK̂ = n̂,

and Σ̂ is UK̂-unisolvent. The test space VT ∗ is likewise determined by the global

continuity condition VT ∗ ⊂ H1
T ∗(Ω) and the triple element (T̂ ∗, Σ̂∗,VT̂ ∗). We

describe below the triple element in detail.
(i) The volume partition or dual partition T̂ ∗ := {K̂∗} of K̂ satisfies the following

hypothesis:
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Hypothesis 1. K̂ =
⋃

K̂∗∈T̂ ∗ K̂∗ and meas(K̂∗ ∩ K̂ ′∗) = 0, for all K̂∗, K̂ ′∗ ∈ T̂ ∗

and K̂∗ �= K̂ ′∗, where for a subdomain E of R2, meas(E) denotes the Lebesgue
measure of E.

(ii) The set Σ̂∗ := {η̂j : j ∈ Nm̂} of degrees of freedom for the triple is not

necessarily the same as Σ̂ but satisfies the following two hypotheses.
Hypothesis 2. Σ̂∗ is equivalent to Σ̂ in the sense that m̂ = n̂ and the FE triple

elements (K̂, Σ̂∗,UK̂) and (K̂, Σ̂,UK̂) are equal (cf. [19]).

From this hypothesis we learn that Σ̂∗ is also UK̂-unisolvent; that is, there is a

basis ΦK̂ := {φ̂i : i ∈ Nn̂} for UK̂ such that

(2.4) η̂j(φ̂i) = δi,j , i, j ∈ Nn̂.

The basis ΦK̂ may be different from the classical basis of the space UK̂ .
Hypothesis 3. There is a positive integer ŝ ≤ n̂ such that for each j ∈ Nŝ, η̂j is a

point evaluation functional at point x̂i ∈ K̂, and the remaining functionals satisfy

(2.5) η̂j(χK̂) = 0, j ∈ Nn̂ \ Nŝ,

where χE denotes the characteristic function of E ⊂ R2.
Hypothesis 3 describes the forms of the functionals in Σ̂∗. The first ŝ functionals

in Σ̂∗ are the point evaluation functionals, and the remaining functionals in Σ̂∗ may
be chosen in various ways as long as condition (2.5) is satisfied. In the Lagrange

FVMs, all the functionals in Σ̂∗ are point evaluation functionals. In the Hermite
FVMs, ŝ < n̂ and the functionals η̂j , j ∈ Nn̂ \ Nŝ are directional derivatives or

even higher-order directional derivatives at some points in K̂. In the hybrid FVMs,
ŝ < n̂ and the functionals η̂j , j ∈ Nn̂ \ Nŝ may be chosen as differences, direc-
tional derivatives, higher-order directional derivatives or other forms which satisfy
condition (2.5).

(iii) The test space VT̂ ∗ on K̂ satisfies the following two hypotheses:
Hypothesis 4. The functions in VT̂ ∗ are piecewise polynomials with respect to

the partition T̂ ∗, with the characteristic functions of the control volumes in T̂ ∗

being included in VT̂ ∗ .

Hypothesis 5. The set Σ̂∗ is VT̂ ∗ -unisolvent; that is, there is a basis ΨT̂ ∗ := {ψ̂i :
i ∈ Nn̂} for VT̂ ∗ such that

(2.6) η̂j(ψ̂i) = δi,j , i, j ∈ Nn̂.

We comment that Hypotheses 1 and 4 are trivial. The key point is to properly
choose the set Σ̂∗ of degrees of freedom which has the form described in Hypothesis
3 such that there exist a basis ΦK̂ for the trial space UK̂ and a basis ΨT̂ ∗ for the
test space VT̂ ∗ satisfying (2.4) and (2.6).

For an affine mapping FK̂ from K̂ to itself, we let ΦK̂ ◦FK̂ := {φ̂i ◦FK̂ : i ∈ Nn̂}
and ΨK̂ ◦ FK̂ := {ψ̂i ◦ FK̂ : i ∈ Nn̂}. We further require that the bases ΦK̂ and
ΨT̂ ∗ satisfy the following hypothesis.

Hypothesis 6. For any affine mapping FK̂ from K̂ to itself, ΦK̂ ◦ FK̂ = ΦK̂ and
ΨK̂ ◦ FK̂ = ΨK̂ .

It can be verified that all the test spaces of the FVM presented in [12] satisfy all
the hypotheses listed above. We shall also show later that other new and interesting
FVM schemes may be constructed with test spaces that satisfy these hypotheses.
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Noting that K̂∗ is a subset of K̂, the set FK(K̂∗) is well-defined. We let

FK(T̂ ∗) := {FK(K̂∗) : K̂∗ ∈ T̂ ∗}.

Definition 2.2. The volume partition T̂ ∗ is said to be self-affine invariant if for
any affine mapping FK̂ from K̂ to itself, there holds FK̂(T̂ ∗) = T̂ ∗.

From Hypothesis 4, we get that the functions in ΦK̂ are piecewise polynomials

with respect to T̂ ∗. It is clear that the functions in ΨK̂ ◦FK̂ are piecewise polyno-

mials with respect to FK̂(T̂ ∗). Hypothesis 6 ensures that ΨK̂ ◦ FK̂ = ΨK̂ . Thus,

FK̂(T̂ ∗) = T̂ ∗; that is, T̂ ∗ is self-affine invariant. Therefore, the volume partition

T ∗ can be formed automatically by FK(T̂ ∗),K ∈ T . Then, by Hypothesis 4, the
global test space VT ∗ contains the characteristic functions of the control volumes
in the global dual partition T ∗. This is an essential requirement of FVMs.

Let n := dimUT . From (2.4) and (2.6), there exist a set of degrees of freedom
Σ := {ηi : i ∈ Nn}, a basis ΦT := {φi : i ∈ Nn} for UT and a basis ΨT ∗ = {ψi : i ∈
Nn} for VT ∗ such that

(2.7) ηj(φi) = ηj(ψi) = δi,j , i, j ∈ Nn.

Using ΦT and ΨT ∗ , we define a natural invertible linear mapping ΠT ∗ : UT → VT ∗

for any w =
∑

i∈Nn
wiφi ∈ UT by ΠT ∗w :=

∑
i∈Nn

wiψi. With the mapping ΠT ∗ ,

the FVM equation (2.3) is reformulated as finding uT ∈ UT such that

aT (uT ,ΠT ∗w) = (f,ΠT ∗w) , for all w ∈ UT .

The stiffness matrix AT := [aT (φj , ψi) : i, j ∈ Nn] of the linear system of the
FVM may be formed by using the bilinear form aT with the bases ΦT and ΨT ∗ .
However, in practice, we first form the element matrices AK , for each K ∈ T .
Specifically, by making use of the bases ΦK̂ and ΨT̂ ∗ on the reference triangle K̂

satisfying (2.4) and (2.6) respectively, and the affine mapping FK from K̂ to the
triangle K ∈ T , we derive the corresponding bases on K which are used to form
the element stiffness matrix AK on K. We then assemble all element matrices AK

to form the stiffness matrix AT .

3. Discrete norm equivalence

We investigate in this section discrete norm equivalences. These norm equiva-
lence results will play a vital role in establishing the error estimate of FVMs.

We first present a preliminary lemma, which describes a property of the bases
of the trial and the test spaces on K̂.

Lemma 3.1. (i) If Hypotheses 2 and 3 hold, then the basis ΦK̂ = {φ̂i : i ∈ Nn̂}
for UK̂ determined by (2.4) satisfies

∑
i∈Nŝ

φ̂i = χK̂ .

(ii) If Hypotheses 1, 3, 4 and 5 hold, then the basis ΨT̂ ∗ = {ψ̂i : i ∈ Nn̂} for VT̂ ∗

determined by (2.6) satisfies
∑

i∈Nŝ
ψ̂i = χK̂ .

Proof. It follows from Hypothesis 3 and (2.4) that
(3.1)

η̂j(χK̂) = η̂j

⎛
⎝∑

i∈Nŝ

φ̂i

⎞
⎠ = 1, j ∈ Nŝ and η̂j(χK̂) = η̂j

⎛
⎝∑

i∈Nŝ

φ̂i

⎞
⎠ = 0, j ∈ Nn̂ \ Nŝ.
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Since by Hypothesis 2, {η̂j : j ∈ Nn̂} is UK̂-unisolvent, and since χK̂ ∈ UK̂ ,

equation (3.1) ensures that
∑

i∈Nŝ
φ̂i = χK̂ .

The proof for (ii) can be similarly carried out. �

If Σ̂∗ = {η̂j : j ∈ Nn̂} satisfies Hypothesis 3, we define a discrete norm on the

trial space on K̂. For w ∈ UK̂ , we let
(3.2)

wi := η̂i(w), i ∈ Nn̂, w̄ :=
1

ŝ

∑
i∈Nŝ

wi, |w|1,U
K̂

:=

⎛
⎝∑

i∈Nŝ

(wi − w̄)2 +
∑

i∈Nn̂\Nŝ

w2
i

⎞
⎠

1/2

.

From Hypothesis 3, w̄ as defined in (3.2) is in fact the mean value of w at the
points x̂i, i ∈ Nŝ and the first term in |w|21,UK̂

is the quadratic sum of the difference

between the point evaluations of w at the points x̂i, i ∈ Nŝ, and the mean value.
We define a discrete norm on the test space on K̂. Let L∗

K̂
denote the dual

gridlines in K̂. For any �∗ in L∗
K̂
, it is actually a common edge of two control

volumes in T̂ ∗. For x ∈ �∗, let

[v](x) := lim
δ→0+

v(x− δn)− lim
δ→0+

v(x+ δn)

denote the jump of v from a volume K̂∗
1 to its neighboring volume K̂∗

2 , where n is

the unit normal vector on �∗ pointing from K̂∗
1 to K̂∗

2 . For v ∈ VT̂ ∗ , let

|v|1,T̂ ∗ :=

⎛
⎝ ∑

K̂∗∈T̂ ∗

|v|2
1,K̂∗

⎞
⎠

1/2

, [v]L∗
K̂

:=

⎛
⎝ ∑

�∗∈L∗
K̂

|�∗|−1

∫
�∗
[v]2

⎞
⎠

1/2

, |v|1,VT̂ ∗

:=
(
|v|2

1,T̂ ∗ + [v]2L∗
K̂

)1/2

.

We introduce ΠK̂∗ : UK̂ → VT̂ ∗ for any w :=
∑

i∈Nn̂
xiφ̂i ∈ UK̂ by ΠK̂∗w :=∑

i∈Nn̂
xiψ̂i.

Lemma 3.2. If Hypotheses 2 and 3 hold, then there exist positive constants c1 and
c2 such that for all w ∈ UK̂ ,

(3.3) c1|w|1,UK̂
≤ |w|1,K̂ ≤ c2|w|1,UK̂

.

If furthermore Hypotheses 1, 4 and 5 hold, then there exist positive constants c3
and c4 such that for all w ∈ UK̂ ,

(3.4) c3|w|1,UK̂
≤ |ΠK̂∗w|1,VT̂ ∗ ≤ c4|w|1,UK̂

.

Proof. Hypothesis 2 ensures (2.4), from which we get for any w ∈ UK̂ that w =∑
i∈Nn̂

wiφ̂i, where wi is defined as in (3.2). Let w := [wi : i ∈ Nn̂]
T . Note that

both |w|2
1,K̂

and |w|21,UK̂
are non-negative quadratic forms of w. Thus, there exist

positive semi-definite symmetric matrices A and B such that

(3.5) |w|2
1,K̂

= wTAw and |w|21,UK̂
= wTBw.

We next verify that the null spaces of A and B are the same. It is sufficient to
verify that |w|1,K̂ = 0 if and only if |w|1,UK̂

= 0. Hypotheses 2 and 3 ensure the
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validity of (i) in Lemma 3.1. It follows from Hypothesis 3 and (i) of Lemma 3.1
that |w|1,K̂ = 0 if and only if there holds

(3.6) wi = w̄, i ∈ Nŝ and wi = 0, i ∈ Nn̂ \ Nŝ,

where w̄ is defined as in (3.2). From the definition of | · |1,UK̂
, it is clear that (3.6)

is sufficient and necessary for |w|1,UK̂
= 0.

It follows from [20] that if two positive semi-definite matrices have the same
null space, then there exist positive constants c1 and c2 such that for all w ∈ R

n̂,
c1w

TBw ≤ wTAw ≤ c2w
TBw. Combining the above inequality with (3.5) yields

(3.3).
The proof for (3.4) can be similarly carried out. �

We now define a discrete norm on the trial space UT . According to the FE theory
(cf. [19]), for each K ∈ T , corresponding to the FE triple element (K̂, Σ̂∗,UK̂) on

the reference triangle K̂, there is a FE triple element (K,ΣK ,UK) on K. Note
that the set of degrees of freedom ΣK := {ηi,K : i ∈ Nn̂} are the functionals

corresponding to η̂i in the sense that for all ŵ ∈ UK̂ with w := ŵ ◦F−1
K , ηi,K(w) =

η̂i(ŵ). For K ∈ T , we let

(3.7) φi,K := φ̂i ◦ F−1
K , i ∈ Nn̂.

By Hypothesis 2, we get that {φi,K : i ∈ Nn̂} is a basis for UK and there holds the
relationship

(3.8) ηj,K(φi,K) = δi,j , i, j ∈ Nn̂.

For each w ∈ UT and K ∈ T , we let
(3.9)

wi,K := ηi,K(w), i ∈ Nn̂, w̄K :=
1

ŝ

∑
i∈Nŝ

wi,K and w̄i,K := wi,K − w̄K , i ∈ Nŝ.

Define

|w|1,UT ,K :=

⎛
⎝∑

i∈Nŝ

w̄2
i,K +

∑
i∈Nn̂\Nŝ

w2
i,K

⎞
⎠

1/2

and

|w|1,UT :=

(∑
K∈T

|w|21,UT ,K

)1/2

.

We introduce the discrete norm | · |1,VT ∗ on the test space VT ∗ . For any v ∈ VT ∗ ,
define

|v|1,VT ∗ ,K :=

⎛
⎝ ∑

K∗∈T ∗

|v|21,K∗∩K +
∑

�∗∈L∗
K

|�∗|−1

∫
�∗
[v]2

⎞
⎠

1/2

and

|v|1,VT ∗ :=

(∑
K∈T

|v|21,VT ∗ ,K

)1/2

,

where for K ∈ T , L∗
K denotes the dual gridlines in K.
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The next lemma shows the equivalence of the discrete norms | · |1,UT and
|ΠT ∗ · |1,VT ∗ and the Sobolev norm | · |1. We say a family T of triangulations
of Ω is regular if there exists a positive constant θinf such that

(3.10) θmin,K ≥ θinf , for all K ∈
⋃

T ∈T

T ,

where θmin,K denotes the minimum angle of the triangle K. For a triangle K,
we use ∇FK to denote the Jacobian matrix of the affine mapping FK and let
MK := | det(∇FK)| · ∇F−1

K (∇F−1
K )T . For all w ∈ UT , v ∈ VT ∗ and all K ∈ T , we

let

(3.11) ŵK := w|K ◦ FK and v̂K := v|K ◦ FK .

Lemma 3.3. If T is regular and Hypotheses 2 and 3 hold, then there exist positive
constants c1 and c2 such that for all T ∈ T and for all w ∈ UT ,

(3.12) c1|w|1,UT ≤ |w|1 ≤ c2|w|1,UT .

If furthermore Hypotheses 1, 4 and 5 hold, then there exist positive constants c3
and c4 such that for all T ∈ T and for all w ∈ UT ,

(3.13) c3|w|1 ≤ |ΠT ∗w|1,VT ∗ ≤ c4|w|1.

Proof. If we can prove that there are positive constants c1 and c2 such that for all
T ∈ T and all K ∈ T ,

(3.14) c21|w|21,UT ,K ≤ |w|21,K ≤ c22|w|21,UT ,K ,

then summing up the above inequality over all K ∈ T , we obtain (3.12). We now
prove (3.14). Since ηi,K(w) = η̂i(ŵK), i ∈ Nn̂, for all w ∈ UT and all K ∈ T ,

(3.15) |w|1,UT ,K = |ŵK |1,UK̂
.

By changing variables, we have that

|w|21,K =

∫
K

∇w · ∇w =

∫
K̂

(∇ŵK)TMK∇ŵK .

It was proved in Lemma 3.3 of [12] that the eigenvalues λ(MK) ∈ [(1/4) tan θmin,K ,
4 cot θmin,K ]. This combined with the regularity of T yields λ(MK)∈ [(1/4) tan θinf ,
4 cot θinf ] for all T ∈ T and all K ∈ T . Thus

(3.16) (1/4) tan θinf |ŵK |2
1,K̂

≤ |w|21,K ≤ 4 cot θinf |ŵK |2
1,K̂

.

Since Hypotheses 2 and 3 hold and ŵK ∈ UK̂ , by inequality (3.3) in Lemma 3.2,
we get that there are positive constants d1 and d2 independent of the grids such
that

(3.17) d1|ŵK |1,UK̂
≤ |w|1,K̂ ≤ d2|ŵK |1,UK̂

.

Combining equations (3.15), (3.16) and (3.17) yields inequality (3.14) with c1 :=
(1/2) d1(tan θinf)

1/2 and c2 := 2 d2(cot θinf)
1/2. The proof for (3.13) can be similarly

carried out. �

In the next lemma, we show that the L2-norms ‖ΠT ∗ ·‖0 and ‖·‖0 are equivalent.

Lemma 3.4. If Hypotheses 2 and 5 hold, then there exist positive constants c1 and
c2 such that for all T ∈ T and all w ∈ UT ,

(3.18) c1‖w‖20 ≤ ‖ΠT ∗w‖20 ≤ c2‖w‖20.
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Proof. For each T ∈ T and w ∈ UT , let v := ΠT ∗w. It suffices to prove that there
exist positive constants c1 and c2 such that for all T ∈ T and all K ∈ T ,

(3.19) c1‖w‖20,K ≤ ‖v‖20,K ≤ c2‖w‖20,K .

By changing variables, we find that

(3.20) ‖v‖20,K = | det(∇FK)|‖v̂K‖2
0,K̂

and ‖w‖20,K = | det(∇FK)|‖ŵK‖2
0,K̂

.

Since v = ΠT ∗w, we know that v̂K = ΠK̂∗ŵK . Noting that both ‖ΠK̂∗ · ‖0,K̂ and

‖·‖0,K̂ are norms for the finite dimensional space UK̂ , there exist positive constants

c1 and c2 such that for all ŵ ∈ UK̂ ,

(3.21) c1‖ŵ‖20,K̂ ≤ ‖ΠK̂∗ŵ‖20,K̂ ≤ c2‖ŵ‖20,K̂ .

Note that c1 and c2 depend only on the reference triangle K̂. Thus, from (3.20)
and (3.21) we obtain (3.19). �

4. Convergence and superconvergence

In this section, we establish that the uniform local-ellipticity of the family of
the discrete bilinear forms leads to the optimal error estimate of FVMs. We also
present a brief discussion of superconvergence properties of the FVM solution.

For convenience of analysis, we rewrite the discrete bilinear form as the sum
of its continuous and discontinuous components. Notice that v ∈ H1

T ∗(Ω) is not
necessarily continuous on K ∈ T . Hence, for each T and each K ∈ T , we introduce
the continuous component ac,K and the discontinuous component ad,K respectively
by

ac,K(w, v) :=
∑

K∗∈T ∗

∫
K∗∩K

(
∇wTa∇v + bwv

)
, ad,K(w, v)

:= −
∑

K∗∈T ∗

∫
∂K∗∩intK

v(a∇w) · n,

for each w ∈ H
1
0(Ω) ∩ H

2
T (Ω) and v ∈ H

1
T ∗(Ω). For each K ∈ T , we define

aK(w, v) := ac,K(w, v) + ad,K(w, v). The discrete bilinear form is then rewritten as

(4.1) aT (w, v) =
∑
K∈T

aK (w, v) = ac,T (w, v) + ad,T (w, v) ,

where

ac,T (w, v) :=
∑
K∈T

ac,K (w, v) , ad,T (w, v) :=
∑
K∈T

ad,K (w, v) .

By making use of (3.13) and (3.18), we can establish the uniform boundedness of
the family of the discrete bilinear forms of FVMs. For each w ∈ H2

T (Ω), we define
the semi-norm

|w|2,T :=

(∑
K∈T

|w|22,K

)1/2

.

Lemma 4.1. If T is regular and Hypotheses 1-5 hold, then there exists a positive
constant c such that for all T ∈ T , and for all w ∈ H1

0(Ω) ∩H2
T (Ω) and v ∈ UT ,

|aT (w,ΠT ∗v)| ≤ c(|w|1 + h|w|2,T )‖v‖1,
where h is the largest diameter of K ∈ T for all T ∈ T .
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Lemma 4.1 shows that the uniform boundedness condition (C-1) holds with
e(·) := | · |1 + h| · |2,T . It is clear that this function e is a norm on H1

0(Ω) ∩H2
T (Ω).

We next investigate the uniform ellipticity of the family of the discrete bilinear
forms. As in [12], we say that the family AT of the bilinear forms is uniformly
local-elliptic if there exists a positive constant σ such that for all T ∈ T and its
associated T ∗, all K ∈ T and all w ∈ UT ,

(4.2) aK(w,ΠT ∗w) ≥ σ|w|21,UT ,K .

By summing up (4.2) over allK ∈ T and using the discrete norm equivalence (3.12),
we see that the uniform local-ellipticity of AT leads to its uniform ellipticity. Thus,
by Theorem 2.1 and Lemma 4.1, we get the following optimal estimate of the FVMs.

Theorem 4.2. Let u ∈ H1
0(Ω) ∩ H2(Ω) be the solution of (2.1). Suppose that

Hypotheses 1-5 hold and T is regular. If AT is uniformly local-elliptic, then for
each T ∈ T the FVM equation (2.3) has a unique solution uT ∈ UT , and there
exists a positive constant c such that for all T ∈ T ,

‖u− uT ‖1 ≤ c inf
w∈UT

(‖u− w‖1 + h|u− w|2,T ) .

When the trial space UT is chosen as the space of the conforming piecewise poly-
nomial of degree k with respect to the triangulation T and u ∈ H

1
0(Ω) ∩H

k+1(Ω),
then by Theorem 4.2 we obtain the optimal convergence estimate ‖u − uT ‖1 =
O(hk). This estimate cannot be improved even if u has a higher order of smooth-
ness.

In the remaining part of this section, we briefly discuss superconvergence prop-
erties of the FVM solution. Solutions of certain FVMs were shown to have a
higher-order convergence property at certain points in the domain. This property,
called the superconvergence, has drawn the attention of a number of researchers. In
the literature, mainly there are two approaches in studying this superconvergence
property of FVMs. One approach considered the FVM as a small perturbation of
a FEM, and superconvergence results of the FVM were derived from those of the
FEM solutions (cf. [41, 42]). Another approach was to establish the superinterpo-
lation weak estimate of the discrete bilinear form of the FVM (cf. [11, 32, 36, 43]).
Most of these results are for the FVMs whose trial spaces are linear elements. Now
we discuss superconvergence of the FVMs of higher orders. Since an FVM of a
higher order may not be considered as a small perturbation of its FEM counterpart
(cf. [12]), the first approach mentioned above may not be suitable for an FVM of
a higher order. We thus take the second approach.

The following discussion is not restricted to the FVMs of the triangle meshes.
For a non-negative integer k, a real number p ∈ [1,∞] and a subdomain D ⊆ R

2,
let W

k,p(D) denote the Sobolev space with the norm ‖·‖k,p,D. When D = Ω, we

use ‖·‖k,p instead of ‖·‖k,p,D for simplicity. We choose the trial space UT := {v ∈
C(Ω̄) : v|K ∈ Pk, for all K ∈ T , v|∂Ω = 0}, where Pk is the set of all polynomials
of degree k. We use C to denote a positive constant (independent of meshes and
functions), which may be different in different places. Let S denote the set of the
optimal interpolation stress points; that is, there exists q ∈ (2,∞] such that for all
x ∈ S,

(4.3) |(∇u− ∇̄uI)(x)| ≤ Chk+1− 2
q ‖u‖k+2,q,E ,
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where uI is the interpolation of u in UT , ∇̄uI(x) denotes the average of the gra-
dients of uI on the elements containing the point x and E is the union of all such
elements. We next assume that the discrete bilinear form of the FVM satisfies the
superinterpolation weak estimate: there exists a constant p ∈ [1,∞] such that

(4.4) |aT (u− uI ,ΠT ∗w)| ≤ Chk+1(‖u‖k+2,p + F (u))‖w‖1, for all w ∈ UT ,

where F (u) is a non-negative function of u independent of meshes. This hypothesis
has been proved for several special cases. For the linear FVM with p = 2 and
F (·) = 0 on the uniform triangulation, p = 2 and F (·) = ‖ · ‖2,∞ on the C-uniform
triangulation and p = ∞ and F (·) = 0 on the piecewise C-uniform triangulation,
property (4.4) was established in [11]. Condition (4.4) for the bilinear FVM on
the regular quadrilateral partition with p = 2 and F (·) = 0 was derived in [36].
Condition (4.4) was established in [43] for the vertex-centered FVMs of any order
on rectangular meshes with p = 2 and F (·) = 0.

Proposition 4.3. Let u ∈ H1
0(Ω) ∩Wk+2,∞(Ω) be the solution of (2.1) and uT ∈

UT be the solution of (2.3). If AT is uniformly elliptic and (4.4) holds, then

(4.5)

(
1

N

∑
x∈S

|(∇u− ∇̄uT )(x)|2
)1/2

≤ Chk+1 (‖u‖k+2,p + ‖u‖k+2,q + F (u)) ,

where N is the cardinality of S.

Proof. We first prove that uI is super close to uT . Since AT is uniformly elliptic,
we obtain that there exists a positive constant σ such that

(4.6) ‖uI − uT ‖21 ≤ σaT (uI − uT ,ΠT ∗(uI − uT )) = σ aT (uI − u,ΠT ∗(uI − uT )).

Combining (4.4) and (4.6) yields

‖uI − uT ‖21 ≤ Chk+1(‖u‖k+2,p + F (u))‖uI − uT ‖1,

which leads to the fact that

(4.7) ‖uI − uT ‖1 ≤ Chk+1(‖u‖k+2,p + F (u)).

We next prove the inequality (4.5). Using (4.3) and noting N = O(h−2) and
q > 2, we obtain that

(4.8)

(
1

N

∑
x∈S

|(∇u− ∇̄uI)(x)|2
)1/2

≤ Chk+2− 2
q ‖u‖k+2,q ≤ Chk+1‖u‖k+2,q.

By the inverse inequality of the FEMs, we get that

(4.9) |(∇uI − ∇̄uT )(x)| ≤ Ch−1‖uI − uT ‖1,E , x ∈ S.

From (4.9), the fact that N = O(h−2) and (4.7), we obtain that
(4.10)(

1

N

∑
x∈S

|(∇̄uI − ∇̄uT )(x)|2
)1/2

≤ C‖uI − uT ‖1 ≤ Chk+1(‖u‖k+2,p + F (u)).

Combining (4.8) and (4.10) yields the desired inequality (4.5). �
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Proposition 4.3 provides a guidance for the study of the superconvergence prop-
erty of the FVM solutions. In this regard, the superinterpolation weak estimate
(4.4) is crucial. For the linear FVM for solving 2D elliptic equations on triangle
meshes, (4.4) was derived (cf. [11, 32]). Condition (4.4) for higher-order FVMs for
solving 2D elliptic equations on triangle meshes requires further investigation.

5. Equivalent conditions for the uniform local-ellipticity

We have seen in Theorem 4.2 that the uniform local-ellipticity of AT is crucial
to ensure the optimal error estimate of FVMs. This section is devoted to the study
of the uniform local-ellipticity of AT . Sufficient and necessary conditions for the
uniform local-ellipticity of AT will be established when the matrix a in (2.1) is
chosen as the identity matrix, and b = 0.

We first reexpress the uniform local-ellipticity of AT in an equivalent matrix

form. To this end, for each K ∈ T , we define ψi,K := ψ̂i ◦ F−1
K , i ∈ Nn̂, AK :=

[aK (φi,K , ψj,K) : i, j ∈ Nn̂] and ÃK := (AK + AT
K)/2, where φi,K , i ∈ Nn̂ are

defined by (3.7). The matrix ÃK is the symmetrization of the element stiffness

matrix AK . It is well-known that ÃK and AK have the same quadratic form; that
is, for all w ∈ Rn̂, there holds wT ÃKw = wTAKw. However, the eigenvalues of
matrix ÃK are all real and it has complete orthogonal eigenvectors. Recall that
Hypothesis 2 ensures that {φi,K : i ∈ Nn̂} is a basis for UK and (3.8) holds. Thus,
for each w ∈ UT and each K ∈ T ,

(5.1) w(x) =
∑
i∈Nn̂

wi,Kφi,K(x), x ∈ K,

where wi,K , i ∈ Nn̂ are as defined in (3.9). For each w ∈ UT and each K ∈ T , we let

wK := [wi,K : i ∈ Nn̂]
T
. We define a matrix of rank 1 by setting ei := η̂i(χK̂), i ∈

Nn̂, e := [ei : i ∈ Nn̂]
T and E := 1

eT e
eeT .

Lemma 5.1. If Hypotheses 2 and 3 hold, then the uniform local-ellipticity of the
family AT of the discrete bilinear forms is equivalent to the existence of a positive
constant σ such that for all T ∈ T , all K ∈ T and all w ∈ UT ,

(5.2) wT
KÃKwK ≥ σ(wK −EwK)T (wK −EwK).

Proof. It suffices to verify that for any positive constant σ inequality (4.2) is equiva-
lent to (5.2). We prove this by identifying the bilinear form and the norm appearing
in (4.2) with the quantities appearing in (5.2). For all w ∈ UT , Hypothesis 2 ensures
that (5.1) holds. From the definition of ΠT ∗ , we get that

(5.3) (ΠT ∗w)(x) =
∑
i∈Nn̂

wi,Kψi,K(x), x ∈ K.

Substituting (5.1) and (5.3) into the definition of aK(·, ·), we have that

(5.4) aK (w,ΠT ∗w) = wT
KAKwK = wT

KÃKwK .

It follows from Hypothesis 3 that ei = 1 for i ∈ Nŝ and ei = 0 for i ∈ Nn̂ \ Nŝ. By
the definition of | · |1,UT ,K , we find that

(5.5) |w|21,UT ,K = (wK −EwK)T (wK −EwK).

The desired result follows from (5.4) and (5.5). �
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Figure 1. The region G and its lower boundary

Inequality (5.2) in Lemma 5.1 involves all w ∈ UT , and as a result it is still not
convenient for practical use. However, it provides a basis for us to derive convenient
sufficient and necessary conditions on the uniform local-ellipticity of the family AT .
We next introduce matrices constructed from ÃK and E for pairs (r1, r2) of real
numbers. The equation ETE = E = ET together with (5.2) implies that

(5.6) wT
K(ÃK +E)wK ≥ σ

1 + σ
wT

KwK .

For a triangle K ∈ T with vertices Pi, i = 1, 2, 3, we denote by |K| its area and
by �i its edge opposite to Pi and by |�i| the length of the edge �i. Without loss of
generality, we assume that |�1| ≥ |�2| ≥ |�3|. For each triangle K ∈ T , we introduce
three geometric parameters:

(5.7) r1,K := |�2|2/|�1|2, r2,K := |�3|2/|�1|2, αK := |�1|2/(4|K|).

Then, we have that 0 < r2,K ≤ r1,K ≤ 1. Each non-degenerate triangle K is
associated with a pair of numbers (r1,K , r2,K) with 0 < r2,K ≤ r1,K ≤ 1 and

(r1,K)
1/2

+ (r2,K)
1/2

> 1. Conversely, a point in the set

G :=
{
(r1, r2) ∈ R

2 : (r1)
1/2

+ (r2)
1/2

> 1, 0 < r2 ≤ r1 ≤ 1
}

determines a class of non-degenerate similar triangles. In fact, the set G consists
of all possible non-degenerate triangles in R2. We call the curve Γ := {(r1, r2) ∈
R2 : (r1)

1/2
+(r2)

1/2
= 1, 1/4 ≤ r1 ≤ 1} the lower boundary of G. We illustrate in

Figure 1 the region G in R2 and its low boundary Γ. By changing variables from
K to K̂, we get that there are three symmetric matrices Ãi, i = 0, 1, 2, associated
with the reference triangle K̂ only such that ÃK = αK(Ã0+r1,KÃ1+r2,KÃ2) (cf.
[12]). If T is regular, there is a positive constant θinf such that (3.10) holds. By
the area formula of a triangle, we get that

(5.8) 1/
√
3 ≤ 1/(2 sin θmin,K) ≤ αK ≤ 1/ tan θmin,K ≤ 1/ tan θinf .

Motivated from inequality (5.6) and (5.8), for each (r1, r2) ∈ R2, we introduce

the matrix H (r1, r2) := Ã0 + r1Ã1 + r2Ã2 +E. It is obvious that the elements of

H (r1, r2) are continuous functions of (r1, r2) ∈ R2 andH (r1,K , r2,K) = α−1
K ÃK+E.

We next characterize the uniform local-ellipticity of AT in terms of the uniform
boundedness below from zero of the minimum eigenvalues of the matrices H (·, ·).
We denote by Tb the set of triangles in T which have non-empty intersection with
the boundary ∂Ω. That is, for K ∈ Tb, it may have edges or vertices on ∂Ω.
Then, T \ Tb is the set of triangles in T , contained in the interior of Ω. Recall
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that for each K ∈ T , φi,K , i ∈ Nn̂, are defined by (3.7). For K ∈ Tb, there are
1 ≤ i1 ≤ i2 ≤ · · · ≤ inK

≤ n̂ with 1 ≤ nK < n̂ dependent on K such that
(5.9)
φj,K |∂K∩∂Ω = 0, j ∈ {im : m ∈ NnK

}, φj,K |∂K∩∂Ω �= 0, j ∈ Nn̂\{im : m ∈ NnK
}.

For all w ∈ UT and all K ∈ Tb, since w vanishes on the boundary ∂Ω and since the
intersection of K and ∂Ω is non-empty, we have that

(5.10) w(x) =
∑

m∈NnK

wim,Kφim,K(x), x ∈ K.

For a vector v, we use (v)i to denote its ith component, and for a matrix M, we
use (M)i,j to denote its (i, j) entry. For a K ∈ Tb and all w ∈ UT , by (5.10) and
the definition of wK , we have that

(5.11) (wK)j = 0, j ∈ Nn̂ \ {im : m ∈ NnK
}.

For K ∈ Tb, we define a subvector w−
K := [(wK)il : l ∈ NnK

]T of wK and a
submatrix of H (r1,K , r2,K) by (H− (r1,K , r2,K))l,m := (H (r1,K , r2,K))il,im .

The next theorem gives a necessary condition and a sufficient condition for the
uniform local-ellipticity of the family of the discrete bilinear forms.

Theorem 5.2. Suppose that T is regular and Hypotheses 1-5 hold. If AT is
uniformly local-elliptic, then there is a positive constant c such that for all T ∈ T ,

(5.12)

{
λmin(H (r1,K , r2,K)) ≥ c, K ∈ T \ Tb,
λmin(H

− (r1,K , r2,K)) ≥ c, K ∈ Tb.
Conversely, if there exists a positive constant c such that

(5.13) λmin(H (r1,K , r2,K)) ≥ c, for all T ∈ T and all K ∈ T ,

then AT is uniformly local-elliptic.

Proof. In this proof we write H for H (r1,K , r2,K) for simple presentation. We sup-
pose that AT is uniformly local-elliptic and prove that there is a positive constant c
such that (5.12) holds. By Lemma 5.1, we conclude that there is a positive constant
σ such that for all T ∈ T , all K ∈ T and all w ∈ UT inequality (5.2) holds, which
leads to (5.6). The regularity of T ensures the validity of (5.8). Combining (5.6)
and (5.8) yields

(5.14) wT
KHwK ≥ σ tan θinf

1 + σ
wT

KwK .

For K ∈ T \ Tb, since w is an arbitrary element in UT , wK can be any element
in Rn̂. In inequality (5.14), choosing wK as the eigenvector associated with the
minimum eigenvalue of H we get the first inequality of (5.12). For K ∈ Tb, from
(5.11) we derive that

(w−
K)TH−w−

K = wT
KHwK and (w−

K)Tw−
K = wT

KwK .

This combined with (5.14) yields that for all T ∈ T , all K ∈ Tb and all w ∈ UT ,

(5.15) (w−
K)TH−w−

K ≥ σ tan θinf
1 + σ

(w−
K)Tw−

K .

For K ∈ Tb, as w goes throng UT , w
−
K can be any element in R

nK . In inequality

(5.15), choosing w−
K as the eigenvector associated with the minimum eigenvalue of

H−, we conclude that the second inequality of (5.12) holds.
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Conversely, we prove that AT is uniformly local-elliptic by contradiction. If AT

is not local-elliptic, from (5.2) we learn that for any σ > 0, there exist a T ∈ T , a
K ∈ T and a w ∈ UT such that

(5.16) wT
KÃKwK < σ(wK −EwK)T (wK −EwK).

Let V1 := span{e} and V2 := span{vi, i ∈ Nn̂−1}, where vi, i ∈ Nn̂−1, are the
orthogonal eigenvectors of E associated with the eigenvalue 0. Then, V1 is the
eigenspace of E associated with the eigenvalue 1 and V2 is the eigenspace of E
associated with the eigenvalue 0. Hypotheses 1-5 ensure the validity of Lemma 3.1.
By making use of Lemma 3.1, we can easily prove that V1 is contained in the null
space of ÃK . Note that R2 = V1 + V2. There is w1,K ∈ V1 and w2,K ∈ V2 such
that wK = w1,K +w2,K . Then, we get that

(5.17) wT
KÃKwK = wT

2,KÃKw2,K , (wK −EwK)T (wK −EwK) = wT
2,Kw2,K .

Substituting (5.17) into (5.16), we get that for each σ > 0, there exist a T ∈ T , a
K ∈ T and a w2,K ∈ V2 such that

(5.18) wT
2,KÃKw2,K < σwT

2,Kw2,K .

Since σ can be sufficiently small, from (5.18) we derive that there exists a

w2,K0
∈ V2 such that wT

2,K0
ÃKw2,K0

≤ 0. Hence, wT
2,K0

H(r1,K0
, r2,K0

)w2,K0
=

α−1
K0

wT
2,K0

ÃK0
w2,K0

≤ 0. This contradicts (5.13). Therefore, we conclude that AT

is uniformly local-elliptic. �

From Theorem 5.2, we see that (5.12) is slightly weaker than (5.13). If we ignore
the possibly weaker requirement for the boundary triangles in Tb, inequality (5.13)
is an equivalent condition for the uniform local-ellipticity of AT .

The discussion on the uniform local-ellipticity of AT , presented in Theorem 5.2,
is from the algebraic point of view and can be used to derive geometric conditions for
the uniform local-ellipticity of AT . For this purpose, we introduce the admissible
region GH (of the parameters r1 and r2) for the FVM primary grid

GH :=
{
(r1, r2) ∈ R

2 : λmin(H (r1, r2)) > 0, 0 ≤ r2 ≤ r1 ≤ 1
}
.

Corollary 5.3. Suppose that T is regular and Hypotheses 1-5 hold. If AT is
uniformly local-elliptic, then there exists a compact subset G0 of GH such that
for all T ∈ T and all K ∈ T \ Tb, (r1,K , r2,K) ∈ G0. Conversely, if there exists a
compact subset G0 of GH such that for all T ∈ T and all K ∈ T , (r1,K , r2,K) ∈ G0,
then AT is uniformly local-elliptic.

Proof. We prove the first part of this corollary. Since AT is uniformly local-elliptic,
there is a positive constant c such that (5.12) in Theorem 5.2 holds. Associated
with this constant c, we define the set

G0 :=
{
(r1, r2) ∈ R

2 : λmin(H (r1, r2)) ≥ c, 0 ≤ r2 ≤ r1 ≤ 1
}
.

Then, for all T ∈ T and all K ∈ T \ Tb, there holds (r1,K , r2,K) ∈ G0, and
clearly, G0 ⊂ GH. It remains to prove that G0 is compact. To this end, we
introduce a compact set G1 := {(r1, r2) ∈ R2 : 0 ≤ r2 ≤ r1 ≤ 1}. Obviously,
G0 ⊂ G1. Since eigenvalues of a matrix depend continuously upon its entries
(cf. [28]), there exists a point (r∗1 , r

∗
2) ∈ G1 such that λ∗ := λmin(H(r∗1 , r

∗
2)) =

max(r1,r2)∈G1
λmin(H(r1, r2)). Since G0 ⊂ G1, the set G0 has the following form:
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G0 = {(r1, r2) ∈ R2 : c ≤ λmin(H (r1, r2)) ≤ λ∗, 0 ≤ r2 ≤ r1 ≤ 1}. This means
that G0 is a compact set.

We prove the second part of this corollary. Since for all T ∈ T and all K ∈ T ,
(r1,K , r2,K) ∈ G0 and λmin(H(r1, r2)) is a continuous function of (r1, r2) on the
compact set G0, there is a positive constant c such that (5.13) holds. Thus, by
Theorem 5.2, we conclude that AT is uniformly local-elliptic. �

From Corollary 5.3, we see that if we ignore the possibly weaker requirement for
the triangles in Tb, the family AT is uniformly local-elliptic if and only if there exists
a compact subset G0 of GH such that for all T ∈ T and all K ∈ T , (r1,K , r2,K) ∈
G0. A similar result was presented in [12] for specific FVMs. Corollary 5.3 extends
that geometric result to more general FVMs in the setting under Hypotheses 1-5.
Moreover, we establish in this paper an algebraic characterization of the uniform
local-ellipticity in Theorem 5.2, which easily leads to the geometric result presented
in Corollary 5.3.

6. The admissible region and sufficient conditions

for the uniform local-ellipticity

The admissible region defined in the last section is crucial in determining the
uniform local-ellipticity of the family of the discrete bilinear forms. It is difficult to
use the definition of the region directly in determining the uniform local-ellipticity.
In this section, we provide a characterization of the admissible region in a way
convenient for us to derive its compact subsets so as to obtain various sufficient
conditions for the uniform local-ellipticity.

We use λmin (A,B) and λmax (A,B), respectively, to denote the minimum gener-
alized eigenvalue and the maximum generalized eigenvalue of B with respect to A.

Let λ1,H := λmax

(
H (1, 1) , Ã1 + Ã2

)
and λ2,H(r1) := λmax

(
H (r1, r1) , Ã2

)
, and

define r1,H := 1 − 1/λ1,H and r2,H (r1) := r1 − 1/λ2,H(r1). The next proposition
extends the description of the admissible region for specific FVMs in [12] to more
general constructions of FVMs. Since the proof is similar, we omit it.

Proposition 6.1. If Hypotheses 1-6 hold and the admissible region GH is non-
empty, then GH is a convex subset of G and there holds

GH =
{
(r1, r2) ∈ R

2 : r1,H < r1 ≤ 1 and r2,H(r1) < r2 ≤ r1
}
.

HHH

r1,H

HHH
Γ

H
      Γ

r1

r2

10

   Γ
H

Γ
H

0 r11

r2

r1,H

Figure 2. The possible shapes of GH described in Proposition 6.1

The description of the set GH in Proposition 6.1 does not provide a precise shape
of its lower boundary near the left end-point of the interval (r1,H, 1]. We next
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provide such a precise description. To this end, we introduce the low boundary of
GH:

(6.1) ΓH :=
{
(r1, r2,H(r1)) ∈ R

2 : r1,H < r1 ≤ 1
}
.

From the definition of GH, the curve ΓH in fact has the form

(6.2) ΓH =
{
(r1, r2) ∈ R

2 : λmin(H (r1, r2)) = 0, r1,H < r1 ≤ 1
}
.

Figure 2 illustrates possible shapes of the admissible region. The next lemma
excludes the possibility of the shape of GH being the case illustrated in the left of
Figure 2.

Lemma 6.2. If Hypotheses 1-6 hold and GH is non-empty, then ΓH is a continuous
curve and r′ := limr1→r+1,H

r2,H(r1) exists and is equal to r1,H.

Proof. Since λmin(H(r1, r2)) is a continuous function of (r1, r2) ∈ R2, by (6.2) we
find that the curve ΓH is continuous. That is, r2,H(r1) is a continuous function for
r1 ∈ (r1,H, 1]. It follows from Proposition 6.1 that 0 ≤ r2,H(r1) < r1 ≤ 1 for all
r1 ∈ (r1,H, 1]. This means that the continuous function r2,H(·) is bounded on the
domain (r1,H, 1]. We thus conclude that r′ exists and r′ ≤ r1,H.

We now prove that r′ = r1,H by contradiction. To this end, we introduce an

auxiliary set G̃H := {(r1, r2) : λmin(H(r1, r2) > 0, 0 ≤ r1, r2 ≤ 1} . It is in fact the
union of GH and its reflection set with respect to the line r1 = r2. It can be easily
verified that G̃H is convex. Assume to the contrary that r′ < r1,H. Then, there
exists r2 such that r′ < r2 < r1,H. Since r2,H is a continuous function on (r1,H, 1],
from the definition of r′ there exists

(6.3) 0 < ε ≤ min{1− r1,H, r1,H − r2}
such that

(6.4) r2,H(r1,H + ε) < r2 < r1,H + ε.

It follows from (6.3), (6.4) and Proposition 6.1 that (r1,H + ε, r2) ∈ GH. From the

relationship between GH and G̃H, we get that both (r1,H + ε, r2) and (r2, r1,H + ε)

are in G̃H. By the convexity of G̃H, we observe that the point (r1,0, r1,0) :=

((r1,H + ε+ r2)/2, (r1,H + ε+ r2)/2) ∈ G̃H. By Proposition 6.1, (1, 1) ∈ GH. This

leads to that (1, 1) ∈ G̃H. From (6.3), we find that (r1,H, r1,H) is on the line segment

between (r1,0, r1,0) and (1, 1). The convexity of G̃H leads to (r1,H, r1,H) ∈ G̃H,
which in turn leads to (r1,H, r1,H) ∈ GH. This contradicts Proposition 6.1 and we
conclude that r′ = r1,H. �

Combining Proposition 6.1 and Lemma 6.2, we obtain the following theorem.

Theorem 6.3. If Hypotheses 1-6 hold and GH is non-empty, then GH is a convex
subset of G surrounded by lines r1 = r2, r1 = 1 and curve ΓH, being close on
r1 = r2, r1 = 1, and open on ΓH.

Based on the characterization of the admissible region GH presented above, we
may easily get its various compact subsets and in turn according to Corollary 5.3
we derive many types of sufficient conditions for the uniform local-ellipticity of the
family of the discrete bilinear forms. Three types of sufficient conditions for the
uniform local-ellipticity of the family of the discrete bilinear forms were presented in
[12] for specific constructions of FVMs. The same types of sufficient conditions can
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be derived for the general construction in the setting under Hypotheses 1-6. Since
the proofs for these three types of sufficient conditions are similar to those presented
in [12], we shall provide the main results without proofs. The interested readers
are referred to [12] for more details. Moreover, we shall provide a new sufficient
condition which uses the largest angle of the triangles in the primary meshes.

Recalling that for a triangle K, θmin,K denotes its smallest angle, we use θmax,K

to denote the largest angle of K. For a triangle K with r1,K and r2,K defined

as in (5.7), we find that cos θmin,K =
1+r1,K−r2,K

2r
1/2
1,K

and cos θmax,K =
r1,K+r2,K−1

2(r1,Kr2,K)1/2
.

Motivated from these formulas, for any (r1, r2) ∈ R
2 with r1 �= 0 and r2 �= 0, we

define G(r1, r2) :=
1+r1−r2
2(r1)

1/2 , θmin (r1, r2) := cos−1 (G(r1, r2)), F (r1, r2) :=
r1+r2−1
2(r1r2)

1/2

and θmax (r1, r2) := cos−1 (F (r1, r2)) . For a given integer N , we select N +1 points
Rl := (r1,l, r2,l), l = 0, 1, . . . , N in ΓH, where
(6.5)

r1,0 := r1,H, r2,0 := r1,H and r1,l := r1,H +
l(1− r1,H)

N
, r2,l := r2,H(r1,l), l ∈ NN .

Type I sufficient condition: For any S := (s1, s2) ∈ G and T := (t1, t2) ∈ G

such that t1 > s1, we introduce d1 := 1− t2−s2
t1−s1

, d2 := 1+s1−s2−d1s1, and h(t) :=
d1t+d2

2t1/2
. Define η1 := h(t1), η2 := min {η1, h(s1)} and η3 := min {η2, h(d2/d1)} , and

compute

η (S, T ) :=

⎧⎨
⎩

cos−1 η1, d1 = 0,

cos−1 η2, d1 �= 0 and d2

d1
/∈ [s1, t1],

cos−1 η3, otherwise.

We have the type I sufficient condition on the uniform local-ellipticity of the
family of the discrete bilinear forms of FVMs.

Theorem 6.4. If Hypotheses 1-6 hold and there exists ε0 > 0 such that for all
T ∈ T and all K ∈ T ,

θmin(r1,K , r2,K) ≥ ε0 + max
0≤l≤N−1

η(Rl, Rl+1),

then the family AT of the discrete bilinear forms is uniformly local-elliptic.

Type II sufficient condition: We consider the curve on which the largest angle
is a constant: Γγ :=

{
(r1, r2) ∈ G : θmax (r1, r2) = cos−1 γ

}
, for some γ ∈ (−1, 0].

We construct circumscribed polygons that approximate Γγ . For l = 0, 1, . . . , N , let

ργ(N, l) := γ · cos
(

l cos−1|γ|
N

)
, σγ(N, l) :=

(
1− γ2

)1/2 · sin( l cos−1|γ|
N

)
, and

τc(N, l) :=

{
1, l is even,

cos
(

cos−1|γ|
N

)
, l is odd.

For j = 1, 2, we define

rj,γ,l :=
1

2 (1− γ2)

(
1 +

ργ (N, l) + (−1)j+1σγ (N, l)

τγ (N, l)

)
,

for l = 0, 1, . . . , N . We further restrict γ ∈ (1 − 1/(2r1,H), 0] so that r1,γ(α) ∈
(r1,H, 1] for all α ∈

[
0, cos−1 |γ|

)
. Using the construction above, we can find the

index set

Kγ := {l ∈ {0, 1, . . . , N − 1} : r2,γ,l ≤ r2,H(r1,γ,l) or r2,γ,l+1 ≤ r2,H(r1,γ,l+1)} .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



A CONSTRUCTION OF HIGHER-ORDER FINITE VOLUME METHODS 619

Let Sγ,l :=
(
r1,γ,l, r2,H(r1,γ,l)

)
, l ∈ Kγ . We have the type II sufficient condition on

the uniform local-ellipticity of the family of the discrete bilinear forms of FVMs.

Theorem 6.5. If Hypotheses 1-6 hold and there exist γ ∈ (1 − 1/(2r1,H), 0] and
ε0 > 0, such that for all T ∈ T and all K ∈ T , θmax(r1,K , r2,K) ≤ cos−1 γ and
θmin(r1,K , r2,K) ≥ ε0+maxl∈Kγ

η (Sγ,l, Sγ,l+1)) , then the family AT of the discrete
bilinear forms is uniformly local-elliptic.

Type III sufficient condition: We have the type III sufficient condition on
the uniform local-ellipticity of the family of the discrete bilinear forms of FVMs.

Theorem 6.6. If Hypotheses 1-6 hold and there exist γ ∈ (1 − 1/(2r1,H), 0] and
ε0 > 0, such that for all T ∈ T and all K ∈ T ,

θmax(r1,K , r2,K) ≤ cos−1 γ and
r2,K
r1,K

≥ ε0 +max
l∈Kγ

{
r2,H(r1,γ,l)

r1,γ,l
,
r2,H(r1,γ,l+1)

r1,γ,l+1

}
,

then the family AT of the discrete bilinear forms is uniformly local-elliptic.

Type IV sufficient condition: We now derive a new sufficient condition for
the uniform local-ellipticity based on an upper bound on the largest angle of the
triangle meshes.

It has been verified in Lemma 4.9 of [12] for (r1, r2) ∈ R
2 with r1 �= 0 and r2 �= 0

that

(6.6)
dθmax(r1, r1)

dr1
< 0 and

∂θmax(r1, r2)

∂r2
< 0,

which implies certain monotonicity of θmax(·, ·). Define

�0 := inf
(r1,r2)∈ΓH

θmax(r1, r2).

The next proposition presents a sufficient condition for the uniform local-
ellipticity of AT .

Proposition 6.7. If Hypotheses 1-6 hold and there exists an ε0 > 0 such that for
all T ∈ T and all K ∈ T ,

(6.7) θmax(r1,K , r2,K) ≤ �0 − ε0,

then the family AT of the discrete bilinear forms is uniformly local-elliptic.

Proof. We prove this result by employing Corollary 5.3. Introducing the set

G0,ε0 := {(r1, r2) ∈ G : π/3 ≤ θmax(r1, r2) ≤ �0 − ε0} ,
by hypothesis, for all T ∈ T and all K ∈ T , (r1,K , r2,K) ∈ G0,ε0 . Clearly, G0,ε0 is
compact.

It remains to prove that G0,ε0 is contained in GH. For any (r1, r2) ∈ G0,ε0 , we
show that r1 > r1,H by contradiction. Assume to the contrary that r1 ≤ r1,H.
Then by (6.6) and Lemma 6.2, we get that

(6.8) θmax(r1, r2) ≥ θmax(r1, r1) ≥ θmax(r1,H, r1,H) ≥ �0.

On the other hand, since (r1, r2) ∈ G0,ε0 , we have that θmax(r1, r2) < �0. This
contradicts (6.8). Thus, we conclude that r1 > r1,H. We next verify that r2 >
r2,H(r1). From the definitions of G0,ε0 and �0, we get that θmax(r1, r2) ≤ �0 − ε0 <
�0 ≤ θmax(r1, r2,H(r1)). This together with the second inequality of (6.6) yields
r2 > r2,H(r1). Thus, from Proposition 6.1, we know that (r1, r2) ∈ GH. That is,
G0,ε0 ⊂ GH. �
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The computation of �0 is not easy. From (6.5), we get a polygonal curve that
approximates ΓH. We next show that as N to infinity, the polygonal curves produce
a sequence of the numbers that are smaller than �0 and converge to �0. For points
P1, P2 ∈ R2, we let P1P2 denote the closed line segment between P1 and P2. Let

ΓH,N :=
⋃N−1

l=0 RlRl+1 and �0,N := inf(r1,r2)∈ΓH,N
θmax(r1, r2). Since the polygonal

curves ΓH,N can approximate ΓH to an arbitrary accuracy as N increases and the
curve ΓH,N is continuous, we have that limN→∞ �0,N = �0. The next lemma shows
that �0,N is smaller than �0.

Lemma 6.8. If Hypotheses 1-6 hold, then for any positive integer N , there holds
�0,N ≤ �0.

Proof. Hypotheses 1-6 ensure the validity of Theorem 6.3, from which we know
that r2,H(r) is a convex function for r ∈ (r1,H, 1]. Hence, for each (r1, r2) ∈ ΓH,N ,
we have that r2 ≥ r2,H(r1). This together with the second inequality of (6.6) leads
to that θmax(r1, r2) ≤ θmax(r1, r2,H(r1)), which yields the desired result. �

We next consider computing �0,N . For S := (s1, s2) ∈ G and T := (t1, t2) ∈ G

such that t1 > s1, we let d1 := 1 + t2−s2
t1−s1

, d2 := −1 + s1 + s2 − d1s1, d3 :=

d1 + 2d2 − d1d2, d4 := d2(d2+1)
d3

. We define g(t) := d1t+d2

2[(d1−1)t2+(d2+1)t]1/2
, for t > 0,

ϑ1 := max {g(s1), g(t1)}, ϑ2 := max {ϑ1, g (d4)} , and compute

ϑ (S, T ) :=

{
cos−1 ϑ1, d3 = 0, or d3 �= 0 and d4 /∈ [s1, t1],
cos−1 ϑ2, otherwise.

Lemma 6.9. If ΓH ⊂ G, then �0,N = minl∈NN
ϑ(Rl−1, Rl).

Proof. From the definition of �0,N , we find that

�0,N = min
l∈NN

inf
(r1,r2)∈Rl−1Rl

θmax (r1, r2) .

Since ΓH ⊂ G, it is clear that Rl ∈ G, l = 0, 1, . . . , N . Thus, it suffices to prove
that for any S := (s1, s2) ∈ G and T := (t1, t2) ∈ G with t1 > s1, there holds

(6.9) inf
(r1,r2)∈ST

θmax (r1, r2) = ϑ (S, T ) .

Since ST is a line segment between S and T , we have the relation

(6.10) r2 = (d1 − 1)r1 + d2 + 1, (r1, r2) ∈ ST .

Substituting (6.10) into the definition of θmax, we get θmax (r1, r2)= cos−1(g(r1)),
(r1, r2) ∈ ST . Noticing that the function cos−1(·) is decreasing, we derive that

(6.11) inf
(r1,r2)∈ST

θmax (r1, r2) = inf
r1∈[s1,t1]

cos−1 (g(r1)) = cos−1

(
sup

r1∈[s1,t1]

g(r1)

)
.

By employing the monotonicity of g(·), we get (6.9). �

Recall that the curve Γ is the lower boundary of the set G. The next theorem
gives the type IV convenient sufficient condition on the uniform local-ellipticity of
AT .

Theorem 6.10. Suppose that Hypotheses 1-6 hold. If ΓH = Γ and there exists
ε1 > 0 such that for all T ∈ T and all K ∈ T ,

(6.12) θmax(r1,K , r2,K) ≤ π − ε1,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



A CONSTRUCTION OF HIGHER-ORDER FINITE VOLUME METHODS 621

then AT is uniformly local-elliptic. If ΓH ⊂ G and there exists ε2 > 0 such that
for all T ∈ T and all K ∈ T ,

(6.13) θmax(r1,K , r2,K) ≤ min
l∈NN

ϑ(Rl−1, Rl)− ε2,

then AT is uniformly local-elliptic.

Proof. Since Hypotheses 1-6 holds and ΓH = Γ, it follows from Theorem 6.3 that
GH = G. We find that Gε1 := {(r1, r2) ∈ G : π/3 ≤ θmax(r1, r2) ≤ π − ε1} is a
compact subset of G. By Corollary 5.3, AT is uniformly local-elliptic.

Since Hypotheses 1-6 hold and ΓH ⊂ G, from inequality (6.13) and Lemmas 6.9
and 6.8, we get that for all T ∈ T and allK ∈ T that θmax(r1,K , r2,K) ≤ �0,N−ε2 ≤
�0 − ε2. By Proposition 6.7, we conclude that AT is uniformly local-elliptic. �

From Theorem 6.10, we get that when ΓH = Γ (that is, GH = G), the uniform
local-ellipticity of the family of the discrete bilinear forms of the FVM is always
satisfied for FVMs with the trial spaces constructed from any non-degenerate tri-
angulations.
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Γ
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Figure 3. Two types of sufficient conditions for the Lagrange 5-0 FVM

The type IV sufficient condition can provide information for determining the
uniform local-ellipticity of AT complementary to that provided by the first three
type sufficient conditions. We provide an example to demonstrate this point. The
Lagrange 5-0 FVM was constructed in [12]. Proposition 5.3 of [12] shows that if
the smallest angle of the triangles in the triangulation is greater than 35.69◦, then
the family of the corresponding discrete bilinear forms is uniformly local-elliptic.
We shall use the type IV sufficient condition for this FVM to give an alternative
condition. Specifically, using Theorem 6.10 of this paper with N = 100 we calculate
that if the greatest angle of the triangles in the triangulation is smaller than 78.76◦,
then the family of the discrete bilinear forms for the Lagrange 5-0 FVM is uniformly
local-elliptic. We illustrate in Figure 3 these two types of sufficient conditions for the
Lagrange 5-0 FVM. The red shadow region Gr illustrates the set of triangles with
the smallest angles greater than 35.69◦, and the blue shadow region Gb illustrates
the set of triangles with the largest angles smaller than 78.76◦. We see from the
figure that these two regions are not identical.

7. Specific FVM constructions

We present in this section specific FVM constructions and examine their uniform
local-ellipticity. According to the construction of the test spaces, there are three
kinds of FVM schemes: Lagrange FVMs, Hermite FVMs and hybrid FVMs. Since
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the first two types of FVMs have been studied extensively, our discussion will focus
on the third type of FVMs.

Hybrid quadratic FVMs was introduced in [9]. In the following, we present more
higher-order hybrid FVMs and derive their geometric conditions which ensure that
the corresponding FVMs achieve optimal error estimate. From the construction
described in Section 2, for a FVM scheme it suffices to present the FE triple element
(K̂, Σ̂,UK̂) and the triple element (T̂ ∗, Σ̂∗,VT̂ ∗). For m > 2 and m points Qj ∈ R

2,
j ∈ Nm, we use Θ{Q1, Q2, . . . , Qm} for the polygon with the vertices Qi, i ∈ Nm,
being connected consecutively. For a non-negative integer k and a domain D ⊂ R2,
by ℘k(D) we denote the space of functions that are polynomials of degree k on D
and zero elsewhere. For K̂∗

i ∈ T̂ ∗, we write χi for χK̂∗
i
for a simple presentation.

Example 7.1 (Hybrid Lagrange cubic FVM). For the hybrid Lagrange cubic FVM,
we choose the following functional nodes:

P1 := (0, 0), P2 := (1, 0), P3 :=(0, 1), P4 := (1/3, 1/3), P5 := (2/3, 1/3),
P6 := (1/3, 2/3), P7 := (0, 2/3), P8 :=(0, 1/3), P9 := (1/3, 0), P10 := (2/3, 0).

For i ∈ N10, we let ζ̂i be the point evaluation functional at the node Pi and we have

the set of degrees of freedom Σ̂ :=
{
ζ̂i : i ∈ N10

}
. The trial space UK̂ is the cubic

element space ℘3(K̂).

We choose the dual nodes Q0 := (1/3, 1/3), Q1 := (1/2, 1/2), Q2 := (0, 1/2), Q3

:= (1/2, 0), and define the dual partition T̂ ∗ := {K̂∗
l : l ∈ N3} of K̂ by setting K̂∗

1 :=

Θ {P1, Q3, Q0, Q2}, K̂∗
2 := Θ {P2, Q1, Q0, Q3}, K̂∗

3 := Θ {P3, Q2, Q0, Q1} . Let ξ1 :=
(−1,−1), ξ2 := (2,−1) and ξ3 := (−1, 2) and define w̄4 := limε→0+

1
3 [w(P4+ εξ1)+

w(P4+ εξ2)+w(P4+ εξ3)], which denotes the average of the function w at the node
P4 in the directions ξi, i ∈ N3. Clearly, w̄4 is well-defined for w ∈ UK̂ and when

w ∈ UK̂ , w̄4 = w(P4). The set of degrees of freedom Σ̂∗ := {η̂l, l ∈ Nn̂}, where
n̂ = 10, and

(7.1) η̂i := ζ̂i, i ∈ N3, η̂4(w) := w̄4 −
1

3
[w(P1) + w(P2) + w(P3)],

η̂5(w) := w(P5)− w(P2), η̂6(w) := w(P6)− w(P3), η̂7(w) := w(P7)− w(P3),
η̂8(w) := w(P8)− w(P1), η̂9(w) := w(P9)− w(P1), η̂10(w) := w(P10)− w(P2).

The basis ΦK̂ := {ϕ̂i ∈ ℘3(K̂), i ∈ N10} for UK̂ is determined by Σ̂∗ in the form
of (2.4). The test space is chosen as VT̂ ∗ := spanΨT̂ ∗ , where ΨT̂ ∗ consists of

ψ̂i := χi, i ∈ N3 and ψ̂i := ϕ̂i, i ∈ N10 \ N3.
We remark that w̄4 is well-defined for w ∈ VT̂ ∗ . In Figure 4, we illustrate

the control volumes K̂∗
1 (the red region), K̂∗

2 (the yellow region), K̂∗
3 (the green

region), and the directions ξi, i ∈ N3. For w ∈ VT̂ ∗ , since w may have a jump in
the intersections of two adjacent control volumes, w(P4) has no meanings. However,

for each i ∈ N3, for any ε > 0, P4 + εξi is in the control volume K̂∗
i , which means

that w(P4 + εξi) is well-defined. Thus, w̄4 is well-defined for w ∈ VT̂ ∗ .

Example 7.2 (Hybrid Zienkiewicz FVM). For the hybrid Zienkiewicz FVM, we
choose the functional nodes P1 := (0, 0), P2 := (1, 0) and P3 := (0, 1), and the
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Figure 4. The dual partition and w̄4 for the hybrid Lagrange
cubic FVM

set of degrees of freedom Σ̂ :=
{
ζ̂i, i ∈ N9

}
, where ζ̂1(w) := w(P1), ζ̂2 := w(P2),

ζ̂3 := w(P3),

ζ̂4(w) := ∇w(P1) · (1, 0), ζ̂5(w) := ∇w(P1) · (0, 1), ζ̂6(w) := ∇w(P2) · (−1, 1),

ζ̂7(w) := ∇w(P2) · (−1, 0), ζ̂8(w) := ∇w(P3) · (0,−1), ζ̂9(w) := ∇w(P3) · (1,−1).

Let P0 := (1/3, 1/3). The trial space UK̂ is the cubic element space with element
w satisfying

(7.2) 6w(P0)− 2
∑
i∈N3

w(Pi) +
∑
i∈N3

∇w(Pi) · (Pi − P0) = 0.

The dual partition T̂ ∗ := {K̂∗
l : l ∈ N3} of this FVM is the same as that

in Example 7.1. We choose the set of degrees of freedom Σ̂∗ := Σ̂. The basis
ΦK̂ := {ϕ̂i ∈ UK̂ , i ∈ N9} for UK̂ is determined by (2.4) and (7.2). The test space

is chosen as VT̂ ∗ := spanΨT̂ ∗ , where its basis ΨT̂ ∗ consists of ψ̂i = χi, i ∈ N3, and

ψ̂i = ϕ̂i, i ∈ N9 \ N3.

Example 7.3 (Type one hybrid hermite cubic FVM). We choose the functional
nodes P1 := (0, 0), P2 := (1, 0), P3 := (0, 1), P4 := (1/3, 1/3) and the set of degrees

of freedom Σ̂ :=
{
ζ̂i : i ∈ N10

}
, where ζ̂i(w) := w(Pi), i ∈ N4, and

ζ̂5(w) := ∇w(P1) · (1, 0), ζ̂6(w) := ∇w(P1) · (0, 1), ζ̂7(w) := ∇w(P2) · (−1, 1),

ζ̂8(w) := ∇w(P2) · (−1, 0), ζ̂9(w) := ∇w(P3) · (0,−1), ζ̂10(w) := ∇w(P3) · (1,−1).

The trial space UK̂ is chosen as the complete cubic element space ℘3(K̂).

We choose the dual nodes Q1 = (1/2, 1/2), Q2 = (0, 1/2) and Q3 = (1/2, 0) and

define the dual partition T̂ ∗ := {K̂∗
l : l ∈ N4} of K̂ by setting

K̂∗
1 := Θ {P1, Q3, Q2} , K̂∗

2 := Θ {P2, Q1, Q3} ,
K̂∗

3 := Θ {P3, Q2, Q1} , K̂∗
4 := Θ {Q1, Q2, Q3} .

We choose the set of degrees of freedom Σ̂∗ := Σ̂, which uniquely determines the
basis ΦK̂ := {ϕ̂i ∈ ℘3(K̂) : i ∈ N10} for UK̂ by (2.4). The test space is chosen

as VT̂ ∗ := span ΨT̂ ∗ , where its basis ΨT̂ ∗ consists of ψ̂i := χi, i ∈ N4, and ψ̂i :=
ϕ̂i, i ∈ N10 \ N4.

Example 7.4 (Type two hybrid hermite cubic FVM). The FE triple element

(K̂, Σ̂,UK̂) for this example is the same as that for Example 7.3, with a different

choice of the test space. Specifically, the dual partition T̂ ∗ := {K̂∗
l : l ∈ N3} of
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Figure 5. The admissible regions GH for the hybrid FVMs

this example is the same as that in Example 7.1. The set of degrees of freedom

Σ̂∗ := {η̂l, l ∈ N10}, where η̂l := ζ̂l, l ∈ N10 and l �= 4, and η̂4 is defined as

(7.1). By (2.4), Σ̂∗ uniquely determines a basis ΦK̂ := {ϕ̂i ∈ ℘3(K̂), i ∈ N10} for
UK̂ . The test space is chosen as VT̂ ∗ := spanΨT̂ ∗ , where its basis ΨT̂ ∗ consists of

ψ̂i := χi, i ∈ N3, and ψ̂i := ϕ̂i, i ∈ N10 \ N3.

We now examine the uniform local-ellipticity conditions for these FVMs. It is
straightforward to verify that the hybrid FVMs described above all satisfy Hy-
potheses 1-6. For convenience of representation, we shall use HLC, HZ, HHC1 and
HHC2 to denote the FVMs described in Examples 7.1-7.4, respectively. The ad-
missible regions GH for the four hybrid FVMs are shown in Figure 5, where the
curves labeled as “HLC”, “HZ”, “HHC1” and “HHC2” mark the lower boundary
ΓH of GH for the corresponding hybrid FVMs. In this figure, additional curves are
included for better understanding. The curve labeled with “Valid Triangle” is the
lower boundary Γ of G. We compute the four types of sufficient conditions for these
FVMs by using Theorems 6.4-6.6 and 6.10 with N = 100. We report the results in
the following proposition.

Proposition 7.5. For the hybrid FVMs constructed in Examples 7.1-7.4, if for
each triangular element in the triangulation its smallest angle is greater than the
value listed in the fist line of Table 1, or its largest angle is not greater than 90◦

and its smallest angle is greater than the value listed in the second line of Table 1,
or its largest angle is not greater than 90◦ and the ratio of its shortest edge length
versus its second shortest edge length is greater than the value listed in the third
line of Table 1, or its largest angle is less than the value in the last line of Table 1,
then the family of the corresponding bilinear forms is uniformly local-elliptic.

Table 1. Types I-IV sufficient conditions for the hybrid FVMs

HLC HZ HHC1 HHC2
Type I 20.96◦ 37.70◦ 42.93◦ 37.70◦

(≈ 0.1164π) (≈ 0.20994π) (≈ 0.2385π) (≈ 0.20944π)
Type II 15.39◦ 30.73◦ 37.75◦ 30.97◦

(≈ 0.0855π) (≈ 0.1707π) (≈ 0.2097π) (≈ 0.1721π)
Type III 0.2756 0.5964 0.7749 0.6005
Type IV 82.31◦ 75.02◦ 72.29◦ 74.88◦

(≈ 0.4573π) (≈ 0.4168π) (≈ 0.4016π) (≈ 0.4160π)
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Figure 6. A triangulation of the region Ω̄

8. Numerical examples

In this section, we present numerical examples to verify the theoretical conver-
gence order of two new FVM schemes HLC and HHC2 constructed in this paper.
All the experiments presented here are performed on a personal computer with 2.66
GHz CPU and 4 Gb RAM. Moreover, Matlab 7.7 is used as the testing platform
and the direct algorithm is used to solve the resulting linear systems.

We consider solving the Poisson equation (2.1) with f(x, y) := 2(x2+y2−x−y)
and Ω := (0, 1) × (0, 1). The exact solution of the boundary value problem is
given by u(x, y) = −x(x − 1)y(y − 1), (x, y) ∈ Ω̄. We subdivide the region Ω̄ to
M × N equal rectangles. The triangle mesh of Ω̄ is then obtained by connecting
the diagonal lines of the resulting rectangles, as illustrated by Figure 6 with M = 2
and N = 4. Without loss of generality, we assume that M ≤ N . By θmin we denote
the minimum angle of all the triangles in the triangulation. Clearly, we have that
tan θmin = M/N. We form the dual partition by using the barycenter dual partition
which is obtained by connecting the barycenter and the midpoints of each edge of
the triangles in the triangulation.

In the following examples, we use n to denote the number of the unknowns in the
corresponding linear system of FVMs and ET := |u− uT |1 to denote the H1-error
between the exact solution u of the boundary value problem and the approximate
solution uT .

Table 2. The numerical results of HLC

θmin = 45◦ θmin ≈ 18.43◦ θmin ≈ 1.43◦

(M,N) n ET C.O. (M,N) n ET C.O. (M,N) n ET C.O.
(2, 2) 49 4.90e-3 (1, 3) 40 1.00e-2
(4, 4) 169 5.94e-4 3.04 (2, 6) 133 1.21e-3 3.05 (1, 40) 484 7.15e-4
(8, 8) 625 7.29e-5 3.02 (4, 12) 481 1.46e-4 3.04 (2, 80) 1687 1.60e-4 2.16

(16, 16) 2401 9.01e-6 3.02 (8, 24) 1825 1.80e-5 3.02 (4, 160) 6253 1.55e-5 3.37
(32, 32) 9409 1.12e-6 3.01 (16, 48) 7105 2.23e-6 3.01 (8, 320) 24025 1.73e-6 3.16
(64, 64) 37249 1.50e-7 2.90 (32, 96) 28033 2.84e-7 2.97 (16, 640) 94129 2.23e-6 2.01

Example 8.1 (Numerical results for HLC). In this example, we use the HLC
described in Example 7.1 to solve the boundary value problem. In Table 2, we
report the computed H1-errors ET and the convergence orders (C.O.) of the HLC
with different triangulations having different minimum angles. When θmin = 45◦ or
θmin ≈ 18.43◦, which satisfy the Type II sufficient condition listed in Proposition
7.5 and Theorem 4.2, the theoretical convergence order of ET is 3. This is confirmed
by the numerical results. We also list the numerical results for M : N = 1 : 40
(θmin ≈ 1.43◦), in which case the parameter (r1,K , r2,K) = (1600/1601, 1/1601) of
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the triangle K in the triangulation is not in the admissible region GH of the HLC.
Therefore, the uniform local-ellipticity of the family of the discrete bilinear forms
is not guaranteed to be satisfied. The numerical results show that the computed
convergence order of ET of the HLC oscillates around 3.

Example 8.2 (Numerical results for HHC2). In this example, we use the HHC2
described in Example 7.4 to solve the boundary value problem. Numerical results of
this example are reported in Table 3. It follows from the Type II sufficient condition
listed in Proposition 7.5 and Theorem 4.2 that when θmin = 45◦ or θmin ≈ 33.69◦,
the theoretical convergence order of ET is 3. This is confirmed by the numerical
results. We also find that when M : N = 1 : 20 (θmin ≈ 2.86◦), even though in this
case the uniform local-ellipticity of the family of the discrete bilinear forms is not
guaranteed to be satisfied, the computed convergence order for this case is still the
optimal order 3. This result demonstrates that the uniform local-ellipticity of the
family of the discrete bilinear forms is only sufficient but not necessary to ensure
the optimal error estimate of the FVMs.

Table 3. The numerical results of HHC2

θmin = 45◦ θmin ≈ 33.69◦ θmin ≈ 2.86◦

(M,N) n ET C.O. (M,N) n ET C.O. (M,N) n ET C.O.
(2, 2) 35 1.41e-2 (2, 3) 48 8.02e-3
(4, 4) 107 1.79e-3 2.98 (4, 6) 153 1.02e-3 2.97 (1, 20) 166 4.33e-3
(8, 8) 371 2.30e-4 2.96 (8, 12) 543 1.31e-4 2.96 (2, 40) 529 5.36e-4 3.01

(16, 16) 1379 2.93e-5 2.97 (16, 24) 2043 1.67e-5 2.98 (4, 80) 1855 6.72e-5 2.99
(32, 32) 5315 3.70e-6 2.99 (32, 48) 7923 2.10e-6 2.99 (8, 160) 6907 8.43e-6 3.00
(64, 64) 20867 4.67e-7 2.98 (64, 96) 31203 2.71e-7 2.95 (16, 320) 26611 1.07e-6 2.98
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