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A CONSTRUCTION OF K-CONTACT MANIFOLDS BY A FIBER JOIN
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Abstract. In this paper we introduce a process of making a fiber join of regular X -
contact manifolds and then construct some explicit examples of K -contact flows which gener-
ate contact transformations of a torus. We also discuss the equivalence of these examples.

1. Imtroduction. A contact flow ¢, is a flow which is generated by the Reeb vector
field of a contact manifold (M, «). It preserves the contact form « and the contact plane field
kera. A contact flow ¢; is called a K-contact flow if there exists a metric g on M such that ¢,
is an isometry. In this case the triple (M, «, g) is called a K-contact manifold ({2, 3]).

Suppose we are given a K -contact manifold (M, «, g). If M is compact, the closure of
a K-contact flow {¢; |t € R} in the isometry group of (M, g) makes a compact connected
abelian Lie group, hence isomorphic to T* for some integer k. Clearly this action of the
torus T also preserves « and g. Thus a compact K -contact manifold (M, «, g) has a T*-
action which preserves both o and g. We will see that this property of T*-action on a contact
manifold characterizes the “K-contactness” and k satisfies 1 < k < n+ 1 whendimM =
2n + 1 (see Proposition 2.1). We call (M, a, g) with this T*_action a K -contact manifold of
rank k. A typical class of examples of K-contact manifolds of rank 1 is a family of regular
K -contact manifolds (M, «, g). A regular contact manifold (M, o) consists of a pair of a
principal $'-bundle M over a symplectic manifold (W, w) and a connection one-form a. A
metric g is given by ¢ = 7*gw @ (¢ ® &), where gw is a Riemannian metric compatible with
o and 7 is the bundle projection M — W (see Example 2.4).

In this paper we will present a method of constructing a K-contact manifold of rank
k > 2 out of K-contact manifolds of rank 1 by making use of join construction in topology.

Let (Mo, ag, go), ... , (Mpy, &y, g) be regular K-contact manifolds and L ; an associated
complex line bundle of M; — W foreach j (j = 0,1, ... ,n). From these we construct a
K -contact manifold (Mo %y -+ % Mp, By, g») of rank n+1. Here Mo * ¢ - - - % ¢ M), is the unit
sphere bundle S(Lo&®- - -® L,) and B, is a contact form with a parameter A = (Ag, ... , A,) €
R"*!. We call the resulted K -contact manifold a fiber join of (Mg, ag, go). - .. , (My, tn, gn).

Applying a fiber join construction to three dimensional regular K -contact manifolds, we
obtain infinitely many distinct K -contact structures on Xy x §2"+! and X x5! (£, is a
closed Riemannian surface of genus g) which are not T"*!-equivariant. Namely, we obtain
the following:
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THEOREM 4.5. For n > 1 there exist infinitely many different K-contact equivalence
classes of K-contact flows on Xg x §*"+! and £ g% 2 +1.

The author would like to express his gratitude to Professor Tadayoshi Mizutani and Pro-
fessor Yoshihiko Mitsumatsu for their continuous encouragement and helpful discussions.

2. The torus action on K -contact manifold. A contact form on a (2n + 1)-dimen-
sional smooth manifold M is a one-form « such that ¢ A (da)” is everywhere nonzero. The
pair (M, o) is called a contact manifold. A contact form « determines a unique vector field Z
on M such thata(Z) = 1,da(Z, X) = 0 for any vector field X on M. We call Z and the flow
¢ generated by it the Reeb vector field and the contact flow, respectively. A 2n-dimensional
distribution D on M defined by D := ker« is called a conract plane field. From the definition
of o and D, it is obvious the two-form da is non-degenerate on D. Namely, do induces
a symplectic structure on D. In this situation, it is well-known that there exists a positive
definite metric gr and an almost complex structure J on D such that gr (X, Y) = da(X, JY),
gr(JX,JY) = gr(X,Y) forall X, Y € I'(D) (the set of smooth sections of a vector bundle
D) (see [1]). The pair (g7, J) is said to be compatible with da. We can extend gr on D to
whole T'M by requiring gr (Z, X) = 0 for any vector field X on M. Thus we get a Riemannian
metric g := gr ® (¢ ® «) on M, which is called an adapted metric to the contact form a.
Note that an adapted metric g is not unique, depending on the choice gr.

Now we define a K -contact manifold.

DEFINITION. Let (M, «) be a contact manifold with the Reeb vector field Z. If there
exists an adapted metric g to o on M such that Z is a Killing vector field with respect to g,
that is,

2.1 Lzg=0,

then we call (M, «, g) a K-contact manifold. Here Lz is the Lie differentiation in direction of
Z. '

We call o and g of a K -contact manifold (M, «, g) the K-contact form and the K-contact
metric, respectively. We also call the flow ¢; generated by the Reeb vector field Z of the
K -contact form « the K-contact flow of (M, «, g).

In general, a contact flow ¢, preserves the contact form «. This is because we have
Lza = 0 from the definition of the Reeb vector field Z. It follows that a K -contact manifold
(M, «, g) has an R-action induced by {¢; | ¢ € R} which preserves both « and g¢.

The following proposition characterizes a K -contact manifold.

PROPOSITION 2.1. Let (M, a) be a 2n+ 1)-dimensional contact manifold and ¢, the
contact flow. If we assume that M is compact, then the following statements are equivalent.

(1) There exists an adapted metric g to « such that (M, «, g) is a K-contact manifold.

(2) There exist a torus T* such that 1 < dim(T*) < n + 1, a smooth effective Tk
action {h, |u € T*} on M, and a homomorphism ¥ : R — T* with dense image such that
@1 = hy ).



K -CONTACT MANIFOLDS BY FIBER JOIN 435

PROOF. We will prove (1) = (2). Since M is compact, by Meyer-Steenrod theorem
(see [7]), the isometry group Isom(M, g) of (M, g) is a compact Lie group. It follows that the
closure of {¢; |t € R} in Isom(M, g) is a compact connected abelian Lie group, and hence is
isomorphic to a torus T* for some integer k.

We now prove k < n+ 1. Let I'(T' M) be the Lie algebra of the vector field on M and V
the Lie algebra determined by the image of the Lie algebra homomorphism Lie(T*) 5> £ —
d/dt It:O exp(t§) € I'(TM). Here exp : Lie(T*) — T* is the exponential map. Let Z be
the Reeb vector field of (M, «). We denote by RZ a trivial line bundle spanned by Z. By
the isomorphism TM = D @ RZ we have a unique decomposition X = X + a(X)Z for
X € V and X € I'(D). From the fact that «(X) is a T*-invariant function and [X, Y] = 0
forany X,Y € V, we see that [}_(, 17] = 0 for any X,Y € V. It follows that if we denote
by X1,..., X the fundamental vector fields of T*-action determined by a basis of the Lie
algebra Lie(T*), there is an open set U such that X1, ..., X determine a (k— 1)-dimensional
integrable distribution on U tangent to D. It is well-known that the maximal dimension of
integrable submanifolds of the contact distribution isn,sok — 1 <n and hence k <n + 1.

We will prove (2) = (1). From the fact that ¢ = « and the closure of {¢; |t € R}
is isomorphic to T*, we have h*a = « for all ¥ € T*. Namely, « is invariant under the
T*-action, and so is do. In this case we can also take a positive definite metric gr and an
almost complex structure J, which is compatible with the symplectic form da on D, to be
invariant under this 7*-action (see [1, 15]). Thus we have a metric ¢ = gr ® (¢ ® @) and it
is invariant under the action of T%. In particular, we have Lz g = 0, and hence (M, «a, g) isa
K -contact manifold. q.ed.

The property of T*-action of Proposition 2.1 characterizes the “K -contactness”. Namely,
we may consider a K-contact manifold as a manifold which has an action of the torus T*
containing the contact flow as a dense image, and hence the action of T* preserves both o and
g

DEFINITION. (M, «, g) is called a K-contact manifold of rank k if the closure of the
K -contact flow {¢; |t € R} in Isom(M, g) is isomorphic to a k-dimensional torus T*.

As a result of Proposition 2.1, we see that in the case of the contact flow on the compact
contact manifold (M, «) there is no difference between an isometric flow and a Riemannian
flow. Namely, we get the following:

COROLLARY 2.2 ([15]). If a contact flow on a compact manifold is a Riemannian
flow, then, (changing the transverse metric, if necessary), it is a K-contact flow.

PROOF. Let (M, o) be a compact contact manifold with the Reeb vector field Z. As-
sume that a contact flow ¢, of Z is a Riemannian flow, that is, there exists a transverse metric
gr to the contact flow ¢, (a positive definite metric on the contact plane field ker ) such that
Lzgr = 0. Note that gy needs not to be compatible with the symplectic form da. Then Z
is a Killing vector field with respect to a Riemannian metric § = gr ® (o« ® o). So ¢, is an
isometric flow. Since the closure of {¢, |t € R} in Isom(M, g) is isomorphic to a torus, ¢,
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satisfies the condition (2) in Proposition 2.1. Therefore there exists a K-contact metric g on
M, and hence ¢; is a K-contact flow. q.e.d.

We will give two typical classes of examples of K-contact manifolds. They are needed
for the construction in Section 3.

EXAMPLE 2.3 ((2n+ 1)-dimensional K -contact manifold of rank n+1). Let $?*t1 =

[z = @o.....20) € €™ XG_42;z; = 1} be a (2n + 1)-dimensional unit sphere in
complex (n+ 1)-space C"+1. We denote the polar coordinate of C"*! by (rg, 60, ... , 7, 6n).
For rationally independent positive constants Ag, ... , A,, we take
n n
(22) o =V=1/23 Aj@jdzj — Zjdzj) = Y Ajrid6;.
=0 =0

Then it is easily seen that ey is the contact form on §2*+! with the Reeb vector field
n

2.3) Xo=+=1)_ 1/xj(z;8/0z; — 2;8/3Z;) .
j=0

Let ¢} be the contact flow of X;, and

2.4) (VMo ..., YTy oz = (e Tz, . eV Tz,

- (20, - -

]

where (e*/:T’O, . ,e*/__l’") e 7M1 ¢ (C*)"t!, be the standard 7"t!-action on S2#*1.
Then we have

(2.5) G20, zn) = (VTP 7y V10,

Since Ag, ... , A, are rationally independent, the closure ¢} - z of the orbit (p,)‘ - z coincides
with the orbit 7! . z for any z € §2"*!. Thus, by Proposition 2.1, there exists an adapted
metric g, to «; such that (SZ"H, o, g) is a K-contact manifold of rank n + 1. Here g is
given by choosing a transverse metric g7 on ker o) and setting g, = g7 @ (ax ® ay).

We define a §!-action on §2*+1 by

V16 Vv —16 +/—16 +/—16
e¥™% - (20, - zn) = (e Nalsenn eV 70 7,)

21, - - 20, €

for e¥~19 ¢ §! C C* and positive integers g1, ... ,q,. Choose an integer p such that

p and each g; are relatively prime, and consider the action restricted to {ez” kv/=16/p | k =
0,1,....,p— 1} = Z/pZ of the above S!'-action. Then $2**1/(Z/pZ) is also a K -contact
manifold of rank n 4 1 with the K -contact form and the K -contact metric induced from §2"+1,

REMARK. (1) The choice of gr on ker«; is not unique. However, for example, we
can choose it to be the restriction of a Riemannian metric

n n
(2.6) 2 Aj(drj @drj +rido; ® d6;) <= V=1 " ajdz; ®d2,~)
j=0

=0

on C" to kera;,.
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(2) Take {ro,...,A,} sothat Ag, ..., A, form a k-dimensional vector space over Q.
Then there exists a subgroup T* of T"*! and a T*-action induced by (2.4) such that for
z € §2111 the closure of the orbit ¢; - z coincides with the orbit T* . z. Thus we obtain a
K -contact manifold (Sz”“, oy, g,) of rank k. In particular, if we take Ag = --- = A, = 1,
then we get the K -contact manifold of rank 1 such that a X -contact flow determines the Hopf
S!-fibration §**! — CP".

EXAMPLE 2.4 (K -contact manifold of rank 1). Let (W, ») be a symplectic manifold
whose symplectic two-form determines a de Rham cohomology class contained in the image
of H3(W; Z) - H*(W;R). Then there exists a principal $'-bundle 7 : M — W whose first
Chern class is equal to [w] € H 2(M; Z) and a connection one-form n on M with the curvature
form dn = w*w ([6]). Hence 7 is a contact form on M whose contact flow of arbitrary point
is a principal S!-orbit. It follows that by Proposition 2.1, there exists an adapted metric g to
such that (M, n, g) is a K-contact manifold of rank 1. Here gis givenby g = n*gw & (n®1n),
where gw is a Riemannian metric compatible with w on W. We call this K -contact manifold
a regular K -contact manifold and its contact flow a regular K -contact flow. We also call the
principal S L_fibration (M, n, 9) = (W, w) the Boothby-Wang fibration ([4]).

3. A fiber join of regular K-contact manifolds. In this section we will present a
method of construction of a K -contact manifold of rank n 4 1 out of (n 4 1)-pieces of regular
K -contact manifolds.

For j = 0,1,...,n, let (M}, n;, g;) be a 2m + 1)-dimensional regular K-contact
manifold, whose Boothby-Wang fibration p; : (M;, n;, g;) — (W, w;) has the same base
space W. Let L; be the total space of the associated complex line bundle of p; : M; — W.
Then L; carries a Hermitian metric 4 induced by a canonical Hermitian metric on C. We
denote the norm on L ; determined by 4 and its natural lift to the Whitney sum Lo @ ---® L,
by the same letter r; : L; — R. In this situation we define a fiber join Mo % --- xf My, of
My, ..., M, to be the unit sphere bundle

n
3.1 S(Lo®~-®L,,)={veLoéB---EBLn Z’f(”)2=1]
j=0
of Lo®---®L,.
REMARK. In the above construction, we are actually taking the join of the fibers of
My, ... , My over each point of W. Recall than n + 1 times join §! % - .- % §1 = §2+1,

We will show that on Mg * ¢ - - - xy M), there exist a K -contact form and its Reeb vector
field, which are naturally induced from those of M;’s.

For this, we denote a polar coordinate and a real coordinate of C by (7, ;) and (x;, y;),
respectively. We also denote the Reeb vector field of n; and its natural lift to M; x C by the
same letter X ;. Similarly, we denote the natural lifts of the differential forms or vector fields
on M; and C (such as ;) to M; x C by the same letter. Let L(} be the complement of the zero
section of L ;. Then we have the following:
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LEMMA 3.1. (1) Foreachj, the one-formn; —d6; on M; x (C—{0}) and the vector
field Zj =1/2{X;—(x;8/9y; —y;j0/3x;)} on Mj x C are projectable. Namely, there exista
smooth one-form B on L(} and a smooth vector field Z ; on L ; such that pr}.k (Bj) =n; —db;
and (prj)*(Zj) = Z; hold, where prj : M; x C — L; is the natural projection. Also B;
and Z; satisfy the following:

(3.2) ﬂj(Zj):l, ﬂj(3/3rj)=0, drj(Zj)=0, d,szn;f(a)j),

where t; . Lj — W is the projection.

(2) Foreach}, rjz- Bj and dB; extend to the S Linvariant smooth one-form and two-form
on Lj, respectively. The restriction of 2rjdrj A Bj to the fibers of L is a nowhere zero
two-form.

3) Pu

3.3) Hi ={(XeTL;|ixQrjdrjnB;)=0}, V;={XeTLj|ixdB;j=0}.
Then we have a direct sum decomposition TL; = H; ® Vj and Hj = n*TW.

PrROOF. First we will prove (1) and (2). Let S 1 act in the standard fashion on C. We
consider the diagonal S'-action on M ;i x C. Then the one-form n; — df; is invariant by
this S'-action on M; x C. We also have (n; — d6;)(X; + 3/06;) = 0, where 0/36; :=
x;0/8y; — y;98/3x;. Namely, n; — df; is a basic form. Hence there exists a one-form f;
on L(]). such that pr}.k (Bj) = nj — d6;. Moreover rjz.ﬂ ; is extended to whole L ; as a smooth
one-form, since sz.de ; is extended to whole M; x C.

Since we have Lix;+s /39].)(2 ;) =0o0n M x C, we see that there exists a smooth vector
field Z; on L; such that d(prj)(Zj(x)) =Zj(prj(x)) forallx € M; x C.

Next we verify the equations (3.2). The first three equations are obtained by direct
calculations. Namely, 8;(Z;) = pr;‘(,Bj)(Zj) = (n; — de)(Zj) = 1, gj@/or;) =
(nj —dB;)(@/or;) = 0,dr;j(Z;) = dr'j(Zj) = 0. The equations df; = n;‘(a)j) follows
fromdn; = ﬁ;wj,where pjiiMjxC—W.

By using the equations (3.2) and the Cartan formula Ly = 1xd +dtx, we get LZ]. (r?ﬁj)
= 0. Namely, rjgﬂ ;7 is a one-form on L; which is invariant by the § Laction determined by
Z;.

’ The two-form pr}(2rjdr; A Bj) = 2r;dr; Amj — 2rjdrj A df; is nowhere zero on the
fibers of M; x C — W. Hence 2r;dr; A Bj is also nowhere zero on the fibers of L; — W.
We will prove (3). Let H i \7]- be subbundles of T(M; x C) defined by

Hi:={X e T(M; xC)|n;(X) = 0,1x(2F;d7; Adb;) = 0},
Vi:i={X e T(M; x C) | ixdn; = 0}.

Then we have the direct sum decomposition T (M; x C) = H ;@ Vj. By using equations
priQrjdrj A Bj) = 2r;dij A nj — 2F;drj A df; and dnj = pr;fd,Bj, this direct sum
decomposition gives rise to the direct sum decomposition TL; = H; @ V;. Here H; = {X €
TLj|ltxQrjdrj ABj)) =0}, V; ={X eTL;|i1xdB; =0}. g.e.d.
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We extend each vector field Z; on L; to the one on My *5 --- % f My as follows, and
denote it by the same letter. By using the canonical projection P; : Lo x -+ x L, — L; and
the inclusionmap [ : TLj — TLg x --+- x T Ly, defined by I (w;) = (0, ... ,wj,...,0)for
wj € TLj,wehave IoZ;oP; : Lox---x Ly — TLgx---xTL,. Namely, the vector field
Z; is extended to the one on Lg x - - - X Ly. Itis a vector field along the fiber of Lo x - - - x L,
and preserves the norm Z;’.=O rjz.. It follows that its restriction to Mg * 7 - - - %y M}, is tangent
to Mo x5 --- %y M,, and hence Z; is extended to the vector field on Mg % - - - %5 My.

We consider the pull back of the one-form r}ﬂ ; on L; by the composition map Mg *y
cookf My — Lo®---® L, — Lj, and denote it by the same letter.

THEOREM 3.2. For j = 0,1,...,n, let (M;,n;, g;) be a 2m + 1)-dimensional
regular K-contact manifold with the Boothby-Wang fibration (M, n;, g;) — (W, w;). Let
7 i Moy - r My, — W be the projection. IfZ';=0 Aj r?n’*a)j is non-degenerate on t*TW
for some non-zero constants Ay, . .. , Ay, then we have

(1) the fiber join My %y --- %5 My of My, ... , My is a 2m + 2n + 1)-dimensional
K-contact manifold with the K-contact form

n
(3.4) Bui=) AjriB;.
j=0
Its Reeb vector field and a K-contact metric are given by
n
(3.5) Zi=)_1AZj, a=aoBeR),
j=0

where gr is a positive definite metric on ket B,

(2) If we choose {Ag, ..., p} so that Ly, ... , A, form a k-dimensional vector space
over Q, (Mo *y --- x5 My, By, ga) is a K-contact manifold of rank k. In particular, if
Ao, ... , Ay are rationally independent, then (Myx 5 - - -xf My, B, g5) is a K-contact manifold
of rank n + 1. &

PROOF. First we prove that §, is a contact form on Mg %7 - -- ¢ M,. We put R? =
Z'}zo rjg. Since dB; = m*wj, by a direct calculation, we have

n m
2RAR A By A (dﬂk)m+" =g .AnR2 2rodro ABo A A2rpdry A B A (Z )\jrjzn*a)j>
=0

onLo®---®L,.

By the assumption, Ao -+ An D j_gA; rjz.n*w ; is non-degenerate on 7 *T W and clearly
R? # 0 on LY := Lo@®--- ® L, — {zero-section}. From this together with Lemma 3.1, we
see that 2RAR A B A (dB:)™" # 0 on LY. Tt follows that we have 8y A (dBy)™H" # 0
on Mo %y -+ x5 M,, that is, B, is a contact form on Mg *f --- *f My. Its Reeb vector
field is given by Z; = Z'j’.zo 1/x;Z;. This is because it holds that 8;(Z;) = R? =1and
tz,dBy = Z;=O2rjdrj =0onMyxys---*5 M,.
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We will show the K -contactness of (M - - -x y My, ;). Using the one-parameter group
@] of Z;, we define a T"+!-action on Mg %5 - - - x5 My by

(3.6) (e, ... eVTIY vy, .y ) = (BQ00s -, B vn),

where (e‘/__I’O,... ,e‘/:—”") eT" landv = (vg, ..., vn) € Moxg---%f My CLo® - @
Ly. Let ¥} be the contact flow of Z;. Then we have

(3.7) Vi 0 = (D130 00: -+ » B2, V) -
Constants Ao, . . . , A, form a k-dimensional vector space over Q. Thus there exists a subgroup
T* of T"*! and a T*-action induce by (3.6) such that, for any v = (vo, ... ,vn) € Mg *f

-+ «% ¢ Mp, the closure of the orbit ¥} - v coincides with the orbit T*.v. Hence, by Proposition
2.1, there exists an adapted metric g; to o, such that (Mo * ¢ - -- x5 My, Bx, g2) is a K-contact
manifold of rank k. Here g, is given by choosing gr on ker 8, and setting gy = gr (8. ®B5).

q.e.d.

Indeed, there exist sympletic forms w;, j = 0,1,...,n, satisfying the condition of
Theorem 3.2 that Z;l':o A jr]zn'*a) ; is non-degenerate on w*T W. For example, let (W, @) be
a symplectic manifold and A}, c;, j = 0,1,...,n, be constants such that A jc; is positive
for all j. Then taking w;, j = 0,1, ..., n, defined by w; = c;w, these satisfy the condition
above.

REMARK. (1) As anexample of gr on ker 8;, we have the restiction of

n n
3.8 ZZAj(drj®drj+rj2-ﬁj®ﬂj)+2)»jr]2n*gw,wj
j=0 j=0

to ker B, Here gw ,,; is a Riemannian metric compatible with w; on W.

(2) For positive integers g1, ... , g, and eV=10 ¢ gl C C*, we define the S!-action on
Mo x5 ---x¢ My, by
(3.9) eﬂe * (UO, Ulyonny vn) - (¢gv0’ ¢;19v17 esry ¢;’n9U’l) )

where (vg, ... ,v,) € Mo *y -+ %5 My,

Let p be a positive integer such that p and g; are relatively prime for all j. We consider
the action restricted to {e2™%Y=1/7 | k = 0,1,..., p — 1} = Z/pZ of the §'-action defined
by (3.9). Then its quotient space Mg * ¢ - - - x5 My /(Z/pZ) is also a K-contact manifold of
rank n+ 1 with K -contact form and K -contact metric induced from those on Mg - - -x ¢ M.

(3) The unit sphere bundle S(L;) of L; is a submanifold of Mg % --- x5y M,, which
is diffeomorphic to M;. As a metric gr on ker B,, take the one given by (3.8). Then S(L ;)
has a K-contact form A 8; and a K -contact metric A jg; which are given by the restriction of
those on Mg *y --- %5y My to S(L;). In this case (S(Lj), A;Bj, A;g;) is called a K-contact
submanifold of (Mo *f -+ %5 My, B, g1).

DEFINITION. A K-contact manifold (Mp %5 - -- %5 My, By, g3) is called the fiber join
of regular K-contact manifolds (My, no, 9), ... , (My, 1, gn).
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Using the construction in Theorem 3.2, we obtain K -contact manifolds (M, «, g) of rank
n + 1 with no effective 77+2-action which extends the R-action induced by the K-contact
flow and preserves o and g.

PROPOSITION 3.3. Let (W, w) be a symplectic manifold with no effective Hamiltonian
Sl-action. Take symplectic forms w i = cjw (cj > 0) in the construction of Theorem 3.2.
Then (Mo %1 - - % My, By, g) has no effective T"** action which extends the T"'-action
defined by (3.6) and preserves 8, and gj.

REMARK. An example of symplectic manifold which satisfies the condition above is
negatively curved closed Kéhler manifold. It has no torus action at all ([11]). It follows that
starting from this manifold, we can actually construct K -contact manifolds as in Proposition
3.3.

PROOF. Suppose that By is invariant under some effective 7" +2-action on Mo * ks
M,, which extends the T"*!-action defined by (3.6). Let (Mo*y-- %5 My, xRy, d(tB,)) be the
symplectization of (Mg ¢ - - - xy My, B83), where R, is the positive real line with coordinate
t. We extend the T"*2-action on Mg ¢ - - -y M, to the one on Mg * 5 - - - M, x R, such
that it acts trivially on R . Then this T"+2-action is Hamiltonian. Its moment map u is given
by

HiMyxg-xp My x R, € x > —t(Brx(Zox), .-+ Bax (Znyx), Brix(Yx)) € Rn+2,

where Y is the fundamental vector field determined by the action of the last factor S! of
T2 = T+l % §'. Since u is constant on any T"*2-orbit ([1, Proposition 3.5.6]), the
compositionmap it ;= proj: Myo*s-- %y My xRy — R"t1 is also constant on it. Here
pr is the projection to the first n + 1 factor. Thus vector fields Zy, ..., Z,, Y are tangent
to any regular level 2~ 1(€) of ji, and hence i~ (£) has an effective 7"+2-action. Choosing
& = —(Ag, ..., Ap) as aregular value of [, alE)isa principal T"*!-bundle over W with
an effective 7" +2-action. It follows that the orbit space 2! (&)/T"*! is diffeomorphic to W
and that it is a symplectic manifold (W, Yicgrjw ;) with an effective Hamiltonian S!-action.
From Y7 _ A jw; = (Xj_q }jcj), we see that the symplectic manifold (W, w) also has an
effective Hamiltonian §'-action. This contradicts the assumption. g-e.d.

4. The equivalence of K-contact manifolds. In this section we will study the fol-
lowing two equivalence classes among the K-contact flows of the compact connected K-
contact manifolds of rank k. Let (M, «1, g1), (M2, a2, ¢2) be two such manifolds with Reeb
vector fields Z1, Z». Let got(l), <p,(2) denote their K -contact flows, respectively.

DEFINITION. (a) Two K-contact flows (pt(l), (pt(z) are said to be strictly equivalent if

there exists a diffeomorphism @ : M} — M, such that @*a2 = co; for some positive con-
stant ¢. (b) Two K-contact flows gofl), <p,(2) are said to be K-contact equivalent if there exists
a Tk-equivalent contact diffeomorphism ® between (M1, a1, g1) and (3>, a3, g2). Here a
contact diffeomorphism implies that @*ay = fa; for some everywhere nonzero function f

on M.
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If (pt(l), (pt(z) are strictly equivalent, we have d® o Zj(x) = cZj o @(x), and hence

Do (pt(l) x)= gog) o @(x) for all x in M. Namely, after changing the parameter ¢ of %(2) into
ct, there exists an R-equivariant diffeomorphism @ on M with respect to R-actions induced
by <p,(1), (pg). From the definition, it is obvious if two K -contact flows are strictly equivalent,
they are K-contact equivalent. The following two propositions show that the coverse is not

always true.
PROPOSITION 4.1. For any rationally independent read constants A = (Ao, . . . , An)
and & = (Ao, ..., An), the K-contact flows ¢}, ¢} defined by (2.5) on S*"*! are K-contact

equivalent. Moreover, they are strictly equivalent if and only if A coincides with ch as a set
Jor some positive constant c.

PROOF. First we will prove that ¢}, <p,X are K -contact equivalent for any A, A. Consider
a diffeomorphism @, ; : § 2+l 5 2141 defined by

n 172
@, (20, - 1 20) = (2\0/5»0)1/2/ (Z(lj/ij)zj'fj) AT
@.1) J=0

. 1/2
(n/dn)'7? / (Z(Aj/ij)zﬁj) Zn
j=0

Then @, 5 is a T"*!-equivariant diffeomorphism and (p;/;"‘i = (Z';:O(Xj/ij)Zij)_la)“

Hence ¢}, go,;‘ are K -contact equivariant.

We will prove the second statement. Assume that ¢* and (p,j‘ are strictly equivalent.
Namely, there exists a diffeomorphism @ such that @*a; = ca; for some positive constant
c. Then & is a R-equivariant diffeomorphism with respect to R-actions induced by ¢?, and
go,i. It follows that the set of isotropy groups (Ao/c)Z, ..., (Ay/c)Z of (pz‘t coincides with
that of AoZ, ... , AnZ of go,’_\, where uZ = {2mpuk |k € Z}. Hence A coincides with cA as
a set. Conversely, assume that A coincides with c)A as a set for some positive constant c;

R0y .- s An) = c(ig(o), .. ,io(n)), where o denote a permutation of {0, 1,...,n}. Con-
sider a diffeomorphism @ : S+ — §2+1 defined by @ (20, ... » 2n) = (2o () - - - » Zo(n))-
Then we have ®*a; = ca;. Hence ¢}, ¢} are strictly equivalent. ge.d.

A similar result holds for the contact flows of (3.7) in Section 3.

PROPOSITION 4.2. For any rationally independent read constants A = (Ag, ... , Ap)
and A = (io, cee, X,,), the K-contact flows 1//,’\, 1//,;‘ defined by (3.7) on Mo ¢ --- x¢ M, are
K-contact equivalent. Moreover, they are strictly equivalent if and only if A coincides with ch.
as a set for some positive constant c.

PROOF. We only show that y/}!, 1/1,7\ are K -contact equivalent for any A, A. (The second
statement is proved by an argument similar to that in Proposition 4.1.)
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We define the bundle automorphism ¥, /i of Lo®---® L, by

n 1/2
¥ 5o, ..., vp) = ()»0/10)1/2/ (Z(Aj/ij)rj(vj)z) vo, ...,
=0

4.2)
n 1/2
On/ANY? / (Z(x,-/mr,-(vj)z) Un
j=0
for (vg,...,vs) € Lo ® --- & Ly. Then this preserves the norm Z’]’.zo rjz.. Thus we have
its restriction to Mg %7 - -+ ¢ M,. Itis a T"*!-equivariant diffeomorphism and v P B; =
(Xhoohj/a j)rjz.)—1 B... Therefore y* and v are K -contact equivalent. g.e.d.

In [13], Takahashi showed that there exists a deformation of the K-contact flow on a
manifold as follows. Let (M, «, g) be a K-contact manifold with Reeb vector field Z. Let V
be a vector field on M which satisfies the following three conditions:

(4.3) Lyg=0, [V,Z]1=0, 1+a(V)>0.
Consider a one-form & and a Riemannian metric ¢ defined by
4.4 d=0+a(V)la, j=0+a(V) 'gro@ea),

where gr is the restriction of g to ker . Then we have following:
THEOREM 4.3 ([13]). (M, «, @) is a K-contact manifold with Reeb vector field Z+V .

K -contact flows (p,)‘, ¥} in Propositions 4.1 and 4.2 are both strictly equivalent to the
ones obtained by the above deformation out of the K -contact flow of the K-contact manifold
of rank 1, which we shall see as follows.

The K-contact flow <p,)‘ of (S2"+1 ,ay, gp) is strictly equivalent to the one
obtained by deforming the Reeb vector field Z: = +/—137_4(z;0/0z; — 7;0/3Z;) of
(5?1 ag, go), where & = (1,...,1). Indeed, for p; satisfying 1 + u; = A;, take V =
«/—_IZ;;O wj(z;0/9z; — z;0/dz;) and consider &, and g, defined by (4.3). Then we have
@ = (1+ Z;zo uijZj)"las and ®}a, = a,, where @; is a diffeomorphism defined by
4.1).

In the same way, the K -contact flow 1//,’\ of (Mo*y---%5 My, By, ga) is strictly equivalent
to the one obtained by deforming the Reeb vector field Z, = Z?:o Zjof (Mg *f .- %y
My, Be, g), where € = (1, ..., 1). In this case we take V = Z’;:O wjiZj, where pj is the
same as the above one.

In general, we apply the deformation in Theorem 4.3 for the following situation. Let
(M, @, g) be a K-contact manifold of rank 1. We assume that there exists the T*-action
preserving o and ¢ which satisfies the following three conditions; (1) k > 2, (2) T* contains
the K -contact flow of (M, &, g), and (3) there is no T**+!-action which extends this 7*-action.
Then the Reeb vector field Z takes the form Z = Z'J‘.;(l)(SM) j» where (§x) is the vector field
defined by (£u);(x) = d/dt |,_oexp(t§;) - x at x € M for a basis &, ... , &1 of Lie(T*).
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Let Ap, ..., Ax_1 be positive constants such that Ag, ..., Ax—; form a r-dimensional vector
space over Q, where 1 < r < k. We take a vector field V = Z'J‘.;(l) A j(&m); and consider &
and g defined by (4.3). Then we have the following:

COROLLARY 4.4. (M, @&, §) is a K-contact manifold of rank r with Reeb vector field
Z + V and is T*-equivariantly contact diffeomorphic to (M, «, g).

PROOF. The identity map gives a T*-equivariant diffeomorphism between (M, @, g)
and (M, &, g). g-e.d.

We will show that there exist K -contact flows which are not K -contact equivalent. They
are not obtained by the deformation in Corollary 4.4 out of the same K -contact flow of the
K -contact manifold of rank 1.

Let X, be the closed Riemann surface of genus g and Xyx S*"+! be the non-trivial
§2"+1_bundle over X g- Then our main theorem is the following:

THEOREM 4.5. Forn > 1 there exist infinitely many different K-contact equivalence
classes of K-contact flows on Xy x §2+1 and Eg>~<S2”+1.

We will first consider the K -contact equivalence for K -contact flows of K -contact man-
ifolds of rank n + 1 we constructed in Theorem 3.2.

Let (Mo, 10, 90), - .- » (Mo, n,,, gn) and (Mo, 10, §¢)> - - - , (M, Nn, §) be two sets of
regular K -contact manifolds whose Boothby-Wang fibrations have the same base space. Then
the images S(Lo), ... , S(Ln) of Mg, ... , M, in Moxs - - - ¢ M, and the images S(Lo), ...,
S(Ly) of My, ..., M, in My kpooookp M, are two sets of points whose isotropy groups are
isomorphic to 7" (see Remark (3) of Theorem 3.2). Hence if there exists a 7"+!-equivariant
diffeomorphism & between My ¢ - - - xy M, and Mo Koo kg Mn, S(Lo),...,S(L,) are
mapped to S(L ey S(L,) by @ such that (changing the order of suffix, if necessary),
S(L;) is T"*'-equivariantly diffeomorphic to S(L j) for all j. Thus M; is S!-equivariantly
diffeomorphic to M ; for all j. From the definition, it is obvious that K -contact flows on reg-
ular K-contact manifolds are K -contact equivalent if and only if they are isomorphic to each
other as principal S!-bundles. Therefore we have the following:

LEMMA 4.6. If K-contact flows of (Mg %y -+ x5 My, Bx, g1) and (Mo Kf oo kp
My, By, g,) are K-contact equivalent, then K-contact flows of (M;, nj, g;) and (M i» 7 §j)
are K-contact equivalent for all j (changing the order of suffix, if necessary).

Let (Mo, no, 90). ... , (My, 11n, gn), (n > 1), be three-dimensional regular K -contact
manifolds, whose Boothby-Wang fibration have the same closed Riemann surface X, of genus
g as base spaces. Then there are only two diffeomorphism classes of Mg x7 --- 5 My,
because Mg *¢ - x ¢ M, is the 52"+1_bundle over ¥ g and they are classified by the second
Stiefel-Whitney class of the bundle (see [8], Proposition 1.12). More precisely, we have the
following:

PROPOSITION 4.7. Let My, ..., My be as above. Then the fiber join My xf ok p My
is diffeomorphic to g x §¥+1 if 3i—owj is even class, and to Zx S+l if Yi—owjis
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odd class. Here XyxS?"*1 is the non-trivial $*"+'-bundle over Xg and wj is the second
Stiefel-Whitney class associated with M ;.

PROOF OF THEOREM 4.5. Since H 2(Zg; Z) = Z, there exist infinitely many different
isomorphism classes of principal S!-bundles over X 4. From this result together with Lemma
4.6 and Proposition 4.7, we obtain Theorem 4.5. g.ed.

Finally, we discuss some related problems.

Let ¢, be a non-singular flow generated by a vector field Z on a manifold M. Let RZ
be the trivial line bundle spanned by Z and D the smooth codimension one distribution on
M transverse to RZ. Then ¢ is said to be rransversely symplectic Riemannian flow if there
exist a symplectic structure « and a positive definite metric g7 on D such that Lzw = 0,
Lzgr = 0. From the definition, it is obvious that a K-contact flow of a K -contact manifold
(M, «, g) is such a flow. In this case, D is a contact plane field ker ¢ and a symplectic structure
on it is given by da. In [10], Molino suggested the following problem:

PROBLEM 1. Classify the transversely symplectic Reimannian flows on closed con-
nected 5-manifolds.

The case of n = 1 in Theorem 4.5 gives examples of such flows. Further examples are
given by introducing a surgery along a closed K -contact flow in [16].
We have the following problems related to Theorem 4.4.

PROBLEM 2. Are there different K-contact flows on a sphere bundle over the sym-
plectic manifold W such that dim W > 4?7

The author does not know whether there exists a symplectic manifold W such that the
isomorphism classes of the sphere bundle over W are finite and dim W > 4.

PROBLEM 3. Are there K-contact flows of K-contact manifolds of rank n + 1 on a
(2n + 1)-dimensional manifold which are not K-contact equivalent to each other?

By the fiber join of regular K -contact manifolds, it is impossible to construct the (2n+1)-
dimensional K-contact manifold of rank n + 1.
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