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Abstract

In this paper, we consider a unified constructions of lattices in splittable solvable
Lie groups.

1. Introduction

Let G be a connected solvable Lie group. A discrete co-compact subgroup
of G is called a lattice in G. Auslander [2] has proven that a compact solv-
manifold has a solvmanifold of the form G/T" as a finite covering, where G is
a simply connected solvable Lie group, and T is a lattice in G. It is well known
that a nilpotent Lie group has a lattice if and only if its Lie algebra has a
basis with respect to which the constants of structure are rational. Moreover,
the de Rham cohomology groups of a compact nilmanifold N/T" are isomorphic
to the cohomology groups of the Lie algebra n of N ([7]). In particular, the
de Rham cohomology groups of a compact nilmanifold are independent of
lattices.

In the case of non-nilpotent solvable Lie groups, it is not easy to check the
existence of a lattice. The de Rham cohomology groups of a compact solv-
manifold G/T are not isomorphic to the cohomology groups of the Lie algebra g
of G in general. Two solvmanifolds G,/I'y and G,/T’; with isomorphic fun-
damental groups are diffeomorphic (see [8, Theorem 3.6]). Auslander also have
proven that a Wang group is pre-divible, then it is isomorphic to a lattice in some
simply connected solvable Lie group (see [2] for details). On the other hand, it
is also important to construct a lattice in a given simply connected solvable Lie
group (see e.g., [4, Examples 2, 3]). In the papers [11], [9], Sawai and the author
have constructed lattices in splittable solvable Lie groups. However, the con-
structions in [11], [9] seem somewhat technical.

In this paper, we consider a unified construction of lattices in splittable
solvable Lie groups by using the following theorem.
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MAIN THEOREM. Let G = N X,R* be a simply connected splittable solvable
Lie group, where N is the nilradical of G. Then G has a splittable lattice T =
I'y X, L, where T'y is a lattice in N and L is a lattices in R, if and only if there
exists a Q-algebra ny of n, and a lattice L in R® such that dp(L) < Aut(ng) and
do(t) (te L) acts as an integer unimodular matrix with respect to a basis of n
contained in ny.

The theorem can be considered as a weak version of Auslander’s result
[2, pp. 248-pp. 249]. However, it seems that a complete proof has not been
published.

2. Necessary and sufficient conditions for the existence
of splittable lattices

In this section, we consider a necessary and sufficient condition for the
existence of splittable lattices in a splittable solvable Lie group.

There exists a necessary and sufficient condition of the existence for a lattice
in a given nilpotent Lie group ([8, Theorem 2.12.]).

THEOREM 2.1 ([8]). Let N be a simply connected nilpotent Lie group, and n
its Lie algebra. Suppose that n has a basis with respect to which the constants of
structure are rational. Let ngy be the vector space over Q spanned by this basis;
if & is any lattice of maximal rank in n contained in ny, and exp: n— N is the
exponential map, then the group generated by exp & is a lattice in N. Con-
versely, if Ty is a lattice in N, then the Z-span of exp~' Ty is a lattice & in the
vector space n such that the structural constants of n with respect to any basis
contained in & belong to Q.

Let T" be a lattice in a connected solvable Lie group G, and N the nilradical
of G. Then, the following theorem is well-known.

THEOREM 2.2 (Mostow [6]). NNT is a lattice in N.

Let G be a simply connected solvable Lie group, and N the nilradical of G.
Then G satisfies the exact sequence

]-=N—-G—=R'—1.

We say that G is splittable if the short exact sequence splits. It is well-known
that if G is splittable, then G is isomorphic to a semi-direct product N >, R,
where ¢ : R® — Aut(N) is a homomorphism.

Then, we have the following corollary.

COROLLARY 2.3. Let G= N X,R* be a simply connected splittable solvable
Lie group, where N the nilradical of G, and I =Ty X, L its splittable lattice.
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Then CK(N)>,R* has a lattice, where {CX(N)} the descending central series
for N.

Proof. (CK(N)NTy) >, L is a lattice in CK(N) >, R". O

THEOREM 2.4. Let G= N X,R" be a simply connected splittable solvable
Lie group, where N is the nilradical of G. Then G has a splittable lattice T =
I'y X, L, where Iy is a lattice in N and L is a lattices in R®, if and only if there
exists a Q-algebra ny of n, and a lattice L in R® such that dp(L) = Aut(ng) and
do(t) (te L) acts as an integer unimodular matrix with respect to a basis of n
contained in ny.

Proof. Assume first that there exists a Q-algebra ny of n, and lattice L
in R? such that do(L) = Aut(nyg) and de(t) (te L) acts as an integer uni-
modular matrices with respect to a basis of n contained in n;. Let ¥ <ny
be a lattice of maximal rank in n. By Theorem 2.1, the group I'y generated
by exp & is a lattice in N. Let X € . Then do(t)(X) e & for te L. Thus
exp(do(t)X) = p(t)(exp X) e I'y. Since  (n,1)- (n',t") = (np(¢)(n'),tt’), and
(n,0)"" = (p(r Y(n™"),t7") for (n, 1), (n',1') e N x,R*, T =Ty X, L is a discrete
subgroup of G =N >,R’. Since a fiber bundle

N/NNT = N/Ty — G/T — G/NT = (G/N)/(NT/N)

has a compact base and a compact fiber, G/T is compact (note that NT is closed
by Theorem 1.13 in [8]). Thus, T is a lattice in G.
Conversely, assume that I' =Ty X, L is a lattice in G. Put

P =spanyg{X en|X eexp! T'y}.
Then
& =spang{Xi,...,X,} cn,

where n = dim n by Theorem 2.1. Moreover, & is a lattice in the vector space n
such that the structural constants of n with respect to any basis contained in .
belong to Q by Theorem 2.1. Since I'y <, L is a subgroup, we see that for
every te Landi=1,...,n, (e 1) (exp X;,0) = (p(¢) exp X;,1) e 'y X, L. Thus,

dop(t)X; € & = spang{X1,..., X}

Thus, L acts as integer unimodular matrices with respect to X,...,X,. O

The following lemma is obvious, however, it is useful to construct lattices
(see Section 3).

LemMMA 2.5. Let G= N X,R" be a simply connected splittable solvable Lie
group, where N is the nilradical of G. We assume that
(1) N is (r+ 1)-step and there exists a Q-algebra ny of n
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(2) There exists a lattice L = Zt| + - - - + Zt, in R® such that dp(L) = Aut(ny)
and do(t) (t€ L) acts as an integer unimodular matrix with respect to a
basis of n contained in ny.
(3) do(t) (i=1,...,s) are semi-simple.
Then there exist vector spaces ny. (k=0,...,r) which satisfy the following
conditions:
(1) CK ) =y @ Ck(n) for k=1,...,r+ 1.
(2) do(t)(mg) cmy for i=1,...,s
(3) do(t;) : my — my is unimodular for i=1,... s.

Proof. We only prove the case of s=1, because do(t;),...,dp(t;) are
simultaneously diagonalizable. We write L = fpZ. Let m, = C"(n). Then, it is
obvious that m, satisfies the conditions (2), (3) by Corollary 2.3. Assume that
there exist ny, ..., n, which satisfy the conditions (2), (3). Since dp(z) is semi-
simple, and do(t)(C*'(n)) = C¥(n), there exist

k- k- -
XV x Y e o )\ Crn)
such that
) = span{Xl(kfl), e X(IFU} ® CF(n), d(p(to)Xj(k*l) 2D x (k=)

» P J J

for j=1,...,ix_1, where l}kil) eR. Put

Mgy = span{Xl(k_l),...,Xif(]fl_])}.
Then, dp(to)(M—1) = my—1.  Since do()|ci1(y and do()|cr, are unimodular,
do(1)|,,_, is also unimodular. O

3. Examples

In this section, we construct lattices in splittable solvable Lie groups, which
are famous, by using Theorem 2.4. Similarly as in this section, we can construct
lattices in other solvable Lie groups.

Example 3.1 ([10], Inoue surface of type S°). Let g be a solvable Lie
algebra given by

g=span{T,X,Y, Y}
with nontrivial structure equations

[T,X]=aX, [T,Y]=bY, [T,Y]=0bY,
where b e C, and e?, e’ e’ are eigenvalues of Be SL(3,Z).

Let n=span{X, Y, Y}. Let G be the simply connected solvable Lie group
corresponding to g, and N < G the simply connected nilpotent Lie group corre-
sponding to mn.

Let “(aj,as,a3) be a real eigenvector of e?, and ’(by,b,,b3) an eigenvector
of e?. Let
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ay dy das
P=1|b by b
by by b;

Put (X,Y,Z)= (X, 7, Y)P. Then Be SL(3,Z) is the matrix representation
of exp ad(T)|, with respect to X, Y, Z. Let ¥ =span,{X,Y,Z}, and I'y the
group generated by .. By Theorem 2.4, G has a lattice ' =Ty X Z.

Example 3.2 ([1], [9], Inoue surface of type S*). Let g, be a solvable Lie
algebra given by

g, =span{T,X,Y,Z}
with nontrivial structure equations
T.X]=X, [T,Y]=-Y, [X,Y]=Z
Let n=span{X, Y,Z}. Let G; be the simply connected solvable Lie group
corresponding to g, and N < G; the simply connected nilpotent Lie group
corresponding to n.
Let M € SL(2,Z) be a unimodular matrix given by

M = (? _nl> e SL(2,Z).

Then the characteristic polynomial of M is f(x)=x>—nx+1. Let 2, A~ be

the characteristic roots. Take f)=log 4, ie., e* =41 Let P= <i /121).
Then PMP~! = (l1 ﬂ01>.
0 4 o
Let my = span{X, Y}, and m; = span{Z} (cf. Lemma 2.5). Put (X,Y) =
(X,Y)P. Then M e SL(2,Z) is the matrix representation of exp ad(t T, with
respect to X, Y, and

|mn

X, Y] =X+ Y X +1'Y]=("' =)z =|PZ

Put Z =|P|Z. Then X, Y, Z is a basis of the nilradical n of g with respect to
which the constants of structure are rational, and the matrix representation of
exp ad(tT)|, is an unimodular integer matrix. Let ¥ = span,{X,Y,Z}, and
'y the group generated by ¥. By Theorem 2.4, G| has a lattice I’ = I'y X #Z.

Next, we express the above lattice in G explicitly. The solvable Lie group
G, can be written as

1 —iye' Ixe" 0 z
0 e’ 0 0 x
G = 0 0 e 0 yl|ltx,y,zeR} =NxR.
0 0 0 1 ¢
0 0 0 0 1
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Thus, the solvable Lie group G is isomorphic to (R2 x R! x R],*), where

(X1,21, 1) * (X2,22, 1)

x| + e 0y +1’x 0 1yfer 0 X+ 23,0+t
= zZ = zZ .
1 0 o0 [X2ATIXL_ 0 en 2T TH

Then, a subgroup

r— { (Pmé |P|n>

is a lattice in (R2 x R! x R!, %) = G|. Indeed, note that

meZ{neZ} X tyZ

exp(aX +bY +cZ) exp(@’ X +b'Y + ' Z)
- - 1 1 5
= exp<(a+a’)X+ (b+b")Y + <c+2ab’ —Ea’b + c')Z>,

and this product coincides with the product of N < G,. By the first canonical
coordinates, exp(aX’—&- bY + cZ) — ((Z),c), we have

S

Since (X,Y) = (X,Y)P, and Z = |P|Z, we see that " is a lattice in G;.

meZz,neZ}.

Example 3.3 ([4], [9]). Let g, be a solvable Lie algebra given by
9, = Span{T7 X17X2aX3721722;Z3}

with nontrivial equations

(X1, X2] = Zs, X2, X3] = Z,, (X3, X1] = 25,
[T, X1 =—ai X1, [T,X]=-aXs, [T,X;3]=—-aX;,
T.Z\|=wZ, [T.Z)=wmZ,, [T.Z3]=a3Zs,

where a;, a», as are distinct real numbers such that a¢; +a, +a3 =0, and ) € R

and m,n e N satisfy that e“’  e®l  e®h gre distinct roots of the polynomial

f(x) =x*—mx®+nx—1 (cf. [9, Thereom 1]). Let n=span{Xj, X2, X3, Z;, 2>,

Z3}. Let Gy be the simply connected solvable Lie group corresponding to g,

and N < G, the simply connected nilpotent Lie group corresponding to m.
Let B be a unimodular matrix given by

0 0 1
B=|1 0 -n
01 m
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Then, the characteristic polynomial of B is f(x) =x3—mx?>+nx—1. Put
1 A zf 0 0
di=e“ (i=1,2,3),and P=|1 J, 23 |. Then PBP'=]0 1 0
1 23 3 0 0 /s

Let my = span{ X}, X», X3}, and m; = span{Z;,Z,,Z3}. Put
(X1, X2, X3) = (X1, X2, X3) P.

Then B~' € SL(3,Z) is the matrix representation of exp ad(1yT)
to X1, X1, Xs. Moreover, let

Zy =X, X, Zi=[X2,X;], Z,=[X3Xi].

lm, With respect

Then we can easily see that
(21,21,23) = (21,25, Z3)|P|' P,

and ‘B is the matrix representation of exp ad(tT)|,, with respect to Zy, Zs,
Z5. Then X\, Xi, X3, Z1, Z1, Z», Z is a basis of the nilradical n of g with
respect to which the constants of structure are rational, and the matrix represen-
tation of exp ad(#,T)|, is an unimodular integer matrix. Let ¥ = spany{ X}, X2,
X3,Zl,Zz,Z3} and 'y the group generated by . By Theorem 2.4, G, has a
lattice I' =Ty X tyZ.

Next, we express the above lattice in G, explicitly. The solvable Lie group
G, corresponding to g, can be written as

e 0 0 0 —ixzem @ lxpem®t 0z
0 e 0 fxze ! 0 —Ixje® 0 o,
0 0 e® —lfxpe @’ Ly 0 0 z3
Gy = 0 0 0 e~ ! 0 0 0 x {xz € R
0 0 0 0 et 0 0 x
0 0 0 0 0 el 0 x;3
0 0 0 0 0 0 1 ¢
0 0 0 0 0 0 0 1
~ N X R.

Thus, the solvable Lie group G, is isomorphic to (R® x R® x R!, %), where

(Xlazlv tl) * (X27Z27 tZ)

e~ah 0 0 e~ah 0 0
=|x+ 0 e~ h 0 X2,2) + A(X1) 0 e~ %h 0 X3
0 0 e Ml 0 0 e~ wh
et 0 0

+ 0 e®h 0 ,Hh+ b |,
0 0 e®h
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1 0 —X3 X2
where A(x) = 3 X3 0 —x; | for x="(xy,x2,x3). Then, a subgroup
—X2 X1 0

1
r= {(Pm,§|P|fP_ln)‘m,neZ3} X toZ,

is a lattice in G,.

Remark 3.4. The assumptions with respect to M, P, and B are not
essential. Indeed, let M € SL(2,Z) be a unimodular matrix with distinct real
positive eigenvalues, say, 4, 1/1. Take #p =log .. Let P e GL(2,R) be a matrix

which satisfies
1 el 0
PMP = ( 0 eto>.

e { (rmdir0)

is a lattice in Gy. Similarly, we have the same argument in Example 3.3.

Then,

meZz,neZ} X tyZ

Remark 3.5. We can explain the isomorphisms of Lie groups in [9,
pp. 3127, pp. 3132]. Let V" be an n dimensional real vector space, and
B:V — Homg(V,R™) a linear mapping. We define a multiplication on the
set N(B) =V xR"™ by

(v1,21) * (v2,22) = (v + V2,21 + 22+ (B(v1))(v2)), vieV,zeR" (i=1,2).
It is straightforward to verify that (v,z)”' = (—v,—z+ (B(v))(v)). Since Z =
{0} x R™ is a normal subgroup and N(B)/Z =~ V is abelian, N(B) is a 2-step

nilpotent Lie group. If v='(xy,...,x,) =x and B(x) = (a;(x)), i,j=1,...,n
relative to a basis of V| then

I, B(x) :z
(x,2) =1 0 I, X\,
0 0 1

where I, is the n x n unit matrix, is a faithful representation of N(B). Let
m=n. Then we can write B(x)= A(x)+ S(x), where A(x) is the alternate
matrix and S(x) is the symmetric matrix corresponding to B(x), respectively.
Note that we can consider a 2-step nilpotent Lie group N(A4). Let a subscript 0
denote that the element is in N(A) and a subscript 1 denote that the element is in
N(B)=N(A+S). Let

(i) = (x5 2509109

1
If (S(x1))(x2) = (S(x2))(x1) for each x;, x; € R", then ©g is an isomorphism.
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In the case of m =1, B can be considered as a bilinear form. Hence, we
write  (B(v1))(v2) = B(vi,v2). If v="(x1,...,x,) =x and B=(a;), i,j=

1,...,n relative to a basis of V, then we can write the above representation as
1 'xB :z
x,z)— |0 I, x
0 0 1

Let B=A+ S, where A is the alternating bilinear form and S is the
symmetric bilinear form corresponding to B(x), respectively. Then we see that
ns is always an isomorphism (see [3, pp. 1-pp. 2] for m =n=1).

For example, let G be the following solvable Lie group.

1 0 xe7' 0

z
0 ¢ 0 0 x
G=N(B)<R= 0 0 e 0 yl|t,x,y,zeR 3,
0 0 0 1 ¢
0 0 0 o0 1
where
1 0 x =z
01 0 x
N(B) = R
B=30 o1 )|ree
0 0 0 1

0 1 0 1
Hence, B = ( 0 O). Then, the alternate part A of B is %( 1 0). Thus,
we have -

1 —iye' ixe" 0 z
0 e’ 0 0 x
G=N(A)xXR= 0 0 e’ 0 y||t,x,y,zeR
0 0 0 1t
0 0 0 01
because exp ad(tT) ong = ns oexp ad(tT) for any t € R.
0 0 X2 1 0 —X3 X2
Similarly, let B(x) =] x3 0 0 |. Then, A(x)= AR 0 —x
0 x O x> x1 0

Thus, we have an isomorphism in [9, pp. 3127].

4. Lattice of a family of solvable Lie groups

Let By,...,B,_1€SL(n,Z) be matrices which satisfy that B;B; = B;B;
for each i, j, and each eigenvalue is positive. Let Pe GL(n,R) be a matrix
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such that
d 0N e
PB;P! = =
0 of 0 ez,
log o]
for each i (note that > ;_, log o =0). If : eR" ! (i=1,....,n—-1)
log o,
are linearly independent, then a solvable Lie group
e 0 .- 0 0 x
0 E 0
G= : el 0 : S llteR" Xy, .. x,eR B,
0 -+ 0 et tua) o x
0 - .. 0 I, t
0 v .. 0 0 1
where t = /(#1,...,t,-1), has a lattice. Indeed, note that G = R" X, R""!, where
o(t,... t,_1) = diag(e”,... e, e (T 1)) Then,
m log o] log !
'=dqP| miel >, |Z 5 XX L _
m, log 3., log 2]

is a lattice in G =~ R" >, R""! by Thereom 2.4.
Remark 4.1. The solvable Lie group has a left invariant contact form.

logal  logaf

In the case of n =3, if

then the solvable Lie group G has

a lattice. loga, * logas’
Let
0 0 1 -4 -4 -3
Bi=]10 -5, B=]21 16 11
01 6 -4 -3 -2
. loga] | logof
Then, By, B, € SL(3,Z) satisfy B;B, = B,B;, and 0 > (see [5, Prop-
o log o log o
osition 4.4]). 2 2
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