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A CONSTRUCTION OF LATTICES IN SPLITTABLE

SOLVABLE LIE GROUPS

Takumi Yamada

Abstract

In this paper, we consider a unified constructions of lattices in splittable solvable

Lie groups.

1. Introduction

Let G be a connected solvable Lie group. A discrete co-compact subgroup
of G is called a lattice in G. Auslander [2] has proven that a compact solv-
manifold has a solvmanifold of the form G=G as a finite covering, where G is
a simply connected solvable Lie group, and G is a lattice in G. It is well known
that a nilpotent Lie group has a lattice if and only if its Lie algebra has a
basis with respect to which the constants of structure are rational. Moreover,
the de Rham cohomology groups of a compact nilmanifold N=G are isomorphic
to the cohomology groups of the Lie algebra n of N ([7]). In particular, the
de Rham cohomology groups of a compact nilmanifold are independent of
lattices.

In the case of non-nilpotent solvable Lie groups, it is not easy to check the
existence of a lattice. The de Rham cohomology groups of a compact solv-
manifold G=G are not isomorphic to the cohomology groups of the Lie algebra g
of G in general. Two solvmanifolds G1=G1 and G2=G2 with isomorphic fun-
damental groups are di¤eomorphic (see [8, Theorem 3.6]). Auslander also have
proven that a Wang group is pre-divible, then it is isomorphic to a lattice in some
simply connected solvable Lie group (see [2] for details). On the other hand, it
is also important to construct a lattice in a given simply connected solvable Lie
group (see e.g., [4, Examples 2, 3]). In the papers [11], [9], Sawai and the author
have constructed lattices in splittable solvable Lie groups. However, the con-
structions in [11], [9] seem somewhat technical.

In this paper, we consider a unified construction of lattices in splittable
solvable Lie groups by using the following theorem.
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Main Theorem. Let G ¼ Nzj R
s be a simply connected splittable solvable

Lie group, where N is the nilradical of G. Then G has a splittable lattice G ¼
GN zj L, where GN is a lattice in N and L is a lattices in Rs, if and only if there
exists a Q-algebra n0 of n, and a lattice L in Rs such that djðLÞHAutðn0Þ and
djðtÞ ðt A LÞ acts as an integer unimodular matrix with respect to a basis of n
contained in n0.

The theorem can be considered as a weak version of Auslander’s result
[2, pp. 248–pp. 249]. However, it seems that a complete proof has not been
published.

2. Necessary and su‰cient conditions for the existence
of splittable lattices

In this section, we consider a necessary and su‰cient condition for the
existence of splittable lattices in a splittable solvable Lie group.

There exists a necessary and su‰cient condition of the existence for a lattice
in a given nilpotent Lie group ([8, Theorem 2.12.]).

Theorem 2.1 ([8]). Let N be a simply connected nilpotent Lie group, and n
its Lie algebra. Suppose that n has a basis with respect to which the constants of
structure are rational. Let n0 be the vector space over Q spanned by this basis;
if L is any lattice of maximal rank in n contained in n0, and exp : n ! N is the
exponential map, then the group generated by exp L is a lattice in N. Con-
versely, if GN is a lattice in N, then the Z-span of exp�1 GN is a lattice L in the
vector space n such that the structural constants of n with respect to any basis
contained in L belong to Q.

Let G be a lattice in a connected solvable Lie group G, and N the nilradical
of G. Then, the following theorem is well-known.

Theorem 2.2 (Mostow [6]). N VG is a lattice in N.

Let G be a simply connected solvable Lie group, and N the nilradical of G.
Then G satisfies the exact sequence

1 ! N ! G ! Rs ! 1:

We say that G is splittable if the short exact sequence splits. It is well-known
that if G is splittable, then G is isomorphic to a semi-direct product Nzj R

s,
where j : Rs ! AutðNÞ is a homomorphism.

Then, we have the following corollary.

Corollary 2.3. Let G ¼ Nzj R
s be a simply connected splittable solvable

Lie group, where N the nilradical of G, and G ¼ GN zj L its splittable lattice.
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Then CkðNÞzj R
s has a lattice, where fCkðNÞg the descending central series

for N.

Proof. ðCkðNÞVGNÞzj L is a lattice in CkðNÞzj R
s. r

Theorem 2.4. Let G ¼ Nzj R
s be a simply connected splittable solvable

Lie group, where N is the nilradical of G. Then G has a splittable lattice G ¼
GN zj L, where GN is a lattice in N and L is a lattices in Rs, if and only if there
exists a Q-algebra n0 of n, and a lattice L in Rs such that djðLÞHAutðn0Þ and
djðtÞ ðt A LÞ acts as an integer unimodular matrix with respect to a basis of n
contained in n0.

Proof. Assume first that there exists a Q-algebra n0 of n, and lattice L
in Rs such that djðLÞHAutðn0Þ and djðtÞ ðt A LÞ acts as an integer uni-
modular matrices with respect to a basis of n contained in n0. Let LH n0

be a lattice of maximal rank in n. By Theorem 2.1, the group GN generated
by exp L is a lattice in N. Let X A L. Then djðtÞðXÞ A L for t A L. Thus
expðdjðtÞX Þ ¼ jðtÞðexp X Þ A GN . Since ðn; tÞ � ðn 0; t 0Þ ¼ ðnjðtÞðn 0Þ; tt 0Þ, and

ðn; tÞ�1 ¼ ðjðt�1Þðn�1Þ; t�1Þ for ðn; tÞ; ðn 0; t 0Þ A Nzj R
s, G ¼ GN zj L is a discrete

subgroup of G ¼ Nzj R
s. Since a fiber bundle

N=N VG ¼ N=GN ! G=G ! G=NG ¼ ðG=NÞ=ðNG=NÞ

has a compact base and a compact fiber, G=G is compact (note that NG is closed
by Theorem 1.13 in [8]). Thus, G is a lattice in G.

Conversely, assume that G ¼ GN zj L is a lattice in G. Put

L ¼ spanZfX A n jX A exp�1 GNg:
Then

L ¼ spanZfX1; . . . ;XngH n;

where n ¼ dim n by Theorem 2.1. Moreover, L is a lattice in the vector space n
such that the structural constants of n with respect to any basis contained in L
belong to Q by Theorem 2.1. Since GN zj L is a subgroup, we see that for
every t A L and i ¼ 1; . . . ; n, ðe; tÞ � ðexp Xi; 0Þ ¼ ðjðtÞ exp Xi; tÞ A GN zj L. Thus,

djðtÞXi A L ¼ spanZfX1; . . . ;Xng:

Thus, L acts as integer unimodular matrices with respect to X1; . . . ;Xn. r

The following lemma is obvious, however, it is useful to construct lattices
(see Section 3).

Lemma 2.5. Let G ¼ Nzj R
s be a simply connected splittable solvable Lie

group, where N is the nilradical of G. We assume that
(1) N is ðrþ 1Þ-step and there exists a Q-algebra n0 of n.
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(2) There exists a lattice L ¼ Zt1 þ � � � þ Zts in Rs such that djðLÞHAutðn0Þ
and djðtÞ ðt A LÞ acts as an integer unimodular matrix with respect to a
basis of n contained in n0.

(3) djðtiÞ ði ¼ 1; . . . ; sÞ are semi-simple.
Then there exist vector spaces mk ðk ¼ 0; . . . ; rÞ which satisfy the following
conditions:

(1) Ck�1ðnÞ ¼ mk�1 lCkðnÞ for k ¼ 1; . . . ; rþ 1.
(2) djðtiÞðmkÞHmk for i ¼ 1; . . . ; s.
(3) djðtiÞ : mk ! mk is unimodular for i ¼ 1; . . . ; s.

Proof. We only prove the case of s ¼ 1, because djðt1Þ; . . . ; djðtsÞ are
simultaneously diagonalizable. We write L ¼ t0Z. Let mr ¼ CrðnÞ. Then, it is
obvious that mr satisfies the conditions (2), (3) by Corollary 2.3. Assume that
there exist mk; . . . ;mr which satisfy the conditions (2), (3). Since djðt0Þ is semi-
simple, and djðt0ÞðCk�1ðnÞÞHCk�1ðnÞ, there exist

X
ðk�1Þ
1 ; . . . ;X

ðk�1Þ
ik�1

A Ck�1ðnÞnCkðnÞ
such that

Ck�1ðnÞ ¼ spanfX ðk�1Þ
1 ; . . . ;X

ðk�1Þ
ik�1

glCkðnÞ; djðt0ÞX ðk�1Þ
j ¼ l

ðk�1Þ
j X

ðk�1Þ
j

for j ¼ 1; . . . ; ik�1, where l
ðk�1Þ
j A R. Put

mk�1 ¼ spanfX ðk�1Þ
1 ; . . . ;X

ðk�1Þ
ik�1

g:
Then, djðt0Þðmk�1ÞHmk�1. Since djðtÞjCk�1ðnÞ and djðtÞjCkðnÞ are unimodular,
djðtÞjmk�1

is also unimodular. r

3. Examples

In this section, we construct lattices in splittable solvable Lie groups, which
are famous, by using Theorem 2.4. Similarly as in this section, we can construct
lattices in other solvable Lie groups.

Example 3.1 ([10], Inoue surface of type S0). Let g be a solvable Lie
algebra given by

g ¼ spanfT ;X ;Y ;Yg
with nontrivial structure equations

½T ;X � ¼ aX ; ½T ;Y � ¼ bY ; ½T ;Y � ¼ bY ;

where b A C, and ea, eb, eb are eigenvalues of B A SLð3;ZÞ.
Let n ¼ spanfX ;Y ;Yg. Let G be the simply connected solvable Lie group

corresponding to g, and NHG the simply connected nilpotent Lie group corre-
sponding to n.

Let tða1; a2; a3Þ be a real eigenvector of ea, and tðb1; b2; b3Þ an eigenvector
of eb. Let
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P ¼
a1 a2 a3

b1 b2 b3

b1 b2 b3

0
@

1
A:

Put ð ~XX ; ~YY ; ~ZZÞ ¼ ðX ;Y ;Y ÞP. Then B A SLð3;ZÞ is the matrix representation
of exp adðTÞjn with respect to ~XX , ~YY , ~ZZ. Let L ¼ spanZf ~XX ; ~YY ; ~ZZg, and GN the
group generated by L. By Theorem 2.4, G has a lattice G ¼ GN zZ.

Example 3.2 ([1], [9], Inoue surface of type Sþ). Let g1 be a solvable Lie
algebra given by

g1 ¼ spanfT ;X ;Y ;Zg

with nontrivial structure equations

½T ;X � ¼ X ; ½T ;Y � ¼ �Y ; ½X ;Y � ¼ Z:

Let n ¼ spanfX ;Y ;Zg. Let G1 be the simply connected solvable Lie group
corresponding to g1, and NHG1 the simply connected nilpotent Lie group
corresponding to n.

Let M A SLð2;ZÞ be a unimodular matrix given by

M ¼ 0 �1

1 n

� �
A SLð2;ZÞ:

Then the characteristic polynomial of M is f ðxÞ ¼ x2 � nxþ 1. Let l, l�1 be

the characteristic roots. Take t0 ¼ log l, i.e., et0 ¼ l. Let P ¼ 1 l

1 l�1

� �
.

Then PMP�1 ¼ l 0

0 l�1

� �
.

Let m0 ¼ spanfX ;Yg, and m1 ¼ spanfZg (cf. Lemma 2.5). Put ð ~XX ; ~YYÞ ¼
ðX ;YÞP. Then M A SLð2;ZÞ is the matrix representation of exp adðt0TÞjm0

with
respect to ~XX , ~YY , and

½ ~XX ; ~YY � ¼ ½X þ Y ; lX þ l�1Y � ¼ ðl�1 � lÞZ ¼ jPjZ:

Put ~ZZ ¼ jPjZ. Then ~XX , ~YY , ~ZZ is a basis of the nilradical n of g with respect to
which the constants of structure are rational, and the matrix representation of
exp adðt0TÞjn is an unimodular integer matrix. Let L ¼ spanZf ~XX ; ~YY ; ~ZZg, and
GN the group generated by L. By Theorem 2.4, G1 has a lattice G ¼ GN z t0Z.

Next, we express the above lattice in G1 explicitly. The solvable Lie group
G1 can be written as

G1 ¼

1 � 1
2 ye

t 1
2 xe

�t 0 z

0 et 0 0 x

0 0 e�t 0 y

0 0 0 1 t

0 0 0 0 1

0
BBBBB@

1
CCCCCA

�����������
t; x; y; z A R

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

GNyR1:
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Thus, the solvable Lie group G1 is isomorphic to ðR2 � R1 � R1; �Þ, where

ðx1; z1; t1Þ � ðx2; z2; t2Þ

¼ x1 þ
et1 0

0 e�t1

� �
x2; z1 þ

1

2
tx1

0 1

�1 0

� �
et1 0

0 e�t1

� �
x2 þ z2; t1 þ t2

� �
:

Then, a subgroup

G ¼ Pm;
1

2
jPjn

� �����m A Z2; n A Z

� �
z t0Z

is a lattice in ðR2 � R1 � R1; �ÞGG1. Indeed, note that

expða ~XX þ b ~YY þ c ~ZZÞ expða 0 ~XX þ b 0 ~YY þ c 0 ~ZZÞ

¼ exp ðaþ a 0Þ ~XX þ ðbþ b 0Þ ~YY þ cþ 1

2
ab 0 � 1

2
a 0bþ c 0

� �
~ZZ

� �
;

and this product coincides with the product of NHG1. By the first canonical

coordinates, expða ~XX þ b ~YY þ c ~ZZÞ 7! a

b

� �
; c

� �
, we have

GN ! m;
1

2
n

� �����m A Z2; n A Z

� �
:

Since ð ~XX ; ~YY Þ ¼ ðX ;YÞP, and ~ZZ ¼ jPjZ, we see that G is a lattice in G1.

Example 3.3 ([4], [9]). Let g2 be a solvable Lie algebra given by

g2 ¼ spanfT ;X1;X2;X3;Z1;Z2;Z3g

with nontrivial equations

½X1;X2� ¼ Z3;

½T ;X1� ¼ �a1X1;

½T ;Z1� ¼ a1Z1;

½X2;X3� ¼ Z1;

½T ;X2� ¼ �a2X2;

½T ;Z2� ¼ a2Z2;

½X3;X1� ¼ Z2;

½T ;X3� ¼ �a3X3;

½T ;Z3� ¼ a3Z3;

where a1, a2, a3 are distinct real numbers such that a1 þ a2 þ a3 ¼ 0, and t0 A R
and m; n A N satisfy that ea1t0 , ea2t0 , ea3t0 are distinct roots of the polynomial
f ðxÞ ¼ x3 �mx2 þ nx� 1 (cf. [9, Thereom 1]). Let n ¼ spanfX1;X2;X3;Z1;Z2;
Z3g. Let G2 be the simply connected solvable Lie group corresponding to g2,
and NHG2 the simply connected nilpotent Lie group corresponding to n.

Let B be a unimodular matrix given by

B ¼
0 0 1

1 0 �n

0 1 m

0
B@

1
CA:
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Then, the characteristic polynomial of B is f ðxÞ ¼ x3 �mx2 þ nx� 1. Put

li ¼ eait0 ði ¼ 1; 2; 3Þ, and P ¼
1 l1 l21

1 l2 l22

1 l3 l23

0
B@

1
CA. Then PBP�1 ¼

l1 0 0

0 l2 0

0 0 l3

0
B@

1
CA.

Let m0 ¼ spanfX1;X2;X3g, and m1 ¼ spanfZ1;Z2;Z3g. Put

ð ~XX1; ~XX2; ~XX3Þ ¼ ðX1;X2;X3ÞP:
Then B�1 A SLð3;ZÞ is the matrix representation of exp adðt0TÞjm0

with respect
to ~XX1, ~XX1, ~XX3. Moreover, let

~ZZ3 ¼ ½ ~XX1; ~XX2�; ~ZZ1 ¼ ½ ~XX2; ~XX3�; ~ZZ2 ¼ ½ ~XX3; ~XX1�:
Then we can easily see that

ð ~ZZ1; ~ZZ2; ~ZZ3Þ ¼ ðZ1;Z2;Z3ÞjPj tP�1;

and tB is the matrix representation of exp adðt0TÞjm1
with respect to ~ZZ1, ~ZZ2,

~ZZ3. Then ~XX1, ~XX1, ~XX3, ~ZZ1, ~ZZ1, ~ZZ2, ~ZZ3 is a basis of the nilradical n of g with
respect to which the constants of structure are rational, and the matrix represen-
tation of exp adðt0TÞjn is an unimodular integer matrix. Let L ¼ spanZf ~XX1; ~XX2;
~XX3; ~ZZ1; ~ZZ2; ~ZZ3g, and GN the group generated by L. By Theorem 2.4, G2 has a
lattice G ¼ GN z t0Z.

Next, we express the above lattice in G2 explicitly. The solvable Lie group
G2 corresponding to g2 can be written as

G2 ¼

ea1t 0 0 0 � 1
2 x3e

�a2t 1
2 x2e

�a3t 0 z1

0 ea2t 0 1
2 x3e

�a1t 0 � 1
2 x1e

�a3t 0 z2

0 0 ea3t � 1
2 x2e

�a1t 1
2 x1e

�a2t 0 0 z3

0 0 0 e�a1t 0 0 0 x1

0 0 0 0 e�a2t 0 0 x2

0 0 0 0 0 e�a3t 0 x3

0 0 0 0 0 0 1 t

0 0 0 0 0 0 0 1

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

������������������

t; xi; zi A R

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

GNyR:

Thus, the solvable Lie group G2 is isomorphic to ðR3 � R3 � R1; �Þ, where

ðx1; z1; t1Þ � ðx2; z2; t2Þ

¼

0
@x1 þ

e�a1t1 0 0

0 e�a2t1 0

0 0 e�a3t1

0
@

1
Ax2; z1 þ Aðx1Þ

e�a1t1 0 0

0 e�a2t1 0

0 0 e�a3t1

0
@

1
Ax2

þ
ea1t1 0 0

0 ea2t1 0

0 0 ea3t1

0
@

1
Az2; t1 þ t2

1
A;
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where AðxÞ ¼ 1

2

0 �x3 x2

x3 0 �x1

�x2 x1 0

0
B@

1
CA for x ¼ tðx1; x2; x3Þ. Then, a subgroup

G ¼ Pm;
1

2
jPj tP�1n

� �����m; n A Z3

� �
z t0Z

is a lattice in G2.

Remark 3.4. The assumptions with respect to M, P, and B are not
essential. Indeed, let M A SLð2;ZÞ be a unimodular matrix with distinct real
positive eigenvalues, say, l, 1=l. Take t0 ¼ log l. Let P A GLð2;RÞ be a matrix
which satisfies

PMP�1 ¼ et0 0

0 e�t0

� �
:

Then,

G ¼ Pm;
1

2
jPjn

� �����m A Z2; n A Z

� �
z t0Z

is a lattice in G1. Similarly, we have the same argument in Example 3.3.

Remark 3.5. We can explain the isomorphisms of Lie groups in [9,
pp. 3127, pp. 3132]. Let V n be an n dimensional real vector space, and
B : V ! HomRðV ;RmÞ a linear mapping. We define a multiplication on the
set NðBÞ ¼ V � Rm by

ðv1; z1Þ � ðv2; z2Þ ¼ ðv1 þ v2; z1 þ z2 þ ðBðv1ÞÞðv2ÞÞ; vi A V ; zi A Rm ði ¼ 1; 2Þ:
It is straightforward to verify that ðv; zÞ�1 ¼ ð�v;�zþ ðBðvÞÞðvÞÞ. Since Z ¼
f0g � Rm is a normal subgroup and NðBÞ=ZGV is abelian, NðBÞ is a 2-step
nilpotent Lie group. If v ¼ tðx1; . . . ; xnÞ ¼ x and BðxÞ ¼ ðaijðxÞÞ, i; j ¼ 1; . . . ; n
relative to a basis of V , then

ðx; zÞ 7!
Im BðxÞ z

0 In x

0 0 1

0
B@

1
CA;

where In is the n� n unit matrix, is a faithful representation of NðBÞ. Let
m ¼ n. Then we can write BðxÞ ¼ AðxÞ þ SðxÞ, where AðxÞ is the alternate
matrix and SðxÞ is the symmetric matrix corresponding to BðxÞ, respectively.
Note that we can consider a 2-step nilpotent Lie group NðAÞ. Let a subscript 0
denote that the element is in NðAÞ and a subscript 1 denote that the element is in
NðBÞ ¼ NðAþ SÞ. Let

pSððx; zÞ0Þ ¼ x; zþ 1

2
ðSðxÞÞðxÞ

� �
1

:

If ðSðx1ÞÞðx2Þ ¼ ðSðx2ÞÞðx1Þ for each x1, x2 A Rn, then pS is an isomorphism.
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In the case of m ¼ 1, B can be considered as a bilinear form. Hence, we
write ðBðv1ÞÞðv2Þ ¼ Bðv1; v2Þ. If v ¼ tðx1; . . . ; xnÞ ¼ x and B ¼ ðaijÞ, i; j ¼
1; . . . ; n relative to a basis of V , then we can write the above representation as

ðx; zÞ 7!
1 txB z

0 In x

0 0 1

0
B@

1
CA:

Let B ¼ Aþ S, where A is the alternating bilinear form and S is the
symmetric bilinear form corresponding to BðxÞ, respectively. Then we see that
pS is always an isomorphism (see [3, pp. 1–pp. 2] for m ¼ n ¼ 1).

For example, let G be the following solvable Lie group.

G ¼ NðBÞzR ¼

1 0 xe�t 0 z

0 et 0 0 x

0 0 e�t 0 y

0 0 0 1 t

0 0 0 0 1

0
BBBBB@

1
CCCCCA

�����������
t; x; y; z A R

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
;

where

NðBÞ ¼

1 0 x z

0 1 0 x

0 0 1 y

0 0 0 1

0
BBB@

1
CCCA

���������
x; y; z A R

8>>><
>>>:

9>>>=
>>>;
:

Hence, B ¼ 0 1

0 0

� �
. Then, the alternate part A of B is

1

2

0 1

�1 0

� �
. Thus,

we have

GGNðAÞzR ¼

1 � 1
2 ye

t 1
2 xe

�t 0 z

0 et 0 0 x

0 0 e�t 0 y

0 0 0 1 t

0 0 0 0 1

0
BBBBB@

1
CCCCCA

�����������
t; x; y; z A R

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

because exp adðtTÞ � pS ¼ pS � exp adðtTÞ for any t A R.

Similarly, let BðxÞ ¼
0 0 x2

x3 0 0

0 x1 0

0
B@

1
CA: Then, AðxÞ ¼ 1

2

0 �x3 x2

x3 0 �x1

�x2 x1 0

0
B@

1
CA:

Thus, we have an isomorphism in [9, pp. 3127].

4. Lattice of a family of solvable Lie groups

Let B1; . . . ;Bn�1 A SLðn;ZÞ be matrices which satisfy that BiBj ¼ BjBi

for each i, j, and each eigenvalue is positive. Let P A GLðn;RÞ be a matrix
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such that

PBiP
�1 ¼

a i
1 0

. .
.

0 a i
n

0
BB@

1
CCA ¼

e log a i
1 0

. .
.

0 e log a i
n

0
B@

1
CA

for each i (note that
Pn

k¼1 log a i
k ¼ 0). If

log a i
1

..

.

log a i
n�1

0
BB@

1
CCA A Rn�1 ði ¼ 1; . . . ; n� 1Þ

are linearly independent, then a solvable Lie group

G ¼

et1 0 � � � 0 0 x1

0 . .
. ..

.
0 ..

.

..

.
etn�1 0 ..

. ..
.

0 � � � 0 e�ðt1þ���þtn�1Þ 0 xn

0 � � � � � � 0 In�1 t

0 � � � � � � 0 0 1

0
BBBBBBBBB@

1
CCCCCCCCCA

���������������

t A Rn�1; x1; . . . ; xn A R

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

;

where t ¼ tðt1; . . . ; tn�1Þ, has a lattice. Indeed, note that GGRn zj R
n�1, where

jðt1; . . . ; tn�1Þ ¼ diagðet1 ; . . . ; etn�1 ; e�ðt1þ���þtn�1ÞÞ. Then,

G ¼ P

m1

..

.

mn

0
B@

1
CA
�������
mi A Z

8><
>:

9>=
>;zj Z

log a11

..

.

log a1n�1

0
BB@

1
CCA� � � � � Z

log an�1
1

..

.

log an�1
n�1

0
BB@

1
CCA

0
BB@

1
CCA

is a lattice in GGRn zj R
n�1 by Thereom 2.4.

Remark 4.1. The solvable Lie group has a left invariant contact form.

In the case of n ¼ 3, if
log a11
log a12

0
log a21
log a22

, then the solvable Lie group G has
a lattice.

Let

B1 ¼
0 0 1

1 0 �5

0 1 6

0
B@

1
CA; B2 ¼

�4 �4 �3

21 16 11

�4 �3 �2

0
B@

1
CA:

Then, B1;B2 A SLð3;ZÞ satisfy B1B2 ¼ B2B1, and
log a11
log a12

0
log a21
log a22

(see [5, Prop-
osition 4.4]).
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