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A CONSTRUCTION OF LIE ALGEBRAS
FROM A CLASS OF TERNARY ALGEBRAS

BY

JOHN R. FAULKNER

Abstract. A class of algebras with a ternary composition and alternating bilinear

form is defined. The construction of a Lie algebra from a member of this class is

given, and the Lie algebra is shown to be simple if the form is nondegenerate. A

characterization of the Lie algebras so constructed in terms of their structure as

modules for the three-dimensional simple Lie algebra is obtained in the case the base

ring contains 1/2. Finally, some of the Lie algebras are identified; in particular, Lie

algebras of type Ea are obtained.

A construction of Lie algebras from Jordan algebras discovered independently

by J. Tits [7] and M. Koecher [4] has been useful in the study of both kinds of

algebras. In this paper, we give a similar construction of Lie algebras from a

ternary algebra with a skew bilinear form satisfying certain axioms. These ternary

algebras are a variation on the Freudenthal triple systems considered in [1]. Most

of the results we obtain for our construction are parallel to those for the Tits-

Koecher construction (see [3, Chapter VIII]).

In §1, we define the ternary algebras, derive some basic results about them, and

give two examples of such algebras. In §2, the Lie algebras are constructed and

shown to be simple if and only if the skew bilinear form is nondegenerate. In §3,

we give a characterization, in the case the base ring contains 1/2, of the Lie algebras

obtained by our construction in terms of their structure as modules for the three-

dimensional simple Lie algebra. Finally, in §4, we identify some of the simple Lie

algebras obtained by our construction from the examples of §1. In particular, we

show that we can construct a Lie algebra of type Pa from a 56-dimensional space

which is a module for a Lie algebra of type P7. A similar construction was given

by H. Freudenthal in [2].

1. A class of ternary algebras. We shall be interested in a module 3JÎ over an

arbitrary commutative associative ring <$> with 1 which possesses an alternating

bilinear form < , > and a ternary product < , , > which satisfy

(Tl) <[x, y, z> = <j, x, z> + <x, y}z for x, y, z e 9K;

(T2) <x, y, z) = <x, z, y} + (y, z}x for x, y, z e m ;

(T3) «.x,y, z>, w> = «x,j, w>, z> + <x, j><z, w} for x,y,z, weWl;
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398 J. R. FAULKNER [April

(T4) «x, y, z>, v, vv> = «x, v, w}, y, z> + <x, {y, v, w), z> + <x, y, <z, w, v}}

for x, y, z,v,we SOI.

We can define a four-linear form q on 9Jt by

(1.1) i7(x, J, z, vv) = «x, y, z>, w>   for x, y, z, w e 9K.

Axioms (T1)-(T3) then yield

q(x, y, z, w) = q(y, x, z, w) + <[x, j><z, vv>

(1.2) = q(x, z, y, w) + (y, z><x, w)

= q(x,y, w, z) + <x, j><z, iv>   for x,^z.we 9K.

An easy consequence of (1.2) is

(1.3) q(xln, x2n, x3„, x4jî) = t7(x1; x2, x3, x4)   for x¡ e 9JÍ and 77 e A",

where K is the permutation group {1, (12)(34), (13)(24), (14)(23)}.

By (T4), we have

\\\Xy, x2, x3y, x5, x6>, x4>

= \\\Xj, X5, Xe/, x2, x3), X4/ + \\Xi, \x2, X5, Xg/, X3/, X4/

+ «Xy, x2, <x3, x6, x5», x4>   for Xj e m.

Using (T2), we see

— \\\*1> X2, X3,>, Xg, X5}, X4J + \\\Xy, x5, x6X x2, x¡¡), X±)

+ \\*i> \X2, x5, Xg/, X3X x±) + \\Xy, x2, \X3, X5, Xe)y, X4/

= 2<[x5, Xg)«7(x1, x2, x3, x4).

Using (1.3) this last identity can be rewritten as

O-4)      2 «*!' *2' X3>' <*4' *5' X6>>" = 2<*5' xs>a(xi, x2, x3, x4)   for x¡ e 9ft,

where K is considered to be a subgroup of the symmetric group S6 and the super-

script 77 means 77 is applied to each subscript i of the x¡'s.

If < , > is nondegenerate and O is a field, then (1.1) and (1.2) imply (T1)-(T3)

and the argument used to establish (1.4) can be reversed to obtain (T4). Thus, we

have shown

Lemma 1. If a vector space 9K over afield <I> possesses a nondegenerate alternating

form < , > and four-linear form q( , , ,) satisfying (1.2) and if< , , > defined by

(1.1) satisfies (1.4), then < , > and < , , > satisfy (T1)-(T4).

We shall now give two examples of 9Jt, < , > and < , , > satisfying (T1)-(T4).

Example 1. If O is a commutative associative ring with 1 containing \~ with

i + i= 1 and 9K is a 0-module with an alternating bilinear form < , >, then < , >

and < , , > defined by <x, y, z>=|(<*, y>z+<y> z>x+<x, z)y), x,y, zeWl,

satisfy (T1HT4).

The verification of Example 1 is straightforward, and we omit it. A more com-

plicated and more interesting example is
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1971] A CONSTRUCTION OF LIE ALGEBRAS 399

Example 2. Let S = S(Ar, 1) be a quadratic Jordan algebra with 1 over a field O

constructed as in [5] from an admissible nondegenerate cubic form N with base-

point 1. Recall yUx = T(x, y)x — x# xy where P( , ) and x—> x# are respectively

the associated nondegenerate bilinear form and quadratic mapping and xxy

=(x+y)*-x#-yfi, x,ye%. Let

m = {(°¡,   ag}\«,fie*;x,ye3\.

<*i, *2> = «xß2-a2ßx-T(ax, b2) + T(a2, bx),

(1-6) <*i, x2, x3y = y    j

where

y = axß2a3 + 2axa2ß3 — a3T(ax, b2) — a2T(ax, b3) — axT(a2, b3) + T(ax, a2xa3),

c = (a2ß3 + T(b2,a3))ax + (axß3 + T(bx,a3))a2 + (axß2 + T(bx,a2))a3

— axb2xb3 — a2bx xb3 — a3bx xb2 — {axb2a3} — {axb3a2} — {a2bxa3},

8 = -y",       d = -c",   where a = (aß)(ab).

(Note y" is the term obtained from y by interchanging a and ß as well as a and b.)

If we define q( , , , ) by (1.1), we shall show that the conditions of Lemma 1 are

satisfied. Actually we shall show (T1)-(T3) and (1.4), which is clearly sufficient

since T( , ) nondegenerate implies < , > is also.

We see y — y(12) = <x1, x2}a3 since T(ax, a2 x a3) is symmetric in all three variables.

Also, c — ca2) = <[xx, x2}a3. Since <Xi, x2)a= — <[xx, x2>, we see 8 — 8a2) = <[xx, x2yß3,

d-da2) = (xx, x2yb3, and (Tl) holds. A similar argument establishes (T2).

To show (T3), we shall show q(xx, x2, x3, x±)=q(x2, xx, x4, x3), which with (Tl)

yields (T3). We note

q(xx, x2, x3, x4) = yßi + y'at-nc, ¿>4)-P(C, a*) = [yßt-T(c, ¿>4)](1 + 0)

=  [(axß2a3ßi) + (2axa2ß3ßi)-(a3ßiT(ax, b2))

-(a^T(ax, b3) + axß3T(a2, bi))-(axßiT(a2, b3) +a2ß3T(ax, b4))

+ (ßj(ax, a2 x a3) + a3T(bx x b2, ¿>4))-(T(a3, b2)T(ax, bt))

-(T(a3, bx)T(a2, bi))-(a1ß2T(a3, ¿4))-(P(«2, bx)T(a3, Z>4))

+ (axT(b2 x b3, b4) + a2T(bx x b3, hu + mia^aj, ¿>4))

+ (T({axb3a2}, b^HTtta^aJ, ¿>4))]<1 + "

— o(x2, xx, x±, x3)

For

we define

(1.5)
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400 J. R. FAULKNER [April

as desired since each term in parenthesis above is invariant up to a by (12)(34).

Here we have used T(a, bxc) is symmetric, and

T({abc}, d) = T(c, {bad}) = T(b, {adc})

which hold in 3.

We shall now give a verification of (1.4). Letting

\X4, X5, Xg)

we see that

C'    8')'

«*i, x2, x3>, <x4, x5, x6» = y8'-y'8-T(c, d') + T(c', d)= [y°y'-T(c°, c')]*1-7'

= [r°ai(ßoU6 + 2a5^6 - T(as, b6)) + T(yai, - asbe - aöb5 + a5x aa)

- T(c° xbi, - a5be - a6b5 + a5x ae) - T^c", ß6a5 + ß5a6 -bsxb6)

- T(c°, a4)(a5ß6 + T(b5, a6)) - T(c°, - a4L)](1 ~ a)

where uL = {ub5ae} + {ub6a5} so T(uL,v) = T(u,vL°). Here we have used {a5¿>4a6}

= T(bi, a5)a6 + F(64, a6)a5 — (a5 x a6) x b± and the symmetry of T(a, b x c).

We note that

naiCß^ + ß^e-b^xbeY1-^ = T(ßiC, -a6b5-a5b6 + a5x «76)(1-ff)

and

2 (y"ai-c"xbi-ßicY
KSK

= 2 (T(bu b2 x i>3)a4 + T(by, a2)b3 x Z>4 - (a2 x (by x b3)) x b±
TieK

+ T(a3, b2)by + bt-(a3 x (by x b2)) xbt + T(ay, b3)b2 x ¿>4

-(fliX^X^X^)"

= 2 {T(by, b2 x b3)at + T(b3, ajby xb2-(a4 x (b3 xby)) x b2
neK

+ T(at, by)b2 xb3-(a4 x (b2 x by)) xb3 + T(air b2)b3 x by

-(a^x^xb^xbyY = 0

by the linearization of N(b)a + T(a, b)b* = (axb#)xb which holds in g-

Also, T(by, aiL)a = T(a1L, bi) = T(b1, a4Z.)(14), so

(14X23)[(ß2a3 + T(a2,b3))T(by,aiL)Y = [(ß2a3 + T(a2,b3))T(by,aiL)]

Moreover,

T({bya2b3), aJJf = T({ayb2a3}L, Z>4)

= T({ayLb2a3}, ¿>4) - T^aA^}, bJ + Tfayb^L}, ô4),

so

[T({bya2b3}, a4L)1 + <13><2«]- = T({bya2b3}, «¿y"*»*«*"».
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These and similar expressions yield

2 P(cff,a4P)"(1-'5

jigK

= - 2 (ßxT(a2 xa3, aiL) + ßxT(a2xa4, a3L)+ßxT(a3 xa*, a2P))*(1 "">
n<=K

= -2(T(b5, a6) + T(be, a8)) 2 ßi(T(a2, a3 x a4))*1-«.

The last equality follows from the linearization of T(u#,{uab]) = 2T(a,b)N(u)

which holds in 3.

Finally, we note that 2„6K (y"ai — T(bx, b2 x b3)a¿)n and

2 (T(C, ai)+ßxT(a2 xa3, ai)+ß2T(ax xa3, ai)+ß3T(ax x a2, a^))"
neK

are invariant under a and their difference is

2(y«ai-T(c°, a^)-ßxT(a2 x a3, a^)-ß2T(ax + a3, a4)

- ß3 T(ax x a2, a*) - & T(ax, a2 x a3))a + <>.

Hence

/t \\XX, x2, x3y, \Xi, xs, xgyy
neK

= 2 (y°ai-T(bi> *»xW<*«. xey
iteK

+ 2 (T(bx, b2 xb3)ai(ß5ag + 2a5/36-T(a5, ¿e)))*1 "*>

- 2 (T(c°, a^+ßxT(a2 xa3,ai)+ß2T(a1 xa3, a^+ß3T(ax xa2, a¿))\x5, x6>
neK

+ 2 0ßxT(a2xa3, a4)(a5/S6 + P(A5, ag)))^-^
iteK

- 2 (2ßiT(a2 x a3, a4)(P(Z>5, a6) + T(be, a5)))na~a)
neK

= 2(y°ai-T(c°,aiW + °Kx5,x6y

= 2q(xx, x2, x3, x¡j\x5, Xq)

establishing (1.4).

2. Construction of the Lie algebras. Starting with a module 9JÎ over a com-

mutative associative ring O with 1 which possesses an alternating bilinear form

< , > and a ternary product < , , > which satisfy (T1)-(T4), we shall construct

some Lie algebras.

First, we construct Sft = 55Í © <J>w and the associative subalgebra 2Í(9JÍ) of

Hornos«, 3?) consisting of A e Horn« (9Î, 9?) such that uA e <Dm and 9JL4S9K.

We let 21(501)- denote the Lie algebra structure on 9t(9K) where [AB] = AB-BA.
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If we define U e 31(331)" by uU = 2u and xU=x for x e 93Í, then it is clear that U

is in the center of 31(331-) ". We may also define p(A) e <D for A e 31(331)" by

(2.1) uA = p(A)u.

If Ae 31(331)", we set

(2.2) ,4' = ¿-p(.¿)£/

and note that [AB]' = [AB] = [A'B'] for /Í, .Be31(931)", so A -> A' is an auto-

morphism of 31(331)" of order two.

We next define R(x, y) e 31(331)" for x, y e 331 by

(2 „ uR(x, y) = <x, y}u,

zR(x, y) = <z, x, y y   for ze 331.

Let 9î*(33i) consist of those R e 91(931)" such that

(2.4) [R(x, y)R] = R(xR, y) + R(x, yR')   for x, y e 931.

One checks immediately that fR*(93l) is a Lie subalgebra of 3i(93i)~ containing U

and hence invariant under /4 —> A .

It is clear from (Tl) that

(2.5) R(x, y)-R(y, x) = <x, j> ¿7,       x,ye 931,

and hence R'(x, y) = R(y, x). Since q(xy, x3, x4, x2)=q(x2, x4, x3, Xy) by (1.3), we

see by (T4) that

[R(xy, x2)R(x3, x4)] = R(xyR(x3, x4), x2) + R(xx, x2R(xt, x3))

forx¡e93l, i = 1,2,3,4.

Hence, R(x, y) e 3Î*(93Î) for x, y e 331. Indeed {R(x, y) | x, y e Tl} u {(7} spans an

ideal «R(93c-) of m*(Tl). We note that if < , > represents 1, then (2.5) implies that

ÍR(Ti) is spanned by {R(x, y)\x,ye 93Î}.

Applying (2.4) to u we get

(2.7) <.xR, yy + <x, jiT) = 0   for x, j e 931, R e m*(Tl).

Now let ÍR' be any Lie subalgebra of «R*(9Jl) containing 91(331) and let 31 denote

a second copy of 3Î. Form ©(331, 3Ï') = 9Î © ft © ÍK' = 931 © Tl © <DM © <Dö © 31'.

We may define a Lie product on © = @(93l, 91') by

[Xi+Ji+aiM + jS-M + Ä!, X2+jf2 + 0£2W + ß2W + .R2]

= (xyR2-x2Ry + ayy2-a2yy) + (yyR'2-y2R'y+ß2Xy-ßyX2)~

+ «Xy, X2y + alP(R2) - a2p(Ry))u

+« ji, y2y - ßip(R2)+M*i))fl

+ (JR(x1, j2)-i?(x2, J1) + («1;S2-a2JS1)«7+ [i?!, R2])

for x„ Vi e 931, at, ßt e O, R¡ e «R',
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where [PiP2] is the Lie product in Eft'. Clearly [55] = 0 for Se®, and we need

only show the Jacobi identity.

If Si = Xi+yi + aiu+ßia + Ri, x(, j( e 3K, a¡, ßt e <D, P, e ER', /=1,2, 3, then

[[^î^]^] = {(xxR2R3 — x2RxR3 — x3[RxR2])

+ («1J2-R3 - <*2p(Ri)y3 - ^yiR'2) + ( - «^iPs + alP(R2)y3 + a3y2R'x)

+ (-<x3xxy2y + <[x3x2yxy + <xx, x2yy3)

+ ( - «1#2*3 + «3/3l^2) + (<*201*3 - «302*1)}

+{(yiRkRs -y2R'iR'3-y3[RiR2]')

+ (ß2XxR3 + ßxp(R2)x3 - ß3x2Rx) + ( - ßxx2R'3 - ß2P(Rx)x3 + ß3xxR2)

+(Os Ji*2> - <y3y2xxy -<yx, y2yx3)

+(<*Ay3 - "2ß3yi)+( - <*2ßiy3+<*iß3y2)}~

+ {«x1P2, x3y-<[x2Rx, x3> + Oi, x2yP(R3))

+ (ax<[y2, x3y-a3(yx, x2y) + (a3(y2, xxy-a2(yx, x3y)

+ (axp(R2)p(R3) - <*2p(Ri)p(R3)) + (2a2a3ßx - 2a3axß2)}u

+{«yiR'2, y3y-<y2R'i, y3y-<yi, y2yp(R3))

+(ß2<xx, y3y-ß3<x2, yxy) + (ß3<xx, y2y-ßx(x2, y3y)

+(ßip(R2)p(R3) - ß2p(Ri)p(R3))+(2ß3axß2 - 2ßxa2ß3)}ü

+ {(R(xxR2, y3) + R(x3, y2R'x) - [R(x2, yx)R3])

+ ([R(xx, y2)R3] - R(x2Rx, y3) - R(x3, yxR2))

+ (<*iR(y2, y3)- a2R(yx, y3) -a3(yx, y2y U)

+ (ßxR(x3, x2)-ß2R(x3, xx) + ß3<xx, x2yU)

+ (axß3p(R2)-a2ß2p(Rx))U

+ (<*3ßiP(R2) - cc2ß3P(Rx))U+ ([[RXR2]R3])}.

If the subscripts of each term in parenthesis above are permuted cyclically and the

resulting three terms summed, the summand will be zero. Hence, the Jacobi identity

holds in <S, and © is a Lie algebra.

We shall next give a condition for simplicity of <B.

Theorem 1. IfiRisa vector space over afield <t> with an alternating bilinear form

< , > and a ternary product < , , > satisfying (T1)-(T4) and if © = ®(9Jt, Eft(9Jt)) is

constructed as above then <B is a simple Lie algebra if and only if < , > is non-

degenerate.

The theorem will follow from the next two lemmas, but first we shall define an

ideal of 9JÎ to be a subspace S with <[xx, x2, x3y e & for xt e £f, x¡, xk e 5DI, /,/, k are

not equal. 501 is simple, if 2Ä and {0} are the only ideals in Tl and CmWVmy^O.
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Lemma 2. Let Tl be as in Theorem I and let Rad (93î) = {xe93î | <x, j>> = 0

for all y e Tl}, then Rad (931) is an ideal of Tl containing every ideal & of Tl with

S#93l.

Proof. If xe Qf #931 an ideal of Tl, then <x, j/>z = <x, y, zy~(y, x, z> for all

y, z e Tl implies x e Rad (33Î). On the other hand, we see «x,, x2, x3>, x4> = 0 for

x, e Rad (TI), x¡, xk, x, £ 93Í, i, j, k, I not equal, by (1.3). Hence, Rad (331) is an

ideal of Tl.

Lemma 3. Let Tl be as in Theorem 1 and let ©(331,9Î') be the Lie algebra constructed

as above. Ifñ is an ideal o/©(93î, 3t'), then ift n 931 is an ideal ofTl. Also, if& is an

ideal ofTl, S #931, then $ + S + «R(S, 931) is an ideal of<B(Tl, 3t(93î)) where 3t(S, 9JÍ)

is the subspace o/8t(93î) spanned by {R(x, y) | x e S, y e Tl}.

Proof. Since <x1; x2, x3> = [xi[x2[x3fl]]], the first statement is clear. The second

follows immediately from (2.8) and the fact S^Rad (93J).

To prove Theorem 1, we first assume < , > is nondegenerate. If «ft#0 is an ideal

of ©(93J, 3t(93t)), then (2.8) shows «ft n 931 #0. By Lemmas 2 and 3, we have

ïft n 33î = 33i. But 931 generates ©(331, 3î(93l)) by (2.8) so «ft = ©(331, «R(93î)). If < , >

is degenerate, then 3 = Rad(93f) is a nonzero ideal of 93Î. Hence «ft=S+§+

31(0, 93?) is a nonzero ideal of ©(33Í, 3î(3Jl)). But «ft #©(931, «R(93f)), since u $ «ft.

3. A characterization of the Lie algebras. In this section, we shall obtain a

characterization of the Lie algebras ©(93Í, 31') constructed as in §2 from a module

33Î over a commutative associative ring O with 1 containing \ with ■£ + ■£ = 1 where

931 possesses an alternating bilinear form < , > and ternary product < , , >

satisfying (T1)-(T4). Let © = ©(331, 31') be such a Lie algebra, and let <? = «,/=«,

and h=U.We have by (2.8) that

(3.1) [ef] = h,       [eh] = 2e,       [fh] = -2/.

Hence, the subalgebra 31 = í>e + 0/+ OA of © has a faithful representation v -*■ va,

v e V, a e 9t, on V= <S>Vy © <f>v2 given by

(3.2) Vye = 0,    v2e = — Vy;       Vyf'= v2,   v2f = 0;       Vyh = vx,    v2h = —v2.

If x e 331, then the 3i-submodule of © under the adjoint action of 31 generated by

x is <ï>x+ Ox which is a homomorphic image of V.

We note that if D e Hom0 (33Î, 93Î) is a derivation (i.e., <x, y, z>Z> = <xZ>, y, z>

+ <x, yD, zy + <x, y, zD», then D can be extended uniquely to an element

Dem*(Tl) with p(D) = 0. Conversely, D e Si*(93î) with p(D) = 0 restricts to a

derivation of 33Î. We shall identify ^ = {De 3i*(93J) | p(D) = 0} with the derivations

of 33Î. We have an ideal ®¡ of ® consisting of elements of the form 2i ^(^¡, yd

with 2t <.xi> J¡> = 0. Such elements are called inner derivations of 331. Since ^ e 4),
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we see that m*(Tl) = Q>U © $>. Hence 3t' = Ot/ © ■$>' where <£' = $ n 3T. We may

now write

(3.3) © = 2 (*x+Oj?) + 9t + ®'.
*eiD¡

It is clear that ®' is the centralizer of 9Í in ©. Also, if D e 1)', then [3K/J>]£931

and [93Í, Z)]çl)' only if D = 0. Hence, S' contains no nonzero ideals of©. We

have shown half of

Theorem 2. A Lie algebra © over a commutative associative ring O a ^ ¿y ¿so-

morphic to a Lie algebra ©(931, 3Í') constructed as in §2 if and only if © satisfies:

(i) © contains a subalgebra 91 = Oe + 0/+ C'A having a representation on V=

<ï>Vy © <D«;2 gi't-en èy (3.2),

(ii) © as a« 31 module under the adjoint action is a sum of 31, submodules which

are homomorphic images of V, and the centralizer %' ofñ in ©,
...

(iii) IB' contains no nonzero ideals of<B.

Proof. Let © satisfy (i)-(iii). Set ©¡ = {xe© | [xh] = ix, / = 0, ±1, ±2}. Clearly

© = ©i + ©2 + ©-i + @_2 + ©o and ©0 = <l>/i©S'. Also, we see S¡ n ©, = 0 for

i#7 unless /—7= ±3 and 3 = 0 in <P. Letting 93Î (respectively SOI) be the set of

images of Q>Vy (respectively 3>i>2) under the homomorphisms of V onto submodules

of©, we see 931c©, and 95iS©_!. It is clear that x->x=[x/] is a bijection of 93Î

with 33Í. Also, 4>e^©2, 0/ç©_2, and

(3.4) © = 931 ©Oe© 931 © O/© <P/i © <©'.

We have [TlTÏ\^&2<^<&e + Tl. If [xy] = ae + z with x,j>, z e 331, ae<5>, we see

— z=[[xy]e] = [[x<?]_y] + [x[.ye]] = 0. Hence [93t33i]Ç<l>e, and we may define a skew

bilinear form < , > on 93Í by <x, >>>«?= [x, y], x, v e 331.

One sees that [33«[33«3ÏÏ]]^©1f=0/'+93i. If [x[yz]] = af+w with a e O, we33i,

then — aA=[[x[vz]]c] = [x[_);[ze]]]= — [x[j-z]] = — (y, z>[x, e] = 0. Hence

[33î[33f93î]] S 33Î,

and we may define a ternary product <x, y, z> = [xfyz]] e 93Î for x,y,ze Tl.

Since <.x,y,zy = [[xy]z\ + (y,x,zy = (x,yyz + (y,x,zy for x, j», z e 331, we see

(Tl) holds for 93Î. A similar calculation shows (T2). To show (T3), we calculate

«x,j>, z>, wye = [[x[yz]]w] = [[xw][^z]] + [[w[^z]]x]

= <x, w><j, z>e + «w, y, z>, x>;        x, ji.z.we 93Î.

Thus,

«x, y, zy, wy = «z, x, j>, w> + <>>, z><x, w> + <x, z><j, h>>   (by (T2) and (Tl))

= «w,x,yy,zy + (z, wy(x,yy + (y,zy(x, w> + <x, z><j, wy

= «x, y, w>, zy + iz, w><x, >>>    (by (Tl) and (T2))

for x, ;,z,we 93Î.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



406 J. R. FAULKNER [April

If x, y, z,v,w eWl and P= [v, w], then

«x, y, z>, v, w> = [<x, y, zyL] = <xP, y, z> + <x, jP, z> + [x[;>[zP]]]

= «x, i>, wyy, z> + <x, <j, r, w), z> + <x, j, <z, w, y»,

since

[zP] = [[z/]P] = [[zL]f] + [z[fL]]

= <z, v, wy~ + [z[f[vw]]]] = <z, v, wy~ -<v, wyz = <z, w, vy~.

Here   we  have  used   [f[vw]]=— [vw]e <¡>f and   [[[v, w]e]e] = 2[[ve][we]]=2[vw]

= 2<[v, wye, so [vw] = <r, w>/. Thus, we have established (T4) and

(3.5) [vw] = <v, wyfi       v,wem,

(3.6) [z[w]] = <z, w, vy~,       z,v,we 5DI.

If de®' and xe50f, then [xd] e ®xçm + <S>f If [xí/]=j> + o/; y e 50f, a e <J>,

then — a/z = [[xc?1]«*] = 0. Hence, [xd] e 50Î, and we may define Dd e Hom4 (50Î, 501)

by xDd= [xd] for x e 50Î. We see that

(3.7) [xd] = (xDd) -    for x em, de®'.

Hence, <[x,y, zyDd = <[xDd,y, zy + <{x,yDd, zy + (x,y, zDdy for x,y, ze 5DÎ, de®',

and P<¡ is a derivation.

We now may define a linear map <p: © -> ©(501, ER*(50c)) by

(3.8) ?:x+.y + ae + 0/+y/i + (/^x+j/ + aH + /Sß + y<y+£)d

where x, >> e 5Dt, a, |8, y e «J), and d e 2)'. To check that <p is a Lie homomorphism,

we first note that the structure of © as an 21-module yields [sa]" — [s"a®] for s e ©,

a e 91. Thus, we need only check

(3.9) [x,y]" = <x,yyu, x,yeWl,

(3.10) [x, d]" = xDd, xem,de®',

(3.11) [x, y]* = <x, yya, x,yem,

(3.12) [x,d]" = (xDd)~, xem.,de®',

(3.13) [erf]» = [DcDd],       c,de%',

(3.14) [x^r = R(x, y),       x,yeWl.

We note that (3.9) and (3.10) follow by definition, that (3.11) and (3.12) follow

from (3.5) and (3.7) respectively, and that (3.13) is obvious. Since [e[xj>]] = [x_y]

= <x, yye, [f[xy]] = — [x, y]= — <x, yyf and [/z[xj>]] = 0 for x,yeTt, we have

d=[xy]-i(x,yyhe®'. Now z[xy]0 = z(i<[x,yyU+Dd) = <[z, x,yy forze50f,and

u[xy]v = <[x,yyu imply [xy]" = R(x, y) to establish (3.14). Thus, <p is a homo-

morphism.
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Since the kernel of <p is contained in ID', condition (iii) implies that «p is an

isomorphism. Since «R(33l)ç3*'=(<D/i-l-S')<' by (3.14), we have © isomorphic to

©(33Í, 31') as desired.

4. Identification of the Lie algebras. We wish to identify the simple Lie algebras

©(331, 3í(33í)) constructed as in §2 from the ternary algebras of Example 1 with

< , > nondegenerate and of Example 2 with $ an exceptional simple Jordan

algebra of dimension 27. We shall do this for O a field of characteristic zero. Since

< , > remains nondegenerate upon extension of the base field, we may assume in

both cases that <I> is algebraically closed.

Example 1. We first consider the derivation algebra of 931 which we have

identified with 2) ={Z) e m*(Tl) | />(£) = 0}. By (2.2) and (2.7), we have î)Çfi, the

Lie algebra of linear transformations of Tl which are skew relative to < , >. An

immediate calculation shows however, D e 2 is a derivation of 93?. Thus, if dim 331

= 21, we have that S is a Lie algebra of type C, and dim 1> = /(2/+1). Since 1> is

simple, we see that the inner derivation algebra S, = {2f R(x¡, y¡) \ 2i <x¡, y¡y = 0} = T>

and «R*(93J) = «R(93l).

Now ©(93t, 3t(33c-)) = 33i © 331 © <D« © <J>« © <D«7 © S>, so dim ©(331, 31(931)) =

4/+3 + /(2/+l) = (/+l)(2(/+l)-l-l). By the classification theory of simple Lie

algebras, we see that ©(331, 3i(93t)) is of type C¡ + 1.

Example 2. Again we look first at the derivation algebra ID. As before, D e D is

skew relative to < , >. Thus,

0 = «x, y, zyD, w> + «x, y, z>, wZ3> = «xZ>, y, z>, w> + «x, yD, z>, w>

+ «x, y, zDy, wy + «x, y, z>, wZ)>   for x, y, z, w e Tl,

and D is skew relative to the four-linear form q(x, y, z, w) = «x, y, z>, w>>. Con-

versely, if D is skew relative to q and < , >, it is clear that D is a derivation of 93Î.

If Q is the quartic form Q(x)=q(x, x, x, x), xe 93Î, and if Q(x, y, z, w) is its

linearization, then we see by (1.3) and (1.2) that

Q(Xy, x2, x3, x4) =  2_, 1\X\%i x2„, x3„, xin) = 24q(xy, x2, x3, x4) + ^4

where 54 is the symmetric group on {1, 2, 3, 4} and A is a sum of terms of the form

<xi( Xy><x,„ x,>. Hence, D is skew relative to < , > and q if and only if D is skew

relative to < , > and Q. Thus,

'S) = {De Horn* (931, 931) | Q(xD, x, x, x) ='0 and

<xZ>, yy + <x, yDy =0,x,ye Tí}.

Calculating Q, we find

Q(x) = 24(aN(b) + ßN(a)-T(a#,b#)+i(aß-T(a,b))2)

(4.2)
forx= T   Z),   a,/3e<D,    a,be%.
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Thus, 3) is a Lie algebra of type P7 (see [6]), and dim D = 133. Since Î) is simple,

$¡ = 3) and ER*(50c) = ER(50î). Hence dim ©(501, ER(50i)) = 2(56) +3+ 133 = 248. Thus,

by the classification of simple Lie algebras, we see that ©(501, ER(5DÎ)) is of type P8.
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