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1. Introduction. In a paper which appeared in 1957, V. Tchakaloff [1] proved

the following theorem. Let B be a closed bounded set in the plane with positive area.

Let <¡>i, 02, • • -, <}>n be N linearly independent and continuous functions of x, y in B,

of which one does not vanish in B. Then we can find N points P¡:(xí, y¡) lying in B

and N weights w¡ = 0 such that

(1.1) // <¡>jdxdy = ¿ w¿y(Pí) , i =1,2, ...,N.

Tchakaloff's demonstration is a very beautiful one, involving the theory of convex

bodies. A separating hyperplane is employed and a nonconstructive proof is ob-

tained. The theorem is valid for weighted integrals of dimension d 2ï 1.

Equivalent results on finite moment spaces were obtained earlier by various

authors. See, e.g., Karlin and Studden [2, Chapter II]. Tchakaloff's independent

work appears to be the first to formulate the result explicitly as in (1.1), thereby

stressing its numerical analysis aspect.

This result is interesting for numerical analysis because: (1) Quadrature rules

with nonnegative weights are more favorable than rules with mixed weights in that

they lead to more stable computations ; (2) Interpolating quadrature formulas de-

termined by brute force methods do not often yield weights that are of one sign.

The purpose of the present paper is to give an alternative proof of Tchakaloff's

theorem which is constructive in its nature. The present proof is also a more "ele-

mentary" one than Tchakaloff's in that it makes use only of the familiar raw ma-

terials of elementary numerical analysis.

Extensions and numerical applications will be published subsequently by the

author and by M. W. Wilson.

2. An Alternate Proof of Tchakaloff's Theorem. In this proof we limit ourselves

to integrals of dimension d = 2 and to functions <t>i, <j>i, • • •, <¡>n that are monomials

(i.e., powers) in x, y. This limitation will still enable us to exhibit the essential

features of the method.

We begin with a number of very simple lemmas.

Lemma 1. Let fafa y) = 1, <l>t(x, y) = x, fo(x, y) = y, 4>¿x, y) = x2,
<¿>s(£, 2/) = xy,<l>ñ(x,y) = y2, • ■ • be an arrangement of the powers x^', 0 ^ i, j < ».

For any integer N ja 1, the functions <f>i, • • •, <¡>n are linearly independent. That is, if

f(x, y) = Y^i=i arfiix, y) = 0 in a region R, then ai = 0, i = 1, 2, • • •, N.
Proof. Call m + n the degree of the monomial xmyn. We have 3m+n xmy/dxmdyn

= m\n\, and dm+nxm'yn'/dxmdy" = Oif m' + n' = m + n but (m', ri) ^ (m, n), or if
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m! + rí < m + n. Assume that/ = 0 in R. Now let a¡xmyn be a monomial of high-

est degree in/. Then, dm+nf/dxmdyn = 0 = afln\n\. Hence a, = 0. Now iterate this

process and conclude that all the coefficients vanish.

Corollary. // (PN designates the linear space of functions 23<Li a¿0¿, then ÖV is

of dimension N.
Lemma 2. Let B be a region in the x, y plane. Then, we can find points Pi =

(xi, yi), • • •, Pn = (xn, 2/iv) in B such that

(2.1)

01 (Pi) 02 (Pi) 4>n(Pi)
7*  0

1*1 (Pw) 02^)   •••   ̂ (Piv)l

Proof. Select any point in B as Pi. Then 0i(Pi) ^ 0. Consider the function

= ff(P)
01 (Pi) *2 (Pi)

0j(P) 02 (P)

This is a linear combination of 0i(P) and 02(P). If ô'(P) = 0 in P, it would follow

from Lemma 1 that 0i(Pi) = 0 and 02(Pi) = 0. This is impossible. Hence there is

a P2 such that g(Pv) 7^ 0. Consider next the function

01 (Pi) 02 (Pi) 03 (Pi)
0i(P»)        02(Pi)        03(Pi)   =h{P) .

0X(P) 02 (P) 03 (P)

This is a linear combination of 0i(P), <¡>i(P), <f>z(P)- If h(P) s= 0, all coefficients

would be zero. But the coefficient of <f>z(P) is g{P?) ?¿ 0. In this way we may pro-

ceed step by step.

It should be observed that if Qi, • • •, QN are N distinct points in B, it does not

necessarily follow (as in the case of polynomials of one variable) that \<t>i(Q¡)\ f* 0.

However, the following may be asserted.

Corollary. Given N points Qi, Q2, • • ■, Qn in B, and given e > 0. Then we can

find N points Pi, P2, • • -, Pn such that |Q,- — P¿| í£ e, i' = 1, 2, ■ • -, N and

|0;(P;)l ^0.
Proof. Select Pi = Q\. The above argument for g(P) yields a point P2 in any

neighborhood of Q2 such that gr(P2) 9e 0. We may now proceed step by step.

Lemma 3. Given a rectangle R: Xi ^ x ^ x%, y\ ^ y á y% and a fixed integer

N 2ï 1. We can find an integer k(N) and k(N) points Pi, P2, • • -, P*u\o, and k(N)

weights W\ > 0, w2 > 0, • • -, Whim > 0 s«c/i that

r r Hm

(2.2) ¡J   ¿jdxdy =  E «^-(P,) , i = 1,2, •••,2V

Proof. This can be accomplished in many ways. For example, one can use a

product rule of Gauss rules of sufficiently high order. To be more specific, let the

highest power of x and y in 0i, 02, • • •, <1>n be respectively p(N) and q(N). De-

termine p*(N) and q*(N) such that 2p*(N) - 1 ^ p(A0 and 2q*(N) -lä ?(iV).
Set k(N) = p*(N)q*(N) and form the product rule of Gauss rules of order p*(N)

in x and q*(N) in y. This product rule will integrate over R exactly all monomials

x'y', Ogi'^ 2p* — 1, 0 á i á 2g* — 1, and a fortiori 0i, 02,  • • -, 0at. The points
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Pi, P2, • • • are (xa,yß) where {xa} and {y$\ are the Gaussian abscissas along the x

and y axes respectively. The weights are products of Gaussian weights and hence

are positive.

Corollary. By taking Gauss rules of odd order, one of the points Pi will be the

center of the rectangle.

Lemma 4. Given a region B and N distinct points Pi, P2, • • •, Pn lying in the in-

terior of B. Then we can find N squares S¿: xu ái á x2i, yu Û y á ya, i =

1, 2, • • -, N, sufficiently small and placed in such a manner that

(a) SiCB,

(b) SinSj = Oifi^j.
Proof. Take, e.g., P» as the center of the squares and take the diameter of the

squares less than \ minis,-,,-^ |Pf — P¡\.

Lemma 5. Given a bounded region B and N distinct points Pi, P2, • • •, Pn in B.

Given a 8 > 0. Then we can find an integer s (s = s(B; Pi, • • •, Pn', 8)) and s rec-

tangles Pi, P2, ■ • -, Rs with sides parallel to the x and y axes such that

(a) The P¿ include the squares Si already constructed in Lemma 4,

(b) Ri C B ,
(c) RiHRj = Oifi^j ,
(d) area B — XXX area P¿ ^ 5 .

Proof. Take Pi = Si, • • •, Rn = Sn- For the remaining rectangles, pack

B — U'7=i Si with nonoverlapping rectangles sufficiently densely so that the area

of B is approximated by J2{ area Pi to within 5. The exact details here do not have

to be spelled out.

Remark. If N is held fixed but if 8 —> 0, note that the first N rectangles, the first

of which contains Pi, the second P2, etc., may be kept fixed.

Theorem. Let B be a bounded region in the x—y plane. Let N 2: 1 be fixed.

Then we can find points T\, T2, ■ ■ ■ ,TN in B and nonnegative weights wi, w2, ■ • ■, wN

such that

(2.3) // <t>ßxdy = ¿ v>¿j{Tí) ,       j = 1, 2, • • -, N .
JJB i=l

Proof. I. Select N points Pi, • • -, PN in B such that |0<(P,-)| ^ 0. This is pos-

sible by Lemma 2. Pack B with rectangles Pi, P2, • • •, Rs as in Lemma 5. The

relevant 5 will be specified shortly. The first N rectangles will be squares

Si, • • -, Sn- Over each rectangle P¿, define a positive quadrature rule as in Lemma

3. In Si, • • •, Sn make sure that one of the nodal points in the respective squares

is the center of the square, i.e., P¿, where i = 1, 2, • • -, N.

Let Ui, Ui (i = 1,2, • • •, n) designate the weights and respective locations that

occur in all the rules defined over all the rectangles. Note that u¡ > 0. Note further

that we may arrange the order so that XJ\ = Pi, t/2 = P2, • • -, UN = Pn-

For any matrix A = (an), let \\A\\ designate the matrix norm max, J^i \aa\

and for a vector v = (t>i, • • •) let ||y|| designate the compatible vector norm

max, ¡Vi\. Let M = maxiSySAr supper |0y(P)|. Now select 8 such that

m a\                                       ^               mm              Ui
(2.4) 0 < 8 < níiáN—-r

MUMPi))-1
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Use such a value of 8 in packing B with rectangles. (Note the order of procedure

here. N is given. Determine Pi, • • •, Pn. Put squares S¿ around P¿, ¿=1,2, ■ ■ -, N,

and in each square define a product Gauss rule of which one node is Pt and the

corresponding weight is Ui. Next determine 8 from (2.4) and use it to form a pack-

ing of B by rectangles into which we also insert a positive quadrature.)

If P = Uî_i Ri> we nave

(2.5) //   <t>jdxdy = X ut<i>j(Ui) ,       j = 1,2, ■ ■ -,N

Let

(2.6) ey = I)   <¡>jdxdy - II tßxdy ,       j = 1, 2, • • -,N.
B R

Then,

(2.7) |ey| ̂   //       |0y|eto% è M if      dxdy ̂  M8 ,       j = 1, 2, • • -, N .

Now (2.5) can be rewritten as

r f N n

(2.8) //   ¿¿dxdy - ej = £ uóÁPi) +   Z)   u^^Ui) .
J J B i=l i=N+l

Now consider the N X N system in variables t = (th • • •, tN)

N

(2.9) Z trfiiPi) = ey,       j = 1, 2, • • -, N .
¿=i

If € = (ei, «2, • • -, e^r)', (2.9) has the solution

(2.10) t = [4>ÂPi)T^

and hence by (2.7) and (2.4),

11*11 á II^PiOrtNI
(2.11) g III^ÍP«)!"1!!^«

<   min   Ui.
l=i = .V

Hence,

(2.12) max   \ti\ <  min u¡.
l£iäN Ki<N

Combining (2.9) and (2.8) we obtain

r r n n

//   <f>jdxdy = ^ (Ui + íi)0y(P¿) + J2 ul<f>j{Ui)
(2.13) B " N+1

n

= YtuUAUi)        j=\,2,---,N
i=i

where, in view of (2.12), u/ > 0.

II. The object of part I was to produce a quadrature formula (2.13) with posi-
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tive weights. The abscissas or nodes are U\, U2, • • •, U„, where n may be very

much larger than N. We shall next show that we may reduce n to N by using an

appropriate subset of {£/,}. This can be done by a method of E. Steinitz [3].

The linear space ÖV of functions £yLi a-ibi defined on a region R is of dimen-

sion N. Hence, the algebraic dual space (the space of all linear functionals defined

on (?n) is also of dimension N. Among the n linear functionals

(2.14) Li(f) - f(U¡) ,

at most N can be linearly independent. Hence if n > N, we must have

(2.15) aiLi+ ••• +anLn = 0

where not all the a's vanish and, in fact, one of the o's may be assumed to be

positive. Define

(2.16) L = Mi'Li + u/L2 + ■■■ + un'Ln ,        (u/ > 0)

where the u/ are from (2.13), and set

(2.17) a = max ^ .
l=i=n W/

Note that a > 0, au/ — a i ^ 0, and furthermore, au/ — a{ = 0 for at least one i.

From (2.16) and (2.15) we obtain

(2.18) L = aUl' * ai U + aU2' ~ a*U + • • • + aUn' ~anLn.

a a a

Thus, L has been expressed as a linear combination of at most n — lof L\, • • -, LH

with nonnegative coefficients. Iterating this process, we arrive at

(2.19) L = wiLi + WiL2 + • ■ ■ + wnLn ,       w¡ ^ 0 .

Hence, from (2.13)

(2.20) // tjdxdy = ¿ Wi0y(ï//) ,        Wi^O,       j = 1, 2, • • -, N ,
JJ B i=l

where the U/ (i = 1, 2, • • -, N) are a subset of Ui (i = 1, 2, • • -, n).
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