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A CONSTRUCTION OF PSEUDO-ANOSOV HOMEOMORPHISMS

ROBERT C. PENNER

ABSTRACT. We describe a generalization of Thurston's original construction
of pseudo-Anosov maps on a surface F of negative Euler characteristic. In fact,
we construct whole semigroups of pseudo-Anosov maps by taking appropriate
compositions of Dehn twists along certain families of curves; our arguments
furthermore apply to give examples of pseudo-Anosov maps on nonorientable
surfaces. For each self-map /: F —> F arising from our recipe, we construct
an invariant "bigon track" (a slight generalization of train track) whose inci-
dence matrix is Perron-Frobenius. Standard arguments produce a projective
measured foliation invariant by /. To finally prove that / is pseudo-Anosov,
we directly produce a transverse invariant projective measured foliation using
tangential measures on bigon tracks. As a consequence of our argument, we
derive a simple criterion for a surface automorphism to be pseudo-Anosov.

Introduction. A homeomorphism <p oi a surface F is said to be pseudo-Anosov
if no iterate of tp fixes any essential nonboundary- or puncture-parallel free homo-
topy class of simple curves in F. Examples of these homeomorphisms date back
to the work of Nielsen (see [N and Gi]), but a systematic study of these maps
was not undertaken until the work of Thurston [Tl]. Anosov [A] studied maps of
the torus which preserve two foliations of the torus by lines of irrational slope, and
pseudo-Anosov maps on F similarly preserve a pair of foliations (with singularities).

Pseudo-Anosov maps are by no means special; indeed, the monodromy of any
nontorus fibred knot which is not a satellite is pseudo-Anosov [T4]. (Note that
being pseudo-Anosov is a conjugacy invariant.) Moreover, these maps play an
important role in the geometrization of three-manifolds; indeed, a mapping torus
has hyperbolic structure if and only if the monodromy is pseudo-Anosov [T4].

In the original preprint [Tl], there is described a construction of pseudo-Anosov
maps which we will recall later. In this paper, we generalize Thurston's construction
and give a recipe for constructing whole semigroups of pseudo-Anosov maps, many
of which do not arise from Thurston's construction. Our recipe is also applicable
to nonorientable surfaces, and we give examples of pseudo-Anosov maps in this
setting. (In [T3], Thurston proved the existence of such, and [AY] gave the first
explicit examples.)

This paper is organized as follows. In §1, we review the basic terminology and
results on train tracks in surfaces and indicate the connection between measured
train tracks and measured foliations. §2 is devoted to tangential measure on bigon
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180 R. C. PENNER

tracks, and we develop a new condition (AC) on tangential measures which is cen-
tral to later concerns. We then proceed, in §3, to describe our construction of
semigroups of pseudo-Anosov maps for the case of oriented surfaces; as a conse-
quence of the proof, we derive a simple criterion for recognizing pseudo-Anosov
maps. We describe an integral linear representation of the semigroups of mapping
classes we have constructed and consider the question of whether our recipe gives
virtually all pseudo-Anosov maps. Finally, §4 extends our results to the setting of
nonorientable surfaces and gives examples.

This work owes obvious intellectual debts to the far-reaching insights of William
Thurston.

1. We begin by recalling the basic definitions and results introduced in [T2 and
T3]. See [HP or Pa] for a comprehensive treatment of this material. A train track
r on a surface F is a finite collection of simple closed curves and one-dimensional
CW complexes disjointly embedded in the interior of F. The vertices of r are called
switches, and the (open) edges and the simple closed curve components of r are
called branches. We furthermore require the following conditions on r.

(1) (Smoothness) The branches of r are W1. If by and b2 are branches of r incident
on the switch s, then the one-sided tangents to by and b2 at s either coincide or
differ by rotation-by-7r in the tangent plane at s.

(2) (Nondegeneracy) Each switch of r is at least trivalent. For any switch s of r,
there is a W1 embedding /: (0,1) —► r with f(^) = s.

(3) (Geometry) If Sf is a component of F — r, then the double of S" along the
edges of r has negative Euler characteristic.
An example of a train track is given in Figure 3.1b.

An n-gon D in F is an open two disc embedded in the interior of F with n
discontinuities in the tangent to the frontier of D. Condition (3) is equivalent to
the condition that no component of F — t is a bigon, monogon, nullgon or smooth
annulus.

We say a track r carries a track r' if there is a W1 map $: F"D homotopic to
the identity so that $(r') C r with d$p | (tangent to r') ^ 0 for any p E r'. Suppose
t' is carried by r with $(r') C r. We define the incidence matrix M of <J> relative
to t and t' as follows. For each branch bi of r, choose some point Xi in the interior
of bt. We define Mf, = #{$~1(xi) fl Cj}, where Cj is a branch of r'.

If A is a matrix or vector, we will write A > 0 to mean that each entry of A is
nonnegative with a similar interpretation for A > 0. Thus, M > 0 by definition.
We have the following classical theorem (see [Ga]), which is a fundamental tool in
what follows.

THEOREM A (PERRON-FROBENIUS). If M > 0 is a square matrix and if
there is some positive integer N so that MN > 0, then the eigenvalue X of M of
maximum modulus is positive real. Moreover, the eigenvector x of M corresponding
to A satisfies x > 0, and x is the unique eigenvector with this property.

A train track r is recurrent if for each branch b of r, there is some curve 7 carried
by t with b C $('/)• If r' C F is another train track which is transverse to r, we say
r hits t' efficiently if there is no bigon in F with frontier made of two W1 arcs, one
from r' and one from r. A train track r is transversely recurrent if for each branch
b of t there is a simple curve 7 so that 7 fl b ^ 0 and 7 hits r efficiently. Transverse
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PSEUDO-ANOSOV HOMEOMORPHISMS 181
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b3

Figure l.l

recurrence will be discussed in §2. A recurrent and transversely recurrent track will
be called birecurrent. A track r is said to fill F if each component of F — t is a disc,
a boundary-parallel annulus, or a puncture-parallel punctured disc.

A transverse measure (or simply a measure) p on a track r is a function

p: {branches of r} -► R+ U {0}

satisfying a certain equality (called a switch condition) at each switch; namely, if
branches 61, b2, b3 of r are as indicated in Figure 1.1, then p(by) = p(b2) + p(b3).
It is easy to see that a train track is recurrent if and only if it supports a positive
measure.

A measure p > 0 on a track r defines a measured foliation in F as follows. (See
[FLP] for the theory of measured foliations.)

Construction. Choose a metric on F and consider the rectangular neighborhood
Ni of branch bi of r of width p(bi) foliated by arcs parallel to 6,. We may assume
(by rescaling the metric if necessary) that the Ni are pairwise disjoint except near
the switches. The switch conditions guarantee that the Ni may be combined to
give a foliated neighborhood (N,&~) of r as in Figure 1.2a. We identify the edges
of complementary regions of F — N as in Figure 1.2b to get a measured foliation of
F.

Every (equivalence class of a) measured foliation on F arises in this way from a
measure on some birecurrent track. Moreover, distinct measures on a fixed track
define distinct classes of measured foliations. In contrast, distinct train tracks can
support measures which describe the same class. We define an equivalence relation

Figure 1.2
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~ on measured tracks generated by three moves: isotopy, splitting, and shifting,
to be defined presently. It will be clear that equivalent tracks define equivalent
measured foliations on F (and the converse is proved in [HP]).

To shift a measured track, we slide one switch past another as in Figure 1.3a.
(Numbers next to edges indicate measures.) There are three cases of splitting a
branch b as in Figure 1.3b: p3 > py (and p2 > p4 by the switch condition);
P3 = Pi (P2 = P4); and p3 < py (p2 < P4). We split as indicated in the figure
in these cases. The inverse of a split is called a collapse, and the collapse is called
nontrivial if it is not of the second type.

REMARK. If (r,p) splits to (r',p'), then r carries r'.
One constructs the space JifJo(F) of measured tracks as the space of equivalence

classes; denote the class of (r,p) by [r,p]. ^Sq(F) inherits a topology from the
Euclidean topology of measures on tracks. There is an associated projective space
&So(F) = ^ffSo(F) — {0}/R+ of projective measured tracks, where R+ acts mul-
tiplicatively on measures. &So(F) is a sphere which compactifies the Teichmuller
space of F. (See [Tl, FLP, K].) The action of homeomorphisms of F on ^Sq(F)
descends to an action of the mapping class group MC(F) on ^£f%(F) or j3°^q(F),
which continuously extends the usual action of MC(F) on the Teichmuller space.
(See [K].)

The space MSo(F) (P%(F)) is canonically isomorphic to the space Mf^o(F)
(PS^o(F)) of measured (projective) foliations of compact support on F considered
in [FLP]. The collection of measures supported on a birecurrent maximal (in the
sense of inclusion of point sets) track is often regarded as a coordinate patch on the
manifold M9q(F).
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PSEUDO-ANOSOV HOMEOMORPHISMS 183

There is a natural, bicontinuous and symmetric pairing

(■, •): JfSo(F) X J?%(F) -> R+ U {0}
which extends the geometric intersection number of curves.  In case p and p! are
measures on tracks r and r' hitting efficiently, then

(]r,p],[r',p!])= £ Wi^j)p\b'i)p(bj).
branches by of r
branches b^ of T

A mapping class $ on a surface F of negative Euler characteristic is said to be
pseudo-Anosov (abbreviated pA) if there is a pair Sf, and Sfu of transverse arational
(i.e., no closed leaves) measured foliations on F and a representative / of * so that
f(3ru) = *&~u and f(9rs) = £?a/\ with A > 1. A is called the dilatation of *.
(See [Mi and HT] for a proof that this definition agrees with the definition in the
introduction.) A mapping class "J/ is reducible if there is a family of essential disjoint
simple closed nonboundary- or puncture-parallel curves C and a representative /
of * with /(C) = C. In case there is such a collection C of reducing curves and S
is a component of F — C, we may choose some least iterate fN of / that maps S
to S fixing C fl S componentwise. The isotopy class of FN\s is called a component
map of vf. Thurston's classification, (see [Gi or FLP]), of mapping classes says
that each component map of $ is either periodic or pA.

2. We will call a branched one-submanifold r of F that may fail to be a
train track only because of bigon complementary regions a bigon track (or simply
a track). All the notions and constructions of the previous section apply to bigon
tracks. Unlike train tracks, however, distinct measures on a bigon track can describe
equivalent measured foliations. Similarly, when we say that one bigon track carries
another, we must be careful to specify how the track is carried.

A tangential measure v on a bigon track r is a function

v: {branches of r} -* R+ U {0}

satisfying the following conditions:
(i) Let D be an n-gon, n > 1, of F — r with W1 frontier edges Ey,..., En c r,

where Ei is the closure of the union of branches bij, j = 1,..., r» of r. Define the
total tangential measure of Ei by v(Ei) = J2, ui°i,j)- We require that v(Ei) <
Y^k^i^iFk), for eachf.

(ii) Let A be a topological annulus of F — r with frontier the union of arcs 71
and 72 so that 71 is smooth. We require 1^(71) < ^(72)-

Just as with measure and recurrence, a track is transversely recurrent if and
only if it supports a positive tangential measure satisfying strict inequalities. (See
[HP].)

If t is a bigon track which fills F, we define the dual bigon track r* as follows.
Start with a short transversal b* to each branch bi of r so that b* C\ bj = 6ij. Let
R be a simply connected region of F — r and let E be an edge of R, where E is
the closure of the branches by,...,bn. The transversals b*, i = 1,...,n, are all
made confluent in R near r to form a branch, say e, of r*. Finally, if ey and e2
correspond to adjacent edges Ey and E2 of R, then we add a branch to r* smoothly
connecting ey and e2 in R.   A similar procedure is employed if R is an annulus.
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(a) (b)

Figure 2.1

Some examples are given in Figure 2.1. Notice that r* has one complementary
bigon for each switch of r, and r* hits r efficiently.

Certain tangential measures u onr determine (transverse) measures u* on r* so
that

(]r,p],[r*,y*])=     £    p(bi)u(bi)
branches

6, of r

for any measure p on r. The salient condition is the following:
Alternating CONDITION AC. Suppose R is a simply connected component

oi F — r and the consecutive edges of the frontier of R have total tangential measure
(t't)"-!! regard the subscripts as cyclically ordered. We require

(a)ET4/'~l(-1)*~i,'^0'J = 1'"-'n'
(b) Vj < Vj-y + Vj+y, j = 1, . . . , n.

In particular, if n is even, then the sum in (a) is zero. AC is equivalent to the
triangle inequalities on a 3-gon and on a 4-gon equivalent to vy + v3 = v2 + uA. A
tangential measure on r satisfying AC is called a metric on r.

LEMMA 2.1. Let r be a bigon track filling F and let v be a metric on r. v
determines a collection J?(v) of measures on r* so that for each v* E J?(v)
v*(b*) = u(b), if b is a branch of r. Moreover, Jf(v) is a singleton if r has
only complementary oddgons, and there is a one-parameter family of solutions in
J?(v) for each evengon.

PROOF. Suppose R is an n-gon of F - r, and adopt the notation of Figure 2.2a
for the branches of r*. Solving for (^*(a,))™ in terms of (v, = v(El))1% yields the
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linear system

/1     1     0     • • • ° ] "1 \ /1     1     0    • • ■ 01 Uy \
0     1     1     • • • 0 ! I/2 0     1     1     • ■ • 0 ' 1/2

I . n even
! ■** 1

0 •••    1    1 j i/„_i 0 ■••     1    lj i/„_i
VlO • • •      0     1 I     Vn    J \0 •• 0 I   Vy-V2 +-VnJ

/ 2     0     ■ • ■      0 1     Vy - !/2 +-r I/„    \

„ odd   I   °     2     •   •     ° !     "2 " "3 + • • ■ + vy~* i :

VO ■••       2 \   Vn - Vy -\-+ V„-y J

Thus, AC guarantees a unique (and nonnegative) solution on an oddgon.
On an evengon, we find a one-dimensional solution space to the linear system,

and we must verify the existence of a nonnegative solution. We proceed by induction
on the number of sides of the 2n-gon, and the case of a bigon is an easy exercise.
Consider a fourgon of consecutive sides Ey,..., EA as in Figure 2.2a. We see that

v*(ay) = t,    v*(a2) = u(Ey)-t,

v*(a3) = v(E2)-v(Ey)+t,
v*(aA) = u(Ez) - v(E2) + u(Ey) - t

is a solution which is nonnegative provided

sup{0>(£i) - HE2))} < t < ini{v(E4),i>(Ey)},

and the claim follows on a 4-gon.
If R is a 2n-gon of more than four sides, let / be an edge of R with i/(/) largest.

The diagonal d opposite / decomposes R into a 4-gon Q and (2n — 2)-gon P, as
in Figure 2.2b. Defining u(d) = i/(e) — v(f) + u(g), we see that v satisfies AC on
both P and Q, and the inductive hypothesis yields a measure p' on r' fl P, where
r' is the track indicated in Figure 2.2b. Since v(f) is largest, a short computation
shows that we can extend p' on r' n P to p" on r' so that p"(/5) = p"(oc), where
a and 0 are the branches of r' indicated. Splitting along the branch of r' which
connects a and /3 proves the claim.

Finally, in case J? is a boundary- or puncture-parallel region of F — r, it is an
exercise to find a unique v* on r* ni? with v*(b*) = v(bt), proving the lemma.    □

Suppose ip is a homeomorphism of F and tp(r) collapses, by nontrivial collapses,
to t for some track r in F with branches (bi)". The nx n incidence matrix M of
the collapse of ip(r) onto r describes the natural action of tp on measures on r in
the sense that tp([r, p]) ~ [r, Mp], where p = (p(6,))". We have also

LEMMA 2.2. Ml describes the natural action ofip~l on metrics in the following
sense: if 1/ is a metric on r and v* E J£(v), then ip~1([t*,v*]) ~ [r*,i/], where
vEJf(Mlv).

PROOF. Suppose r' = tp(r) differs from r by a single collapse and label the
salient branches of r and r' as in Figure 2.3.   If p' is a measure on r' and p the
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Figure 2.2
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Figure 2.3
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corresponding measure on r, then

/p(a)\ /l 0    0    0    0\       fp'(a')\
p(b) 0 10    0   0             p'(b')
p(c) =     0 0    10   0 =     p'(c')     .
p(d) 0 0   0    10             p'(d')

\p(e)J Vl 0    0    1    1)        \p'(e')J
Consider now the tracks r* and r'* indicated in Figure 2.3. We see that [r*,i/*] ~
[r'*, P] with v E J?(v'), where

(v'(d)\ tl 0   0   0    1\ (v(a)\
v'(b') 0 10    0    0 [ v(b)
v'(c') =     0 0    10    0         v(c)     ,
u'(d') 0 0   0    11        y(d)

\v'(e')) VO 0    0    0    l) \v(e)J

and the lemma follows once we check that Mlv is a metric on r'. Since the effect
of the collapse on total tangential measures of edges of complementary regions of
F — r' is to add a constant u(e) to those of two adjacent edges of F — r, the three
conditions for tangential measure and the two conditions for AC are invariant; the
lemma follows.     D

3. If c is an embedded curve in an oriented surface F, then we recall that the
"Dehn twist" rc on c is the mapping class on F corresponding to cutting F along
c, twisting to the right by 27T, and regluing. The main result of this paper follows.

THEOREM 3.1. Suppose that ff and 3 are each disjointly embedded collections
of essential simple closed curves (with no parallel components) in an oriented surface
F so that ff hits 3 efficiently and ff U 3 fills F. Let R(ff+,3f~) be the free
semigroup generated by the Dehn twists {r+*: c E ff} U {r^1: d E 3>}. Each
component map of the isotopy class of w E R(ff+ ,3>~) is either the identity or
pA, and the isotopy class of w is itself pA if each tc+1 and rj" occur at least once
in w.

REMARK. In Theorem 3.4 below, we will describe the kernel of the natural
projection from R(ff+ ,2~) to the mapping class group.

EXAMPLE. Let ff and 3l be the collections of curves illustrated in Figure
3.1a. The word w = tc+2Tj2t+xt+1t~[~2t~[2t+3 describes a pA mapping class, for
instance. A train track r so that w(r) is carried by r is given in Figure 3.1b.

PROOF. We make two simplifying assumptions. We assume that no component
of ff or 3) is boundary-parallel or puncture-parallel in F. (Twisting on such
a component neither affects whether w is pA nor affects the stable or unstable
foliations of w if it is pA.) We also assume that the curves along which we twist in
the composition w fill F. (If not, we let F' c F be a regular neighborhood of these
curves in F. The essential components of dF' c F are then reducing curves, and
the argument we give below shows that w]p' is pA on components of F' that are
not annuli.)

We begin by describing the construction of a branched one-submanifold T of F.
Isotope C U D to general position so that C and D still hit efficiently, and consider
a point p = cndolCr\D.  We introduce branching in T as indicated in Figure
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(a)

Figure 3.1

d

Figure 3.2

3.2 so that an arc in T goes smoothly to the right as it approaches c and smoothly
to the left as it approaches d. The configuration shown in Figure 3.3 gives rise to
a bigon complementary region to T, and a simple combinatorial argument shows
that this is the only type of bad complementary region. Thus, T is a bigon track,
which is readily seen to be birecurrent.

We next consider the action of w on the bigon track T. Suppose that T+1 occurs
in the composition w, and consider a neighborhood A^(c) of c in F. In Figure
3.4a, we illustrate a typical case of T n N(c), and in Figure 3.4b, we illustrate
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d d'

FIGURE 3.3

rc+1(T) n N(c). t^(T) is carried by T, and by transitivity of carrying, it follows
that w(T) is itself carried by T.

Since the pA property is invariant under iteration of mapping classes, it is suf-
ficient to consider a special representative w2 of the square of the isotopy class
[w2], and w2 is described as follows. A neighborhood N(c) of a curve c Eff Li3
is depicted in Figure 3.4a, and the components of A^(c) give rise to a pair c± of
representatives of [c]. To define w2, we must simply guarantee that for each r^1
that occurs in w, both of r^1 occur in w2.

Our convention for carrying w2(T) to T by $ is as follows: if b is a branch of
r^(T) incident on c E ffu3, then (Tn*(6)) C (cUb). Thus, for any measure p
on T, w2(T,p) collapses (by nontrivial collapses) and isotopes to (T,p') for some
measure p'. We order the branches {bi}" of T once and for all and regard a measure
p on T as a vector (p(by),... ,p(bn)). With these identifications, the assignment
p »-> pl is a linear map given by the incidence matrix M > 0. Note that M depends
on our choice of convention of how T carries w2(T).

We claim that MJ > 0 for some J > 0. Since we twist on each t^J- for each
T*1 E w, c E ff U 3, if MJ } 0 for some J > 0, then MJ+1 has at least one
more nonzero entry than MJ, and our claim follows. By the Perron-Frobenius
Theorem, the eigenvalue A of M of maximum modulus is positive real, and the
corresponding (unit) eigenvector x = (xy,..., xn) is the unique eigenvector of M
with the property x > 0. Note that A > 1 since M is integral and n > 1.

We define a function p: {bi}" —> R+ U{0} by p(bi) = Xi and claim that p defines
a measure on T. To each cEff there is a unique curve t(c) c T isotopic to c with
t(c)-N(ff\j3>) C ff (and similarly for d E 3f). Choose some cEff, and consider
the measure po on T defined by

„ (h.\ _ J 1.    bi C t(c),
»o{bx>-\0,    else

for i = 1,..., n. Consider the sequence pm, m > 1, of measures on T which arise
from collapsing wm(T, p0) onto (T, pm) using our conventions. Thus pm = Mmp0,
so pm converges protectively to x. Satisfying the switch conditions is a projectively
invariant closed condition, and our claim follows.
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5^T+    -J-l^^^^  -      -^-^^
(a) (b)

Figure 3.4

Analogously, identify a metric v on T with the tuple (v(bi))" and consider the
action of w~l on metrics on T. Lemma 2.2 assures us that the action is described
by M*. As before, M* is a Perron-Frobenius matrix, and the positive eigenvector
y = (yi)" again has eigenvalue A. We claim that v(bi) = y,, i = 1,..., n, is a metric.
To construct a metric vq on T, we choose a curve c E ff (or perhaps rf E 3) so
that #(cn^) > 1 (or perhaps f^(dC\ff) > 1). If there is no such c E ff U3, then
F is either the torus or punctured torus, and one readily constructs a metric on T.
More generally, if c € ff is as above, then we define vo(b) = #(& fl c+). It is easy
to verify the metric conditions for i/0- As before, since (M*)"1^ —► y as m —► oo,
AC is preserved under splitting (by Lemma 2.2), and AC is a closed condition; our
claim follows.

Now, recall the foliated neighborhood (N,&~) of a measured track constructed
in §1. By choosing the neighborhood of T more carefully, we construct a bifoliated
neighborhood (N,^,^-1) of T in F so that the rectangle N, about branch bi has
width p(b,) (as in §1) and length u(bi). We wish to construct a continuous map
f:F"D mapping TV onto itself which is homotopic to w so that f(9~) = \SF and
f(Sr±) = A-1^""1. / will not be one-to-one, and the locus in N over which / is
not monic will consist of arcs contained in the singular leaves of J?~. We begin by
defining f on N and first require some generalities.

Consider a bigon track S' with bifoliated neighborhood arising as above from the
measure p' and metric v' on S'. Suppose e' is a branch of S" which we would like
to collapse with incident branches a', b', c', d! as indicated in Figure 3.5a. Suppose
that v'(e') < inf{i/(a'),i/(&'),i/(c'),i/'(d')}, and consider the arcs a, (5, 7, 6 of
i/'-length v'(e') which are indicated in Figure 3.5a. Identify a to (3 and 7 to 6
isometrically for i/-length to obtain a bifoliated neighborhood of a bigon track S as
indicated in Figure 3.5b. The track S arises from the collapse of S" along e', and the
measure and metric on S corresponding to the bifoliated neighborhood arise from
the linear maps derived in Lemma 2.2. We say that the bifoliated neighborhood
about S arises from the bifoliated neighborhood about S' by zipping along the
branch e'.
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A neighborhood of S' A neighborhood of S
(a) <b>

Figure 3.5

Now, return to the bigon track T so that w2(T) collapses to T and consider
the bifoliated neighborhood (N,S?,Sr±). Apply the homeomorphism w2 to this
neighborhood to obtain a bifoliated neighborhood of w2 (T) in F. We furthermore
apply a "Grotsch map" to each rectangle expanding by a factor A in the horizontal
and contracting by a factor A-1 in the vertical to obtain a bifoliated neighborhood
(M,^,!^-1) of w2(T). It is clear that the sequence of collapses from w2(T) to
T determines a sequence of zippers on (M, ^,^x), and the resulting bifoliated
neighborhood is isotopic to (N,F,S'±). Indeed, consider the sequence of splits
from T to w2(T). Begin with the neighborhood (N,F,Sr±) and perform the
inverse of a zipper for each split. Since the inverse of a zipper affects metrics (and
measures) by the appropriate linear maps, the "unzipped" neighborhood agrees
with (Af, A-1.^, AS?-1), as was asserted.

To define the map / on N, let w2 act on N and then apply the Grotsch maps
as before. Perform the zippings to again obtain (N,SF,FJL). Extend / to a map
of F in the natural way and remark that /|w is one-to-one except over a locus
contained in the singular leaves of J?"; over this locus, /|jv is two-to-one. Finally,
/ is homotopic to w2 since these maps have exactly the same action on the bigon
track T up to homotopy, and T fills F.

We next claim that /|jv has a unique periodic point in each smooth edge of dN.
To see this, we note that / is one-to-one over each smooth edge; indeed, if E is
such an edge, then f(E) contains exactly one such smooth edge by construction.
Therefore, / induces a permutation of the smooth edges of N, so for a given edge
E, there is some iterate fk of / so that E c fk(E). By the expanding property
f(Sr) = AF, it follows that there is a unique periodic point.

It follows that the foliation ,S~ on TV has no saddle-connections (i.e., leaves con-
necting singular points); for if there were a saddle-connection, then we might extend
it to an arc contained in a leaf of F and connecting the periodic points of / in
adjacent edges of dN. This arc would be invariant under some iterate of /, contra-
dicting the contracting property f(Sr-1) = A~1,F±.

Thus, / (and hence w2) preserve an arational foliation with dilatation A > 1, and
standard arguments in [FLP] then guarantee that w2 is pA. Rather than applying
this reasoning, however, we prefer to explicitly construct a map tp homotopic to
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w2 and transverse measured foliations Fu and Fs on F with ip(Fu) = AFU and
ip{^s) = A~lFs. This approach requires a further technical claim as follows.

Suppose E and E' are smooth edges of dN which are incident on a common
singular point v of TV, and let f E E and £' E E' denote the periodic points of /.
(See Figure 3.6.) Let D denote i?"-'--distance along leaves of F. We claim that
D(£,v) = D(£',v). To see this, let Vj = fk'(v), j = 1,2,... and ky < k2 < ■ ■ ■, be
the forward images of v which lie on the singular leaf of F~ issuing forth from v,
and let rij E E, n'j E E' denote points of f~k'v. By the expanding property of /,
we have

lim rtj = £, lim r/' = £'.
J—>O0 J—.oo

Meanwhile, D(r)3,v) = A~k>D(v,Vj) = D(nf,v), and the claim follows.

vj

n

E E '

Figure 3.6

Finally, to obtain a homeomorphism of F from the map /, we describe a quotient
map q: N —> F, which extends to a map on F homotopic to /, so that /|TV takes
fibers of q to fibers of q; the map q descends to the desired pA map. A fiber of / is
either a singleton or consists of a pair of points in adjacent smooth edges E and E'
of dTV whose .D-distances to the common cusp v oi E and E' agree. We thus D-
isometrically identify the edges of each simply connected region R complementary
to TV while identifying each periodic point of / in dR to a single point; see Figure
3.7.

The quotient surface is canonically homeomorphic to F and inherits two trans-
verse measured foliations £FU (from F) and Fa (from F^). The action of / on TV
descends to a homeomorphism tp of the quotient surface with ip(Fi) = AFU and
tP(Fs) = A~lFs. The theorem follows.    □
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Figure 3.7

REMARKS. (1) The metric u on T does not determine a measured foliation on F
owing to the indeterminacy on complementary evengons. However, the action of /
on TV distinguishes fixed points in smooth edges of dTV and hence distinguishes p* E
J£(v), which then determines Fa. Further, in case there are only complementary
oddgons for T, then we have seen that the (singleton) J£(v) does in fact describe
the foliation Fs.

As a consequence of the proof of Theorem 3.1, we have the following criterion
for recognizing pA maps.

COROLLARY 3.2. Given a homeomorphism >p of F, if there is a birecurrent
bigon track T C F filling F so that T splits to tp(T) with Perron-Frobenius incidence
matrix, then <p is pA.    □

REMARK.   The hypotheses of this corollary can probably be weakened to the
setting that T carries tp(T) using ideas from [PP].

We recall

THEOREM B (THURSTON; SEE [Tl OR FLP, EXPOSE 13]). Suppose that
ff and 3 are singletons and satisfy the hypotheses of Theorem 3.1. One can give
F an affine structure with singularities so that the derivative of r$ is (±1 :) and
the derivative of r^.1 is (g^r) in PSL(R), where r E R+. If w is any hyperbolic
word in rg- and t<#, then w is pA.

Thus, our recipe is more general than the original construction of Thurston
insofar as Theorem B requires twisting along all of the ff curves, then all of the 3
curves, and so on; in contrast, our Theorem 3.1 allows twisting along only some of
the ff curves, then some of the 3 curves, and so on.

Now, let S(ff+,3~~) denote the semigroup with presentation

S(ff+,3-) = (eEffu3:e~e'iiene' = 0).
S(ff+ ,3~)   is   a  quotient   semigroup  of R(ff+,3~),   where   the  letter  e  in
S(ff+,3   ) corresponds to re+1 if e E ff and to re-1 if e € 3.
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We conclude this section by describing a linear representation of S(ff+,3~). It
will follow that the natural map S(ff+,3~) —► MC(F) is a monomorphism onto a
semigroup of mapping classes (most of which are pA). For convenience, we restrict
attention for the present to the setting where ff U 3 has no bad complementary
regions (as in Figure 3.3) so that T is a train track and no component of ff or 3 is
boundary- or puncture-parallel in F. With some simple modifications, part of our
discussion applies also to the general case.

Let If = {ek}" = ff U3, and let T denote the train track constructed in the
proof of Theorem 3.1 with branches {bi}. Each e^ defines a curve t(ek) C T (as in
the proof of Theorem 3.1) and a measure pk on T defined by

u,(b) = (1'     6<c'(e*)>
m°*J      \0,    otherwise.

Let H denote the convex hull of {pk} and the zero measure in the cone of
measures on T. (In general, ff is a proper subcone of the cone of measures on
T.) By definition, {pk} is a positive basis for H, and H is clearly invariant under
S(ff+,3~). Furthermore, the natural map H —► ^f%(F) is an injection [HP],
and we identify the set H of measures on T with the corresponding subset of
^Sq(F). Similarly, let PH denote the projectivization of H, and identify PH with
the corresponding subset of S°Fo(F).

We describe the linear action of S(ff+ ,3~) on H in the basis {pk}- Define the
intersection matrix A = (o8J) by a^ = card(e^ n ej). Note that A > 0 and A is
symmetric. Define the matrix Ak by

I A,\ . . —  J A?'      Z = *>
Wch] - | o, otherwise.

The action of r%k on H with respect to the basis {pk} is given by Bk = I + Ak,
where e = +1 if efc E ff and e = -1 if e^ 6 3.

LEMMA 3.3. (a) Given fc, fc' E {!,...,n} so that Bk~ly, S^/y > 0, then we
have akk' — 0. Furthermore, for all y > 0, B^lB^}y > 0 provided k^kl'.

(b) If M = Y\i=y Bk,, then the jth row of M differs from the jth unit basis vector
if and only if j E {k,}1^, j = 1,..., n.

PROOF, (a) Note that B~l = I - Ak. Thus, y = (yy,... ,yn) > Aky, Ak>y;
hence yk > akk>yk' and yk< > akk'yk- This is absurd unless akk' — 0. For the
second part, since akk1 — 0, it follows that B^B^,1 = I — Ak —Ak>. Now yk > Aky
and y^ > A^y by hypothesis, so y > A^y + Afc-y, as desired.

(b) Is immediate since each row of A has a nonzero entry by hypothesis.      □

THEOREM 3.4. The action of S(ff+ ,3~) on H admits a faithful representa-
tion as a semigroup of invertible (over Z) positive (mostly Perron-Frobenius) ma-
trices.

PROOF. We must check the faithfulness of our representation. Suppose, then,
that w, w' E S(ff+,3~) are represented by the products B = Y\y Bk, = \~\y Bk't,
respectively, and let y > 0 correspond to the unstable projective class of measured
foliations invariant by the mapping class [w] = [w1]. The proof that w = w' is by
induction on max{TV, TV'}, and if max{TV, TV'} = 1, then the result follows trivially.
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Suppose that TV > TV'. By Lemma 3.3b, fci 6 {k^y ; moreover, if I is the least
index so that fci = fcj, then it follows from Lemma 3.3a that ak'k' = 0 for all
fc' = k[, i = 1,..., f. Thus, we may commute the I th letter of w' to the first, and
the induction step follows on applying B^1 to each of f]i Bk, and Y\y   Bk' ■    □

REMARK. In particular, if ff = {meridian} and 3 = {longitude} on the punc-
tured torus, then the determination of w from x is well known to reduce to the
computation of simple continued fractions. In analogy, Theorem 3.4 suggests the
generalized continued fractions of Jacobi and Perron. (See, for example, [Be].)

COROLLARY 3.5. The natural map S(ff+,3~) —> MC(F) is a monomor-
phism onto a semigroup of (mostly pA) mapping classes.    □

A standard application of the Euclidean algorithm to SL2(Z) shows that all
pA mapping classes on the torus-minus-a-disc arise from our construction, and it is
tempting to ask whether our recipe gives virtually all pA mapping classes. Precisely,
if tp is pA, then tp" E S(ff+,3~) for some n, ff and 3. A characterization of the
pA maps we have constructed is difficult because of the complexity of the set of
appropriate pairs (ff,3) on F. The following example shows that our recipe does
not construct all pA maps.

k

Figure 3.8

EXAMPLE. Consider the curves {ci}y and {dz}^ on the two-holed torus F2
indicated in Figure 3.1. Define a homeomorphism 4>: F2 —* F2 by composing
rC3 otC[ ot^ ot^2 otC2 with rotation-by-7r about the line fc in Figure 3.8. Certainly
<j>2 arises from our construction, while (f> does not. Indeed, all of the pA maps we
have constructed fix the singular points of the invariant foliations Fu and Fs (and
the separatrices based at each singular point), while <jj above permutes them.

One approach to the conjecture is as follows. If w is pA, then let l(w) denote the
unstable projective class of measured foliations fixed by w. Denote by D the union
over all ff and 3 of {l(w): w E S(ff+ ,3~) is pA}. An equivalent formulation of
the conjecture is that D is the set of all unstable classes of tracks of pA maps. It
is easy to show that D is dense in 9°Fo(F) using the fact [HP] that simple closed
curves are dense in S°So(F). One is thus led to consider the closure L(ff+,3~)
in S6F0(F) of {l(w): w E S(ff+,3~)}. Each L(ff+,3~) can be shown to be a
closed, perfect, 5(^+,Sr~)-invariant, nowhere dense "limit" set. Since MC(F)
acts ergodically on S°Fo(F) [Ma], it is unlikely that any L(ff+ ,3~) has positive
measure.

4. We extend our recipe for constructing pA maps into the setting of nonori-
entable surfaces. The proof, which we will omit, is essentially the same as before.
We begin with some remarks on Dehn twists in nonorientable surfaces.
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Suppose that c is a two-sided curve embedded in a (possibly) nonorientable
surface F so that c C F has trivial normal bundle vc. Let 9: vc —► A = S1 x [—1,1]
be a trivialization of vc onto the standard oriented annulus A with c = S1 x {0}.
We define the 0-Dehn twist t[1 along c to be the identity off of vc, and on vc we
define

rec (x) = e-1([p1o e(x)]e^o6^+1^,P2 o ao)),

where pj denotes projection onto the jth factor in A, j = 1,2. Thus, if F is oriented,
r,? = rc+1 if 0 is orientation-preserving, and r^ = rc_1 if 6 is orientation-reversing.

Suppose that c and d are each two-sided embedded curves in F with trivializa-
tions Oy: vc —► A and 02: fd —► A; suppose, moreover, that p e c fl d We say dy
and #2 are inconsistent at p if the pull-backs by 6y and 92 of the orientation on A
to a coordinate patch about p disagree.

THEOREM 4.1. Suppose % = {ei}" is a collection of two-sided curves (no two
of which are parallel) embedded in F which intersect minimally and fill F. Suppose
also that 0 = {9y}" is a collection of trivializations of the normal bundles to ei C F
that are inconsistent at each point ofeiV\Cj, i ^ j. Let R(%', 0) denote the semigroup
generated by {rf*}". If w E f?(3^,0), then all the component maps of (the isotopy
class of) w are pA, and (the isotopy class of) w is itself pA if each rf* occurs at
least once in w.    U

Figure 4.1

EXAMPLE. Let I? denote the collection of three curves illustrated in Figure
4.1 on the connected sum of two Klein bottles. It is easy to find inconsistent
trivializations and hence construct pA maps.

REMARKS. (1) One reason that a pA map on a nonorientable surface is inter-
esting is that Bonahon introduced a notion of minimality of surface maps in his
computation [Bo] of the cobordism group of diffeomorphisms of oriented surfaces.
A nonminimal (in fact null-cobordant) diffeomorphism is constructed by extending
one of the pA maps of the example to the twisted f-bundle over the connected sum
of two Klein bottles and restricting to the boundary three-holed torus.

(2) On each of the projective plane, Klein bottle, and torus-sum-projective-plane
there are unique simple curves with special properties. Using the characterization
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of pA maps given in the Introduction, it follows that the connected sum of two
Klein bottles is the simplest nonorientable surface which supports a pA map.

(3) The nonorientable analogues of Theorem 3.4 and Corollary 3.5 are proved as
before.

References
[A]    D. Anosov, Geodesic flows on compact Riemannian manifolds of negative curvature,TrnAy Mat.

Inst. Steklov 90 (1967)=Proc. Steklov Inst. Math. 90 (1969).
[AY] P. Arnoux and J. Yoccoz, Construction de diffeomorphisme pseudo-Anosov, C. R. Acad. Sci.

Paris 292 (1981), 75-78.
[Be] L. Bernstein, The Jacobi-Perron algorithm—its theory and applications, Lecture Notes in Math.,

vol. 207, Springer-Verlag, 1971.
[Bo] F. Bonahon,  Cobordism of automorphisms of surfaces, Ann. Sci. Ecole Norm. Sup. (4)  16

(1983), 237-270.
[FLP] A. Fathi, F. Laudenbach, V. Poenaru et al., Travaux de Thurston sur les surfaces, Asterisque

30 (1979), 66-67.
[Ga] F. Gantmacher, Theory of matrices, Chelsea, 1959.
[Gi]  J. Gilman, On the Nielsen type and the classification for the mapping class group, Adv. in Math.

40 (1981), 68-96.
[HP] J. Harer and R. Penner, Combinatorics of train tracks, preprint.
[HT] M. Handel and W. Thurston, New proofs of some results of Nielsen, Adv. in Math. 56 (1985),

173-191.
[K]    S. Kerckhoff, The asymptotic geometry of Teichmuller space, Topology 19 (1980), 23-41.
[Ma] H. Masur, Interval exchange transformations and measured foliations, Ann. of Math. (2) 115

(1982), 169-200.
[Mi] R. Miller, Nielsen's viewpoint on geodesic laminations, Adv. in Math. 45 (1982), 189-212.
[N]    J. Nielsen, Untersuchungen zur Topologie der geschlossenen zweiseitigen Flachen, Acta Math. I

50 (1927), 189-358; II 53 (1929), 1-76; and III 58 (1932), 87-167.
[Pa] A.  Papadopoulos,  Reseaux ferroviaires,  diffeomorphism.es pseudo-Anosov et automorphismes

symplectique de Vhomologie d'une surface. Publ. Math. Orsay 83-103, 1983.
[PP] A. Papadopoulos and R. C. Penner, A characterization of pseudo-Anosov foliations, Pacific J.

Math. 130 (1987), 359-377.
[Tl] W. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces. I, preprint.
[T2] -, The geometry and topology of three-manifolds, Princeton lecture notes, 1978.
[T3] -, Lecture notes from Boulder, Colorado, 1981, taken by W. Goldman.
[T4] _, Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math.

Soc. 6 (1982), 357-381.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTHERN CALIFORNIA, UNIVER-
SITY Park MC-1113, Los Angeles, California 90098-1113

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


