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Abstract. We propose a constructive algorithm that decomposes an arbitrary real tensor into
a finite sum of orthonormal rank-1 outer products. The algorithm, named TTr1SVD, works by
converting the tensor into a tensor-train rank-1 (TTr1) series via the singular value decomposition
(SVD). TTr1SVD naturally generalizes the SVD to the tensor regime with properties such as unique-
ness for a fixed order of indices, orthogonal rank-1 outer product terms, and easy truncation error
quantification. Using an outer product column table it also allows, for the first time, a complete
characterization of all tensors orthogonal with the original tensor. Incidentally, this leads to a strik-
ingly simple constructive proof showing that the maximum rank of a real 2 × 2 × 2 tensor over the
real field is 3. We also derive a conversion of the TTr1 decomposition into a Tucker decomposition
with a sparse core tensor. Numerical examples illustrate each of the favorable properties of the TTr1
decomposition.

Key words. tensor decompositions, multiway arrays, singular values, orthogonal rank-1 terms,
CANDECOMP/PARAFAC (CP) decomposition

AMS subject classifications. 15A69,15A18,15A23

1. Introduction. There has been a recent surge in the research and utilization
of tensors, which are high-order generalization of matrices, and their low-rank approx-
imations [1, 4, 9, 15, 10]. This is due to their natural form to capture high dimensional
problems and their efficient compact representation of large-scale data sets.

Among various tensor decompositions, the CANDECOMP/PARAFAC (CP) de-
composition1 [4, 6, 9] has found widespread use. CP expresses a tensor as the sum of
a finite number of rank-1 tensors, called outer products, so that the tensor (CP-)rank
can be defined as the minimum number of terms in the decomposition. Although CP
is regarded as the generalization of the matrix singular value decomposition (SVD)
to tensors, unlike matrices, there are no feasible algorithms to determine the rank of
a specific tensor. Furthermore, most existing CP algorithms are optimization-based,
such as the “workhorse” algorithm for CP: the alternating least squares (ALS)-CP
method [4]. ALS-CP minimizes the error between the original tensor and its rank-R
approximation (viz., sum of R outer products) in an iterative procedure. The main
problem of ALS-CP is that it only works by prescribing the rank R, therefore the pro-
cedure itself does not directly identify the tensor rank. Moreover, the outer products
generated by ALS-CP are not orthogonal with each other unlike the case for matrix
singular vectors.

Other tensor decompositions, for example the Tucker decomposition [4, 20], com-
press a tensor into a core tensor and several factor matrices. The Tucker decomposi-
tion of a tensor is not unique. One of its realizations can be efficiently computed by
the higher-order SVD (HOSVD) [5]. Each element in its core tensor can be deemed
as the weight of a rank-1 factor. In this interpretation, all rank-1 factors of the
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CANDECOMP (CANonical DECOMPosition) by Carroll and Chang [4], and PARAFAC (PARAllel
FACtors) by Harshman [6]. The underlying algorithms are however the same.
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Tucker decomposition are orthonormal. Nonetheless, the Tucker decomposition is not
necessarily canonical and therefore cannot be used to estimate tensor ranks.

To this end, a constructive orthogonal tensor decomposition algorithm, named
tensor-train rank-1 (TTr1) SVD or TTr1SVD, is proposed in this paper. The recent
introduction of the tensor-train (TT) decomposition [15] provides a constructive ap-
proach to represent and possibly compress tensors. Similar to the TT decomposition,
the TTr1 decomposition reshapes and factorizes the tensor in a recursive way. How-
ever, unlike the TT decomposition, one needs to progressively reshape and compute
the SVD of each singular vector to produce the TTr1 decomposition. The resulting
singular values are constructed into a tree structure whereby the product of each
branch is the weight of one orthonormal (rank-1) outer product. Most of the main
properties and contributions of the TTr1 decomposition are highly reminiscent of the
matrix SVD:

1. an arbitrary tensor is for a fixed order of the indices uniquely decomposed
into a linear combination of orthonormal outer products, each associated with
a non-negative TTr1 singular value,

2. the approximation error of an R-term approximation is easily quantified in
terms of the singular values,

3. numerical stability of the algorithm due to the use of consecutive SVDs,
4. characterizes the orthogonal complement tensor space that contains all ten-

sors whose inner product is 0 with the original tensor A. This orthogonal
complement tensor space is, to our knowledge, new in the literature,

5. straightforward conversion of the TTr1 decomposition into the Tucker format
with a sparse core tensor and orthogonal matrix factors.

Having developed TTr1SVD, we found that its core routine turns out to be an in-
dependent re-derivation of the PARATREE algorithm [16]. However, TTr1SVD bears
the physical insight of enforcing a rank-1 constraint onto the TT decomposition [15].
Such a TT rank-1 perspective provides a much more straightforward appreciation of
the favorable properties of this orthogonal SVD-like tensor decomposition. In partic-
ular, we provide a significantly more in-depth treatment of TTr1 decomposition than
in [16], leading to important new results such as a perturbation analysis of the singular
values, a direct conversion of the TTr1 to the Tucker format featuring a sparse core
tensor, and a full characterization of orthogonal complement tensors. Specifically,
we introduce a TTr1-based tabulation of all orthogonal outer products that span a
tensor A, as well its orthogonal complement space opspan(A)⊥ that is proposed for
the first time in the literature. This permits, as an immediate application, an elegant
and constructive proof that the rank of a real 2 × 2 × 2 tensor over the real field is
maximally 3. A Matlab/Octave implementation of our TTr1SVD algorithm can be
freely downloaded and modified from https://github.com/kbatseli/TTr1SVD.

The outline of this paper is as follows. First, we introduce some notations and
definitions in Section 1.1. Section 2 presents a brief overview of the TT decomposition
together with a detailed explanation of our TTr1 decomposition. Properties of the
TTr1 decomposition such as uniqueness, orthogonality, approximation errors, orthog-
onal complement tensor space, perturbation of singular values and Tucker conversion
are discussed in Section 3. These properties are illustrated in Section 4 by means of
several numerical examples. Section 5 concludes and summarizes the contributions.

1.1. Notation and definitions. We will adopt the following notational conven-
tions. A dth-order tensor, assumed real throughout this paper, is a multi-way array
A ∈ Rn1×n2×···×nd with elements Ai1i2···id that can be perceived as an extension of
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a matrix to its general dth-order, also called d-way, counterpart. We consider only
real tensors because we adopt an application point of view. This is however without
loss of generality, one could easily consider tensors over C, which would require the
replacement of the transpose by the conjugate transpose. Although the wordings ‘or-
der’ and ‘dimension’ seem to be interchangeable in the tensor community, we prefer to
call the number of indices ik (k = 1, . . . , d) the order of the tensor, while the maximal
value nk (k = 1, . . . , d) associated with each index the dimension. A cubical tensor
is a tensor for which n1 = n2 = · · · = nd = n. The k-mode product of a tensor
A ∈ Rn1×n2×···×nd with a matrix U ∈ Rpk×nk is defined by

(A×k
U)i1···ik−1jkik+1···id =

nk∑
ik=1

UjkikAi1···ik···id ,

so that A×k
U ∈ Rn1×···×nk−1×pk×nk+1×···×nd . The inner product between two tensors

A,B ∈ Rn1×···×nd is defined as

〈A,B〉 =
∑

i1,i2,··· ,id

Ai1i2···id Bi1i2···id .

The norm of a tensor is taken to be the Frobenius norm ||A||F = 〈A,A〉1/2. The
vectorization of a tensor A, denoted vec(A) ∈ Rn1···nd , is the vector obtained from
taking all indices together in one mode. A third-order rank-1 tensor can always be
written as the outer product [9]

σ (a ◦ b ◦ c) with components Ai1i2i3 = σ ai1 bi2 ci3

with σ ∈ R whereas a, b and c are vectors of arbitrary lengths as depicted in Figure 1.1.
Similarly, any d-way rank-1 tensor can be written as an outer product of d vectors.
Using the k-mode multiplication, this outer product can also be written as σ×1

a×2
b×3

c
where σ is now regarded as a 1× 1× 1 tensor. In order to facilitate the discussion of
the TTr1 decomposition we will make use of a running example tensor A ∈ R3×4×2

shown in Figure 1.2.
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-order rank-1 tensor can be written as the outer product {cite survey paper} of 3 vectors

a, b and c which can be of different lengths. 

s

Fig. 1.1. The outer product of 3 vectors a, b, c of arbitrary lengths forming a rank-1 outer product.

2. TTr1 decomposition.

2.1. TT decomposition. Our decomposition is directly inspired by the TT
decomposition [15], which we will succinctly review here. The main idea of the TT
decomposition is to re-express a tensor A as

(2.1) Ai1i2···id = G1(i1)G2(i2) · · · Gd(id),
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i1

i2

i3

1 4 7 10
2 5 8 11
3 6 9 12

13 16 19 22
14 17 20 23
15 18 21 24

Fig. 1.2. A running 3× 4× 2 tensor example.

where for a fixed ik each Gk(ik) is an rk−1× rk matrix, also called the TT core. Note
that the subscript k of a core Gk indicates the kth core of the TT decomposition.
The ranks rk are called the TT ranks. Each core Gk is in fact a third-order tensor
with indices αk−1, ik, αk and dimensions rk−1, nk, rk, respectively. Since Ai1i2···id is a
scalar we obviously have that r0 = rd = 1 and for this reason α0 and αd are omitted.
Consequently, we can write the elements of A as

(2.2) Ai1i2···id =
∑

α1,··· ,αd−1

G1(i1, α1)G2(α1, i2, α2) · · · Gd(αd−1, id),

where we always need to sum over the auxiliary indices α1, . . . , αd−1, and therefore
(2.2) is equivalent to the matrix product form in (2.1). An approximation of A is
achieved by truncating the αk indices in (2.2) at values smaller than the TT ranks rk.

Computing the TT decomposition consists of doing d− 1 consecutive reshapings
and SVD computations. For our running example A ∈ R3×4×2 in Figure 1.2, this
means that the decomposition is computed in 2 steps. This process is visualized in
Figure 2.1, whereby A will eventually be converted into its TT format in Figure 2.2.
Referring to Figure 2.1, the first reshaping of A into a matrix Ā that needs to be
considered is by grouping the indices i2, i3 together. This results in the 3× 8 matrix

Ā =

1 4 7 10 13 16 19 22
2 5 8 11 14 17 20 23
3 6 9 12 15 18 21 24

 .

The “economical” SVD of the 3× 8 matrix Ā is then

(2.3) Ā = U1 S1 V
T
1 ,

with U1 a 3 × 3 matrix and V1 an 8 × 3 matrix. In fact, any dyadic decomposition
can be used for this step in the TT algorithm, but the SVD is often chosen for its
numerical stability. The first TT core G1 is given by the 3× 3 matrix U1 indexed by
i1, α1. We now form the matrix Y1 = S1V

T
1 and reshape it such that its rows are

indexed by α1, i2 and its columns by i3. This results in a 12 × 2 matrix Ȳ1 and its
SVD

Ȳ1 = U2 Y2,

with Y2 = S2V
T
2 . The second TT core G2 is then given by U2, reshaped into a 3×4×2

tensor. The last TT core G3 is then Y2, which is a 2× 2 matrix indexed by α2 and i3.
We therefore have that

Ai1i2i3 = G1(i1) G2(i2) G3(i3),
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Fig. 2.1. Computation of the TT decomposition of A.
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Fig. 2.2. TT decomposition of A. Each set of orthogonal axes represents a core Gk of the TT.

with G1(i1) a 1×3 row vector, G2(i2) a 3×2 matrix, and G3(i3) a 2×1 column vector
for fixed i1, i2 and i3, respectively (cf. Figure 2.2). Observe how the auxiliary indices
α1, α2 serve as ‘links’ connecting adjacent TT cores. For tensor orders d ≥ 3, besides
the head and tail tensors G1(i1),Gd(id) which are in fact matrices, there will be (d−2)
third-order TT cores in between.

2.2. Tensor-Train rank-1 decomposition. With the TT decomposition in
place, we are now ready to introduce our TTr1 decomposition, which is easily under-
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stood from Figure 2.3. The main idea of the TTr1 decomposition is to force the rank
for each auxiliary index αk link to unity, which gives rise to a linear combination of
rank-1 outer products. We go back to the first SVD (2.3) of the TT decomposition
algorithm and realize that we can rewrite it as a sum of rank-1 terms

(2.4) Ā =

3∑
i=1

σi×1
ui×2

vi,

where each vector vi is indexed by i2, i3. The next step in the TT decomposition would
be to reshape Y1 and compute its SVD. For the TTr1 decomposition we reshape each
vi into an i2 × i3 matrix v̄i and compute its SVD. This allows us to write v̄1 also as
a sum of rank-1 terms

v̄1 = σ11×1u11×2v11 + σ12×1u12×2v12.

The same procedure can be done for v2 and v3: they can also be written as a sum of
2 rank-1 terms. Combining these 6 rank-1 terms we can finally write A as

A = σ̃1×1u1×2u11×3v11 + σ̃2×1u1×2u12×3v12(2.5)

+ σ̃3×1u2×2u21×3v21 + σ̃4×1u2×2u22×3v22

+ σ̃5×1u3×2u31×3v31 + σ̃6×1u3×2u32×3v32,

with σ̃1 = σ1σ11, . . . , σ̃6 = σ3σ32. Note the similarity of (2.5) with (2.4). The TTr1
decomposition has three main features that render it similar to the matrix SVD:

1. the scalars σ̃1, . . . , σ̃6 are the weights of the outer products in the decompo-
sition and can therefore be thought of as the singular values of A,

2. the outer products affiliated with each singular value are tensors of unit Frobe-
nius norm, since each product vector (or mode vector) is a unit vector, and

3. each outer product in the decomposition is orthogonal to all the others, which
we will prove in Section 3.
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2.3. TTr1SVD algorithm. As was shown in the previous subsection, comput-
ing the TTr1 decomposition requires recursively reshaping the obtained v vectors and
computing their SVDs. This recursive procedure gives rise to the formation of a tree,
where each SVD generates additional branches of the tree. The tree for the TTr1
decomposition of A in (2.5) is shown in Figure 2.4. As denoted in the figure, we will
call a row in the tree a level. Level 0 corresponds to the SVD of Ā and generates
the first level of singular values. This is graphically represented by the node at level
0 branching off into 3 additional nodes at level 1. The reshaping and SVD of the
different v vectors at level 1 then generates level 2 and so forth. Observe how the
total number of subscript indices of the singular values are equal to the level at which
these singular values occur. For example, σ2 occurs at level 1 and σ21 occurs at level
2. The number of levels for the TTr1 decomposition of an arbitrary d-way tensor is
d− 1. The final singular values σ̃i’s are the product of all σ’s along a branch.

σ1 σ2

σ11 σ12 σ21 σ22

level 1

level 2

level 0

σ3

σ31 σ32

1

σ̃1 σ̃2 σ̃3 σ̃4 σ̃5 σ̃6

Fig. 2.4. Tree representation of TTr1 decomposition, where σ̃i is the product of all nodes down
a branch.

The total number of terms in the decomposition are the total number of leaves.
This number is easily determined. Indeed, each node at level k of the tree branches
off into

rk , min(nk+1,

d∏
i=k+2

ni) (k = 0, . . . , d− 2),

nodes. Hence, the total number of leaves or terms N in the TTr1 decomposition is
given by

N =

d−2∏
k=0

rk.

The algorithm to compute the TTr1 decomposition is presented in pseudo-code in
Algorithm 2.1. First the tensor A is reshaped into an n1 ×

∏d
i=2 ni matrix and its

SVD is computed. The computational complexity for this first step is approximately
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14n21
∏d
i=2 ni + 8n31 flops. Observe that the computation of the TT or Tucker de-

composition has a computational complexity of the same order of magnitude. Then
for all remaining nodes in the tree, except for the leaves, the resulting vi vectors are
reshaped into a matrix and their SVDs are also computed. The U, S, V matrices for
each of these SVDs are stored. Note that for levels 0 up to d − 2 the v vectors do
not need to be stored. From the tree it is also easy to determine the total number of
SVDs required to do the full TTr1 decomposition. This is simply the total number of
nodes in the tree from level 0 up to d− 2 and equals

1 +

d−3∑
i=0

i∏
k=0

rk.

Assuming that rk = nk for all k, then the total number of SVDs required for com-
puting the TTr1 decomposition of a cubical tensor is

1 + n+ n2 + · · ·+ nd−2 =
1− nd−1

1− n
.

This exponential dependence on the order of the tensor and the computational com-
plexity of O(n21

∏d
i=2 ni) for the first SVD are the two major limiting factors to

compute the TTr1 decomposition. Note, however, that the tree structure is perfectly
suited to do all SVD computations that generate the next level in parallel, and in
that case the runtime is linearly proportional to the number of levels. However, such
an implementation requires an exponential growing number of computational units.

Algorithm 2.1. Tensor-Train rank-1 SVD Algorithm (TTr1SVD)
Input: arbitrary tensor A
Output: U, S, V matrices of each SVD

Ā ← reshape A into an n1 ×
∏d
i=2 ni matrix

U1, S1, V1 ← SVD(Ā)
for all remaining nodes in the tree except the leaves do
v̄i ← reshape vi
Uk, Sk, Vk ← SVD(v̄i)
add Uk, Sk, Vk to U, S, V

end for

3. Properties. We now discuss many attractive properties of the TTr1 decom-
position. Most of these properties are also shared with the matrix SVD and it is in
this sense that the TTr1SVD is a natural generalization of the SVD for tensors.

3.1. Uniqueness. A first attractive feature of the TTr1 decomposition is that
it is uniquely determined for a fixed order of indices. This means that for any given
arbitrary tensor A its TTr1 decomposition will always be the same. Indeed, Algo-
rithm 2.1 consists of a sequence of SVD computations so the uniqueness of the TTr1
decomposition follows trivially from the fact that each of the SVDs in Algorithm 2.1
are unique up to sign. Although the singular values and vectors of a matrix A and
its transpose AT are the same, this is not the case for the TTr1SVD. Indeed, ap-
plying a permutation of the indices π(i1, . . . , in) will generally result in a different
TTr1SVD, which we illustrate in Example 4.1. Once the indices are fixed however,
the TTr1SVD algorithm will always return the same decomposition, which is not the
case for conventional iterative optimization-based methods.



TTr1 DECOMPOSITION 9

3.2. Orthogonality of outer products. Any two rank-1 terms σ̃iTi and σ̃jTj
of the TTr1 decomposition are orthogonal with respect to one another, which means
that 〈Ti, Tj〉 = 0. We will use our running example to show why this is so. Let us take
two terms of (2.5), for example T1 = 1×1u1×2u11×3v11 and T2 = 1×1u1×2u12×3v12.
Another way of writing 〈T1, T2〉 is

〈T1, T2〉 = (v11 ⊗ u11 ⊗ u1)
T

(v12 ⊗ u12 ⊗ u1)

where ⊗ denotes the Kronecker product. These Kronecker products generate the
vectorization of each of the rank-1 tensors T1, T2, which allows us to easily write
down their inner product as an inner product between two mode vectors. Applying
properties of the Kronecker product we can now write

(v11 ⊗ u11 ⊗ u1)
T

(v12 ⊗ u12 ⊗ u1) =
(
vT11 ⊗ uT11 ⊗ uT1

)
(v12 ⊗ u12 ⊗ u1) ,

=
(
vT11v12 ⊗ uT11u12 ⊗ uT1 u1

)
,

where it is clear that the right hand side vanishes due to the orthogonality vT11v12 =
uT11u12 = 0. This property generalizes to any tensor A. Indeed, if any two rank-1
terms do not originate from the same node at level 1, then their respective ui, uj
vectors are orthogonal and ensure that their inner product vanishes. If the two rank-
1 terms do originate from the same node at level 1 but from different nodes at level
2, then their uij , uik vectors are orthogonal and again the inner product will vanish.
This reasoning extends up to level d − 1. If any two terms have their first separate
nodes at level k ∈ [1, d− 1], then their corresponding u vectors at level k will also be
orthogonal. The tree structure, together with the orthogonality of all u vectors that
share a same parent node hence guarantees that any two rank-1 outer factors in the
TTr1 decomposition are orthogonal. The TTr1 decomposition is hence an orthogonal
decomposition as defined in [8].

3.3. Upper bound on the orthogonal tensor rank. The (CP-)rank of an ar-
bitrary d-way tensor A is usually defined similarly to the matrix case as the minimum
number of rank-1 terms that A decomposes into.

Definition 3.1. The rank of an arbitrary d-way tensor A, denoted rank(A), is
the minimum number of rank-1 tensors that yield A in a linear combination.

In [8, 12] the orthogonal rank, rank⊥(A), is defined as the minimal number of
terms in an orthogonal rank-1 decomposition. Apparently,

rank(A) ≤ rank⊥(A)

where strict inequality is possible for tensors of orders d > 2. The TTr1 decomposition
allows a straightforward determination of an upper bound on rank⊥(A). Indeed, this
is simply the total number of leaves in the tree and is therefore

(3.1) rank⊥(A) ≤ N =

d−2∏
k=0

rk.

Applying (3.1) to our running example A ∈ R3×4×2 we obtain

rank⊥(A) ≤ min(3, 8) ·min(4, 2) = 3 · 2 = 6.

For a cubical tensor with n1 = · · · = nd = n, (3.1) then tells us that

rank⊥(A) ≤
d−2∏
k=0

min(n, nd−1) =

d−2∏
k=0

n = nd−1.
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The dependency of the TTr1SVD on the ordering of the indices implies that a per-
mutation of the indices can lead to different upper bounds on the orthogonal rank.
Indeed, if we permute the indices of A to {i2, i3, i1} we get

rank⊥(A) ≤ min(4, 6) ·min(2, 3) = 4 · 2 = 8.

Consequently, there exists the notion of a minimum upper bound on the orthogonal
rank of a tensor, obtained from computing the rank upper bounds through all per-
mutations of indices. Whether the TTr1SVD algorithm is able to derive a minimal
orthogonal decomposition needs further investigation. Furthermore, we will demon-
strate by an example in Section 4 that the orthogonality as it occurs in the TTr1
decomposition is not enough to make the problem of computing a low-rank approxi-
mation of an arbitrary tensor well-posed. This agrees with [21], in which a necessary
condition of pairwise orthogonality of all rank-1 terms in at least 2 modes is proved.

3.4. Quantifying the approximation error. As soon as the number of levels
is large it becomes very cumbersome to write all the different subscript indices of the
u and v vectors in the TTr1 decomposition. We therefore introduce a shorter and
more convenient notation. Herein, uki denotes the u vector at level k that contributes
to the ith rank-1 term. Similarly, vi denotes the v vector that contributes to the ith
rank-1 term. The TTr1SVD algorithm decomposes an arbitrary tensor A into a linear
combination of N orthogonal rank-1 terms

(3.2) A =

N∑
i=1

σ̃i×1u1i×2u2i×3 · · ·×d−1
ud−1i×d

vi,

with

||1×1
u1i×2

u2i×3
· · ·×d−1

ud−1i×d
vi||F = 1 and N =

d−2∏
k=0

rk.

Suppose that we have ordered and relabeled the terms such that σ̃1 ≥ σ̃2 ≥ · · · ≥ σ̃N .
An R-term approximation is then computed by truncating (3.2) to the first R terms

Ã =

R∑
i=1

σ̃i×1
u1i×2

u2i×3
· · ·×d−1

ud−1i×d
vi.

The following lemma tells us exactly what the error is when breaking off the summa-
tion at R terms.

Lemma 3.2. Let Ã be the summation of the first R terms in (3.2) then

||A − Ã||F =
√
σ̃2
R+1 + · · ·+ σ̃2

N .

Proof. Using the fact that ||1×1
u1i×2

u2i×3
· · ·×d−1

ud−1i×d
vi||F = 1 we can write

||A − Ã||F = ||
n∑

i=R+1

σ̃i×1
u1i×2

u2i×3
· · ·×d−1

ud−1i×d
vi||F =

√
σ̃2
R+1 + · · ·+ σ̃2

N .
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Lemma 3.2 can also be used to determine the lowest number of terms R with a
guaranteed accuracy. Indeed, once a tolerance ε is chosen such that it is required that

||A − Ã||F ≤ ε,

the minimal number of terms R in the TTr1 decomposition of Ã is easily determined
by the requirement that√

σ̃2
R+1 + · · ·+ σ̃2

N ≤ ε such that
√
σ̃2
R + · · ·+ σ̃2

N > ε.

It is tempting to choose R such that σ̃R > ε > σ̃R+1. However, when the approxi-rank
gap, defined as σ̃R/σ̃R+1 [13, p. 920], is not large enough then there is a possibility

that
√
σ̃2
R+1 + · · ·+ σ̃2

N ≥ ε due to the contributions of the smaller singular values.

A large approxi-rank gap implies that the number of terms in the approximation Ã
is relatively insensitive to the given tolerance ε. In Example 6 a tensor is presented
for which this is not the case.

3.5. Reducing the number of SVDs. Suppose that an approximation Ã of
A is desired such that ||A − Ã||F ≤ ε. Computing the full TTr1 decomposition and
applying Lemma 3.2 solves this problem. It is, however, possible to reduce the total
number of required SVDs by taking into account that the final singular values σ̃i’s are
the product of the singular values along each branch of the TTr1-tree. An important
observation is that all singular values σij···m at levels 2 up to d− 1 satisfy σij···m ≤ 1.
This is easily seen from the fact that they are computed from a reshaped unit vector
vij···n at their parent node. Indeed, since ||vij···n||2 = 1 it follows that ||v̄ij···n||F = 1.
This allows us to make an educated guess at the impact of the singular values at level
l on the final rank-1 terms. Suppose we have a singular value σk at level l, preceded
by a product σk0 of parent singular values. An upper bound on the size of the final
σ̃’s that are descendants from σk can be derived by assuming that σk is unchanged
throughout each branch. Since one node at level l results in

∏d−2
i=l ri rank-1 terms,

this then implies that there are
∏d−2
i=l ri rank-1 terms with σ̃ = σk0σ

d−l−1
k , so

σ̃2
1 + · · ·+ σ̃2

N ≤ σ̃2
1 + · · ·+ σ̃2

r +

d−2∏
i=l

ri(σk0σ
d−l−1
k )2.

If now

(3.3) e2k ,
d−2∏
i=l

ri(σk0σ
d−l−1
k )2 ≤ ε2

is satisfied then removing σk at level l produces an approximation Ã that is guaranteed
to satisfy the approximation error bound. Removing σk at level l implies that not
a full but a reduced TTr1 decomposition is computed. Indeed, the total number of
computed rank-1 terms is effectively lowered by

∏d−2
i=l ri terms, decreasing the total

number of required SVDs in the TTr1SVD algorithm. This condition on σk is easily
extended to m singular values at level l as

(3.4)

m∑
j=1

e2j ≤ ε2,
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where we compute an ej term for each of the m singular values at level l. Checking
whether (3.4) holds for m σ’s at level l can be easily implemented in Algorithm 2.1.
As shown in Section 4, a rather gradual decrease of σk is seen in practice as the level
increases. This implies that it might still be possible to find a Ã of lower rank that
satisfies the approximation error bound from the rank-1 terms of a reduced TTr1
decomposition. Lemma 3.2 can also be used to find the desired Ã in this case.

3.6. Orthogonal complement tensors. We can consider the vectorization of
A as a vector living in an (n1 · · ·nd)-dimensional vector space. Naturally, there must
be a (n1 · · ·nd−1)-dimensional vector space opspan(A)⊥ of tensors that are orthogonal
to A. Note that each basis vector of opspan(A)⊥ is required to be the vectorization
of an outer product of vectors. The TTr1 decomposition allows us to easily find
an orthogonal basis for opspan(A)⊥. We will illustrate how this comes about using
the tensor A from Figure 1.2 and notions in (2.5). Recall from Section 2.2 that the
first step in the TTr1SVD algorithm was the economical SVD of the 3 × 8 matrix
Ā = USV T . Each of the vi vectors was then reshaped into a 4 × 2 matrix v̄i. Now
consider a full SVD of each of these v̄i matrices

(3.5) v̄i =
(
ui1 ui2 ui3 ui4

) 
σi1 0
0 σi2
0 0
0 0

 (
vTi1
vTi2

)
,

which is a sum of 8 orthogonal rank-1 outer products with only 2 nonzero σ’s. There
are hence 6 additional outer product terms ui ◦ uij ◦ vij with a zero singular value,
orthogonal to the outer product terms of the economical TTr1 decomposition (2.5).
It is easily seen that the rank-1 terms obtained from the zero entries of the S matrix
in (3.5) are orthogonal to A and are therefore basis vectors of opspan(A)⊥. Table
3.1 lists all 8 orthogonal rank-1 outer product terms that are obtained for the u1
branch in the TTr1-tree. Each rank-1 term can be read off from Table 3.1 by starting
from the top row and going down along a particular branch of the TTr1-tree. For
example, the fourth rank-1 term is given by σ̃2 u1 ◦ u12 ◦ v12 and the seventh rank-1
term by 0u1 ◦u14 ◦v11. We call such a table that exhibits the TTr1-tree structure and
allows us to reconstruct all rank-1 terms an outer product column table. The extra
orthogonal terms for the u2, u3 branches are completely analogous to the u1 branch.
Note that the economical TTr1 decomposition described in Section 2.2 only computes
the σ̃1 u1 ◦ u11 ◦ v11 and σ̃2 u1 ◦ u12 ◦ v12 terms.

Table 3.1
All 8 orthogonal rank-1 outer products in the u1 branch of the TTr1-tree.

u1
u11 u12 u13 u14

v11 v12 v11 v12 v11 v12 v11 v12
σ̃1 0 0 σ̃2 0 0 0 0

The full TTr1 decomposition therefore consists of 8 × 3 = 24 orthogonal terms
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and can be written in vectorized form as

vec(A) =
(
vec(T1) · · · vec(T6) vec(T7) · · · vec(T24)

)


σ̃1
...
σ̃6
0
...
0


where vec(T1), . . . , vec(T6) are the orthogonal terms computed in Section 2.2 and
vec(T7), . . . , vec(T24) are the orthogonal terms that partly span opspan(A)⊥. Note
that we have only found 18 basis vectors for opspan(A)⊥. The remaining 5 basis
vectors are to be found as the following linear combinations of vec(T1), . . . , vec(T6)(

vec(T1) · · · vec(T6)
)
S⊥,

where S⊥ is the 6×5 matrix orthogonal to
(
σ̃1 · · · σ̃6

)
. The property that for every

tensor B ∈ opspan(A)⊥ we have that 〈A,B〉 = 0, allows us to interpret opspan(A)⊥

as the orthogonal complement of vec(A).

3.7. Constructive proof maximal CP-rank of 2 × 2 × 2 tensor. As an
application of the outer product column table, we show how it leads to an elegant
proof of the maximal CP-rank of a real 2 × 2 × 2 tensor over R. It is known that
the maximum rank of a real 2× 2× 2 tensor over R is 3 (i.e., any such tensor can be
expressed as the sum of at most 3 real outer products [9]), for which rather complicated
proofs were given in [11, 19]. Incidentally, we show that the TTr1 decomposition allows
us to formulate a remarkably simpler proof. As in Section 3.6, we first consider all
orthogonal outer products that span R2×2×2 in the outer product Table 3.2.

Table 3.2
Outer product table for a general 2× 2× 2 tensor.

u1 u2
u11 u12 u21 u22

v11 v12 v11 v12 v21 v22 v21 v22
σ̃1 0 0 σ̃2 σ̃3 0 0 σ̃4

The columns in Table 3.2 with nonzero singular values are the “active” columns
in the TTr1 decomposition of a random real tensor A ∈ R2×2×2. The “inactive”
(orthogonal) columns carry zero weights but are crucial for proving the maximum
rank-3 property of A.

We first enumerate two important yet straightforward properties for the columns
in Table 3.2 ignoring the bottom row for the time being. First, scaling a column can
be regarded as multiplying a scalar onto the whole outer product or absorbing it into
any one of the mode vectors. Taking the first column and a scalar α ∈ R for instance,
this means that

α(u1 ◦ u11 ◦ v11) = (αu1) ◦ u11 ◦ v11 = u1 ◦ (αu11) ◦ v11 = u1 ◦ u11 ◦ (αv11).

In other words, the scalar is “mobile” across the various modes. The second property
is that any two columns differing in only one mode can be added to form a new rank-1
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outer product [8]. We list two examples showing the rank-1 outer products resulting
from the linear combinations of columns 1 and 3, and columns 3 and 4, respectively,

α(u1 ◦ u11 ◦ v11) + β(u1 ◦ u12 ◦ v11) = u1 ◦ (αu11 + βu12) ◦ v11,
α(u1 ◦ u12 ◦ v11) + β(u1 ◦ u12 ◦ v12) = u1 ◦ u12 ◦ (αv11 + βv12).

Now to prove the maximum rank-3 property of A then, is to show that the four
active columns of the outer product column table 3.2 can always be “merged” into
three. To begin with, it is readily seen that if we add any nonzero multiple of column
3 to column 1, and then subtract the same multiple of column 3 from column 4, the
overall tensor by summing all columns in Table 3.2 remains unchanged. Our final
goal is to merge columns 1 and 5 into one outer product by making two of their
modes the same (up to a scalar factor). This is done by appropriately adding column
3 to column 1 such that the second mode vectors of columns 1 and 5 align, while
adding column 6 to column 5 such that the third mode vectors of columns 1 and
5 align. Of course, subtractions of column 3 from column 4, and column 6 from
column 8, respectively, are necessary to offset the addition. This intermediate step
is summarized in Table 3.3 wherein the four intermediate columns are now shown
individually with the σ̃i’s absorbed into the mode vectors.

Table 3.3
The four intermediate outer products that can be merged into three outer products.

u1 u1 u2 u2

σ̃1u11 σ̃4u22
+αu12 u11 u21 −γu21

(= βu21)

−αv11 σ̃3v21
v11 +σ̃2v12 +γv22 v22

(= δv11)

The two linear equations that need to be solved in this process are

[
−u12 u21

] [ α
β

]
= σ̃1u11 and

[
−v22 v11

] [ γ
δ

]
= σ̃3v21.

It is not hard to see that columns 1 and 3 of Table 3.3 can now be merged into one
outer product

(βu1 + δu2) ◦ u21 ◦ v11

due to two of their mode vectors now being parallel. Hence an overall rank-3 repre-
sentation for the original tensor A is obtained from its TTr1 decomposition.

Obviously, this rank-3 representation is not unique since alternatively we can
first align the third mode of columns 1 and 5, followed by their second mode. Fur-
thermore, instead of columns 1 and 3, we can also merge columns 2 and 4 etc..
Details are omitted as they are all based on the same idea of merging columns. An-
other big advantage of our rank-3 construction is that the relative numerical error
||A− Ã||F /||A||F < 10−15, whereas the CP rank-3 decomposition has a median error
of ≈ 10−6 over a 100 trials of arbitrary 2× 2× 2 tensors.
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3.8. Perturbations of singular values. When an m×n matrix A is additively
perturbed by a matrix E to form Â = A+ E, then Weyl’s Theorem [18] bounds the
absolute perturbations of the corresponding singular values by

|σi − σ̂i| ≤ ||E||2,

where the σ̂i’s are the singular values of Â. It is possible to extend Weyl’s Theorem
to the TTr1 decomposition of the perturbed tensor Â = A+ E . Suppose we want to
determine an upper bound for the perturbation of one of the singular values σ̃. We
first introduce the simpler notation

σ̃ = σ1 σ2 · · · σd−2,

where σk(k = 1, . . . , d − 2) denotes the singular value at level k in the branch of the
TTr1-tree corresponding with σ̃. Applying Weyl’s Theorem to the first factor gives

|σ1 − σ̂1| ≤ ||Ē ||2,

which we can rewrite into

(3.6) |σ̂1| ≤ |σ1|+ ||Ē ||2.

Each of the remaining factors σ2, . . . , σd−2 are the singular values of a reshaped right
singular vector v1, . . . , vd−3. Again, application of Weyl’s Theorem allows us to write

|σ̂k| ≤ |σk|+ ||∆v̄k−1||2 (k = 2, . . . , d− 2),

≤ |σk|+ ||∆v̄k−1||F = |σk|+ ||∆vk−1||2 (k = 2, . . . , d− 2).(3.7)

An upper bound for the ||∆v̄k−1||2 term is difficult to derive. Fortunately, it is pos-
sible to replace the ||∆v̄k−1||2 term by ||∆v̄k−1||F = ||∆vk−1||2, for which first-order
approximations exist [14]. Multiplying (3.6) with (3.7) over all k we obtain

|σ̂1| · · · |σ̂d−2| ≤ (|σ1|+ ||Ē ||2) · · · (|σk|+ ||∆vk−1||2),

which can be simplified by ignoring higher order terms to

(3.8) |σ̂1| · · · |σ̂d−2| ≤ |σ1| · · · |σd−2|+ |σ2| · · · |σd−2| ||Ē ||2 +

d−2∑
k=2

(
∏
i6=k

|σi|)||∆vk−1||2.

The maximal value for σ2, . . . , σd−2 is 1 and hence (3.8) can be written as

|σ̂1| · · · |σ̂d−2| ≤ |σ1| · · · |σd−2|+ ||Ē ||2 + σ1(

d−3∑
k=1

||∆vk||2).

Hence we arrive at the expression

(3.9) |σ̃ − ˆ̃σ| ≤ ||Ē ||2 + σ1(

d−3∑
k=1

||∆vk||2),

which generalizes Weyl’s Theorem to the TTr1 decomposition by the addition of
a correction term σ1(

∑d−3
k=1 ||∆vk||2). This correction term depends on the largest

singular value of the first level and the perturbations on the right singular vectors for
levels 1 up to d− 3.
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3.9. Conversion to the Tucker decomposition. It is possible to convert the
sum of orthogonal rank-1 terms obtained from a (truncated) TTr1 decomposition into
the Tucker decomposition

A = S×1
U1×2

U2 · · ·×d
Ud

where S ∈ Rr1×r2×···×rd is called a core tensor and Uk ∈ Rnk×rk are orthogonal factor
matrices. In this way it becomes relatively easy to compute an approximation of a
tensor with a known approximation error in the Tucker format with orthogonal factor
matrices. This conversion is easily achieved using simple matrix operations. To avoid
notational clumsiness, we illustrate the conversion from the TTr1 representation into
the Tucker form through the specific TTr1 decomposition in (2.5). Suppose only
alternate terms in the equation are significant and we therefore only keep the 3 terms
associated with σ1σ11, σ2σ21 and σ3σ31. Then, the mode vectors of these outer
products are collected and subjected to economic QR factorization. We note that
U1 = [u1 u2 u3] ∈ R3×3 is already orthogonal and does not need to go through a QR
factorization, while

[
u11 u21 u31

]
=
[
q21 q22 q23

]︸ ︷︷ ︸
U2

 1 α12 α13

0 α22 α23

0 0 α33

 ,
[
v11 v21 v31

]
=
[
q31 q32

]︸ ︷︷ ︸
U3

[
1 β12 β13
0 β22 β23

]
.

Consequently, the truncated TTr1SVD of (2.5) reads

A ≈σ1σ11(u1 ◦ u11 ◦ v11) + σ2σ21(u2 ◦ u21 ◦ v21) + σ3σ31(u3 ◦ u31 ◦ v31)

=σ1σ11(u1 ◦ q21 ◦ q31) + σ2σ21(u2 ◦ (α12q21 + α22q22) ◦ (β12q31 + β22q32))+

σ3σ31(u3 ◦ (α13q21 + α23q22 + α33q23) ◦ (β13q31 + β23q32))

=S×1
U1×2

U2×3
U3,(3.10)

where the core tensor S ∈ R3×3×2 is filled with coefficients found through expanding
the outer products and collecting terms in (3.10). Observe that the dimensions of
the core tensor S are completely determined by the ranks of the orthogonal factor
matrices. From practical examples we observe that the Tucker core obtained in this
way is more sparse compared to the Tucker core computed from the ALS algorithm [2,
3]. If we take for example a random tensor in ∈ R4×3×15, then its TTr1 decomposition
consists of 12 terms. The ranks of the orthogonal factor matrices U1, U2, U3 are then
4, 3, 12, respectively. Consequently, we have that S ∈ R4×3×12 with 3 + 3 · 9 = 30
nonzero entries. In contrast, computing the Tucker decomposition using the ALS
method results in a maximally dense core tensor of 144 nonzero entries.

4. Numerical examples. In this section, we demonstrate some of the proper-
ties of the TTr1 decomposition and compare it with the ALS-CP and Tucker decom-
positions by means of numerical examples. All experiments are done in MATLAB on a
desktop computer. A Matlab/Octave implementation of the TTr1SVD algorithm can
be freely downloaded and modified from https://github.com/kbatseli/TTr1SVD.
The ALS-CP and Tucker decompositions are computed by the ALS optimization tool
provided in the MATLAB Tensor Toolbox [2, 3]. All ALS procedures are fed by
random initial guesses, therefore their errors are defined as the average error over
multiple executions.
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4.1. Example 1: Singular values and permutation of indices. We start
with tensor A in Figure 1.2. Since it is discussed in Section 3.3 that TTr1 decomposi-
tion depends on the ordering of the indices, we demonstrate the TTr1 decomposition
with different permutations of the indices. For a 3-way tensor, the order of indices
can be {i1, i2, i3}, {i1, i3, i2}, {i2, i1, i3}, {i2, i3, i1}, {i3, i1, i2} or {i3, i2, i1}. Since the
order of the last 2 indices will not affect the σ’s in TTr1 decomposition, we only list
the σ’s under the permutations {i1, i2, i3}, {i2, i3, i1} and {i3, i1, i2} in Table 4.1, in
descending order. As a result, although permutations of indices may give different
upper bounds on the rank, TTr1 decomposition still outputs the same rank(A) = 4 in
all permutations. The largest (dominant) singular value (69.6306) differs only slightly
with respect to the permutations, which is also the general observation. Note that the
singular values are quite similar over all permutations for this example. It can also be
seen that some singular values are numerically zero. The same threshold commonly
used to determine the numerical rank of a matrix using the SVD can also be used for
the TTr1 decomposition. An interesting consequence of the rank-deficiency of A is

Table 4.1
σ̃’s of TTr1 decomposition for A.

Order of indices {i1, i2, i3} {i2, i3, i1} {i3, i1, i2}
σ̃1 69.6306 69.6306 69.6306
σ̃2 6.9190 6.9551 6.9567
σ̃3 1.8036 1.6108 1.6010
σ̃4 0.6729 0.7781 0.7840
σ̃5 6.7e-15 1.9e-15 4.3e-15
σ̃6 1.3e-15 1.9e-15 1.4e-15
σ̃7 NA 7.3e-16 NA
σ̃8 NA 5.3e-16 NA

that we can interpret the rank-1 terms corresponding with the very small numerical
singular values as being related to opspan(A)⊥. For the {i1, i2, i3}, {i3, i1, i2} permu-
tations there are 2 extra orthogonal complement tensors while for the {i2, i3, i1} there
are 4 extra orthogonal complement tensors. Figure 4.1 shows the similar singular
value curves for all 6 permutations of a random 3 × 4 × 2 tensor, where it can also
be seen that there are basically 3 distinct permutations and that the largest singular
value is independent of the permutation.

4.2. Example 2: Comparison with ALS-CP and Tucker decomposition.
Next, ALS-CP is applied on A. To begin with, we compute the best rank-1 approx-
imation of A. ALS-CP gives the same weight 69.6306 as the TTr1 decomposition,
implying that both decompositions result in the same approximation in terms of the
Frobenius norm. The errors between A and its approximations Ã, computed using
the ALS-CP and TTr1SVD method, are listed in Table 4.2 for increasing rank.

Table 4.2
Errors ||A − Ã||F of ALS-CP and TTr1SVD for increasing rank R.

Rank 1 2 3 4 5

TTr1SVD 7.2 1.9 0.7 6.8e-15 1.3e-15
ALS-CP 7.2 0.8 3.6e-2 1.4e-10 4.7e-11
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Fig. 4.1. Singular value curves for each of the 6 permutations of a random 3× 4× 2 tensor.

Table 4.2 confirms that the rank⊥(A) = rank(A) = 4. It also indicates that
as an optimization approach, ALS-CP itself cannot determine the rank, but only
the best rank-R approximation for a specific R. Furthermore, it should be noticed
that the TTr1 decomposition can always give an R-rank-1-term approximation with
orthonormal outer products, while ALS-CP cannot assure this property. Finally, a
Tucker decomposition with a core size (2, 2, 2) is applied on A. The resulting dense
core tensor S ∈ R2×2×2 is given by

Si1i21 =

(
69.6306 −0.0181
−0.0701 −0.7840

)
Si1i22 =

(
−0.0113 −6.9190
−1.6108 −0.7010

)
.

The rank-1 outer factors obtained from the Tucker decomposition are also orthonor-
mal. However, compared to the TTr1 decomposition, the Tucker format needs twice
the number of factors than TTr1.

4.3. Example 3: Rank behavior under largest rank-1 term subtraction.
In this example we investigate the behavior of the singular value curves and the rank
when the largest rank-1 term obtained from the TTr1 decomposition is consecutively
subtracted. This means that we start with A from Figure 1.2, compute its largest
orthogonal rank-1 term T1 from the TTr1 decomposition and subtract it to obtain
A − T1, after which the procedure is repeated. Figure 4.2 shows the singular value
curves from the TTr1 decompositions obtained for each of the iterations, where it is
easily seen that each curve gets shifted to the left with each iteration. In other words,
the largest singular value in the next iteration is the second largest singular value of
the previous iteration, etc.. It is also clear that subtracting the largest orthogonal
rank-1 term does not necessarily decrease the rank as also described in [17]. Indeed,
using a numerical threshold of max(4, 8) · 1.11 × 10−16 · σ1 = 1.13 × 10−13 on the
singular values obtained in the first iteration will still return a numerical orthogonal
rank of 4.

In addition, the rank of the obtained tensors in each iteration was also determined
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from the CP-decomposition. From Table 4.2, a numerical threshold of 10−10 was set
to the absolute error ||A − Ã||F to determine the CP-rank. In Table 4.3, both the
CP-rank and the orthogonal rank from the TTr1 decomposition are compared. It
can be seen that the rank determined from ALS-CP increases while the orthogonal
rank monotonically decreases. In this sense, the orthogonal rank appears to be more
robust under largest rank-1 term subtraction.
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Fig. 4.2. Singular value curves for consecutive subtractions of the largest rank-1 term.

Table 4.3
Ranks determined by ALS-CP and TTr1 decomposition for consecutive subtraction of largest

rank-1 term.

Iteration 0 1 2 3 4 5
CP-rank 4 4 4 5 3 2
TTr1 rank 4 4 4 4 3 2

4.4. Example 4: Perturbation of the singular values. In this example
we illustrate the robustness of the computed singular values of our running example
tensor A when it is subjected to additive perturbations. We construct a perturbation
tensor E ∈ R3×4×2 where each entry is drawn from a zero mean Gaussian distribution
with variance 10−6. We then compute the following two norms of E and Ē

||E||F = 5.48× 10−6 and ||Ē ||2 = 4.13× 10−6,

where Ē is E reshaped into a 3× 8 matrix. Comparing the perturbed singular values
¯̃σ1, . . . , ¯̃σ6 of A+ E with the singular values σ̃1, . . . , σ̃6 then shows that

(4.1)
√

(¯̃σ1 − σ̃1)2 + · · ·+ (¯̃σ6 − σ̃6)2 = 3.78× 10−6 < ||E||F ,

and

(4.2) |¯̃σi − σ̃i| ≤ ||Ē ||2 (i = 1, . . . , 6).
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These two inequalities (4.1) and (4.2) are very reminiscent of Mirsky’s and Weyl’s
Theorem [18], respectively, for the perturbation of singular values for matrices.

4.5. Example 5: Gradual decrease of intermediate singular value prod-
ucts. In the discussion on reducing the total number of required SVDs it was shown
that the product of the singular values along a branch becomes smaller and smaller
for every additional level. In this example we demonstrate this gradual decrease for a
random 2×2×2×2×2 tensor where each entry is drawn from a zero mean Gaussian
distribution with variance 1. The TTr1 decomposition always has 16 rank-1 terms.
Figure 4.3 shows the intermediate singular value products σiσij · · ·σij···m as a func-
tion of the level for σ̃1, σ̃8, σ̃13, σ̃16. On the figure it can be seen that the intermediate
singular value products indeed decrease as the level increases. The TTr1-tree for this
tensor is a binary tree. Each SVD of a v vector therefore produces 2 singular values.
It is consistently observed that of the two singular values of v̄, one is very close to
unity, with values around 0.8 or 0.9. The other singular value typically has values
around 0.5. Branches of the tree that mostly choose the singular value close to unity
therefore exhibit a very slow decrease while branches that predominantly choose the
smaller singular value decrease faster. This is seen in Figure 4.3 as a bigger descent
of the intermediate products of σ̃8, σ̃16 compared to σ̃1, σ̃13.

Fig. 4.3. Gradual decrease of intermediate singular value products as a function of the level.

4.6. Example 6: Exponential decaying singular values. In this example
we illustrate the computation of an approximation Ã using Lemma 3.2 when the
singular values σ̃ decay exponentially. Consider the tensor A ∈ R5×5×5 with

Ai1i2i3 =
1

i1 + i2 + i3
,

which has very smoothly decaying singular values as shown in Figure 4.4. There
are a total number of 25 rank-1 terms in the TTr1 decomposition. Suppose we are
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interested in obtaining an approximation Ã such that ‖|A−Ã||F ≤ 10−6. Sorting the
rank-1 terms by descending singular values and using Lemma 3.2, the approximation
would then consist of 17 terms since

σ̃16 = 3.18× 10−6 ≥ σ̃17 = 1.18× 10−6 ≥ 1.00× 10−6 ≥ σ̃18 = 9.00× 10−7.

The approxi-rank gap σ̃17/σ̃18 = 1.31, which indicates that there is no clear “gap”
between σ̃17 and σ̃18. In contrast, the tensor in Example 1 has an approxi-rank gap of
σ̃4/σ̃5 ≈ 1014. Also note that it is not possible to reduce the number of SVDs during
execution of the TTr1SVD algorithm since none of the first five computed singular
values σ1, . . . , σ5 satisfy condition (3.3), with σk0 = 1. Next, the approximations ob-
tained from the TTr1 decomposition and CANDECOMP of this tensor are compared
for increasing rank. The CANDECOMP was computed over 10 trials with different
initial guesses using the CP-ALS method. The absolute errors in terms of the rank are
listed in Table 4.4. For the CANDECOMP case the mean absolute error over the 10
trials is reported. From Table 4.4 it is seen that the errors are almost identical up to
the first 24 terms. Since the TTr1 decomposition consists of 25 terms, the error drops
at that term to the order of the machine precision, while the ALS-CP method fails
to produce any significant improvement in the error. Even when a CANDECOMP of
100 rank-1 terms are computed, the average absolute error is around 10−12.

Fig. 4.4. Singular value decay of the function-generated tensor Ai1i2i3 = 1/(i1 + i2 + i3).

Table 4.4
Errors ||A − Ã||F of ALS-CP and TTr1SVD for increasing rank R.

Rank 1 5 10 15 20 25

TTr1SVD 9.5e−2 2.6e−3 7.6e−5 3.6e−6 2.2e−7 9.9e−16
ALS-CP 9.5e−2 1.6e−3 3.6e−5 4.5e−6 1.2e−7 1.6e−7
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5. Conclusion. In this paper, a constructive TTr1 decomposition algorithm,
named TTr1SVD, was proposed to decompose high-order real tensors into a finite
sum of real orthogonal rank-1 outer products. Compared to existing CP approaches,
the TTr1 decomposition has many favorable properties such as uniqueness, easy quan-
tification of the approximation error, and an easy conversion to the Tucker format
with a sparse core tensor. A complete characterization of all tensors orthogonal to the
original tensor was also provided for the first time, which is readily available via the
TTr1SVD and easily visualized by an outer product column table. As an application
example, this outer product column table was used to provide an elegant construc-
tive proof of the maximum rank-3 property of 2 × 2 × 2 tensors over the real field.
Numerical examples verified and demonstrated the favorable properties of TTr1SVD
in decomposing and analyzing real tensors.
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