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 In this paper, the focus is on mechanical systems that, like a ship or a submarine, perform risky 
missions and that must remain operating for the whole mission time. Missions take place far 
from the operational base and so, in case of failures, although repairs are possible, spares parts 
cannot be resupplied. Hence, given space constraints, the problem is to define the optimal set of 
spare parts that should be taken aboard, to maximize the probability to complete the mission. To 
solve this problem, we propose a constructive algorithm that generates the Pareto Optimal 
Frontier of all the non-dominated solutions, in terms of the system’s reliability and of required 
space. At first, the algorithm is formulated in a generic way; next, it is contextualized to the 
common case of Weibull distributed failure times. In this condition, the underlying equations of 
the model cannot be solved in closed form and an approximated procedure is proposed and 
validated through extensive numerical simulation. 
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1. Introduction 

 
Nowadays, operations’ efficiency and costs minimization are imperative issues of survival. In this regard, 
machines’ failures and productions halts represent serious damages for a manufacturing company, both 
in terms of revenues and of corporate image losses (De Smidt-Destombes et al., 2009; Basten & Ryan, 
2019). To counteract these risks, an optimal mix of maintenance strategies is not enough, unless an 
adequate policy for spare parts management has also been defined (Van Horenbeek et al., 2013; Cai et 
al., 2017). Indeed, in case of missing spare parts, reparation times amplify and costs grow up, due to 
production losses and/or to the issuing of urgent orders (Van Jaarsveld & Dekker, 2011; Godoy et al., 
2013). However, spare parts are expensive and bulky items, that can even become obsolete, due to the 
replacement of the machines for which they were originally designed. So, holding high inventories of 
spare parts is not a viable solution, as it would inevitably lead to unsustainable holding costs. A trade-
off, between the system’s reliability and costs, must be found, and the optimization of this issue has 
attracted much scientific interest, as testified by the interesting literature reviews by Kennedy et al. 
(2002), Ahmed and Sultana (2013), Khanlarzade et al. (2014) and Van der Auweraer et al. (2019).  
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What emerges from the literature is the fact that standard models for inventory management cannot be 
applied to spare parts, as they differentiate from raw materials and finished products in many relevant 
aspects. Briefly: 
- spares parts are characterized by intermittent, irregular or lumpy demand, that is very hard to be 

forecasted (Willemain et al., 2004; Vaughan, 2005; Costantino et al., 2018); 
- demand is influenced or even dictated by the adopted mix of maintenance policies (Godoy et. al., 

2013; Yang & Kang, 2017) and it could also be met through cannibalization of other parts or units 
(Rajpal et al., 2006; Sheng & Prescott, 2017; Renna, 2017); 

- inventory policies should be dynamically modified, depending on the life cycle stage of the 
equipment where spare parts are installed (Teunter & Fortuin, 1999, Teunter & Hanevled, 2002). 

For instance, when a new mechanical system is installed, reliability data are not available and a major 
problem concerns the choice of the initial set of spare parts that should be purchased (Do Rego & De 
Mesquita, 2011). Later on, as reliability data are collected, inventory policies should be redefined, aiming 
to maximize the overall system’s availability (Vand der Auweraer & Boute, 2019). 
Despite the relevant number of papers dealing with spare parts management, the case of repairable 
mechanical systems that must operate for a long time, but that cannot receive supplies of spare parts, has 
been little studied. Classic examples may be that of a ship, a submarine or a space base (in Earth orbit), 
that must continuously operate for a long mission time, far away from the operating base and/or in 
inaccessible places. Certainly, in case of failures, the crew can repair the damage, but only the onboard 
equipment can be used since additional spare parts cannot be resupplied for the whole mission time (or 
it would be too costly to do so). Consequently, before a mission starts, there is the need to define the type 
and number of spare parts that should be taken aboard, to maximize the probability complete the mission 
in a safe way, without violating the space constraints imposed by the narrow layout of the system. 
The above-mentioned problem could be seen as a niche case, yet a similar issue also arises in the end-
life management of standard mechanical equipment. Indeed, when a machine is no longer produced and 
is withdrawn from the market, although the Original Equipment Manufacturer (OEM) must assure spare 
parts availability (at least for a minimum period imposed by law), their selling price generally rises up a 
lot. So, when an OEM retires a machine from the market, the buyer should make an opportunistic 
purchase of spare parts, to anticipate the possible price increase. Obviously, a wise decision, concerning 
the set of spare parts that should be purchased, should be based both on the available budget and on the 
residual technological life (i.e., the desired time before disposal) of the old, but still functioning machine. 
As can be seen, this problem is very similar to the one previously discussed, with the only difference that 
the available space is replaced by a budget constraint. 
Notwithstanding the practical relevance of the above-mentioned problem, as long as the knowledge of 
the authors, only two optimization methods have been proposed so far. The first one was proposed by 
Denicoff et al. (1964), who used a generalization of the News-Vendor-Problem to determine the optimal 
set of spare parts for a Polaris submarine. Later on, Sherbrooke (1968, 2004), faced the same problem 
and introduced a constructive algorithm to generates the Pareto Optimal Frontier of the non-dominated 
spare parts inventory configurations, in terms of space and system’s reliability. The algorithm can be 
optimally solved in polynomial time, but unfortunately, its application is restricted to the hypothesis of 
constant failure rates. This is a major limitation that holds only for electronic devices, but not for 
mechanical parts subjected to friction and wearing. 
The present paper focuses on this topic and generalizes the constructive algorithm by Sherbrooke, making 
it independent from the probability distribution of the failure rates. Next, the common case of Weibull 
distributed failure times is considered in more details. In this peculiar condition, the underlying equations 
of the model cannot be solved in closed form, and so an approximated approach is introduced and 
numerically validated via Monte Carlo simulation. 
The remainder of the paper is organized as follows. Section 2 details the basic constructive algorithm 
proposed by Sherbrooke, whereas Sections 3 and 4 introduce its generalization and its application to the 
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specific Weibull case. The quality and the robustness of the algorithm are numerically assessed in Section 
5 while concluding remarks and directions for future researches are discussed in Section 6. 

2. The basic constructive algorithm 
In this section, we will briefly explain the original algorithm proposed by Sherbrook (2004), which will 
be modified in a novel way in Section 3 and Section 4.  
Let us consider a mechanical and reparable system that must operate, continuously, for a period - or 
mission time - equal or greater than T. In terms of maintenance requirements, the system can be modelled 
as a set of critical parts operating in series, so that, for the whole system to be operational, all parts must 
be simultaneously functioning. We also suppose that, in case of failure, the faulty part can be immediately 
replaced, provided that a spare part is available in the warehouse. However, in the case of stock-out, new 
spare parts cannot be resupplied. So, the initial spare parts inventory must be sufficient to ensure, with a 
high confidence level, the survival of the system for the whole mission time T. 
In this scenario, the key issue concerns the definition of number and type of spare parts, which should be 
purchased, at the minimum cost (or with the minimum required space), to maximize the reliability of the 
system in the mission time T. Without loss of generality, from here on, we will talk in terms of cost 
minimization, but everything also applies to the minimization of the required warehouse space. 
To formulate and solve the problem, the following notation will be used: 
 
 T - The mission time during which the system must operate, but spare parts cannot be resupplied. 
 P - The number of different critical parts for which spare parts can be purchased. 
 M - The number of locations (of the mechanical system) where critical parts are installed. Since 

the same critical part could be installed in more than one location, we have that P  M.  
 𝑡  - The required operating time of part i installed at location j (with 𝑡 ≤ 𝑇). 
 𝑁  - The number of spare parts of type i that are initially available in the warehouse. 
 𝑵 = {𝑁 , 𝑁 , … , 𝑁 … , 𝑁 } - A spare parts inventory configuration. 
 𝑅 (𝑇|𝑵) =  𝑅 (𝑇|𝑁 , 𝑁 , … , 𝑁 ) - The reliability of the system achieved using a specific spare 

parts configuration N. 
 𝛿 (𝑅 ) - The marginal increase of the system’s reliability, which can be achieved adding one spare 

part i to the initial stock level 𝑁  i.e., 𝛿 (𝑅 ) = 𝑅 𝑇|𝑁 , 𝑁 , … , (𝑁 + 1), . . , 𝑁 −𝑅 𝑇|𝑁 , 𝑁 , … , 𝑁 , . . , 𝑁 . 
 𝑃 (𝑛   𝑁 ) - The probability to have, during the mission time (0, T], a number of failures n lower 

or equal that 𝑁  or, equivalently, the probability of not having a stock-out of spare part i. 
 𝛿 (𝑃 ) – The marginal increase of the non-stock-out probability that can be achieved adding one 

unit of spare part i to the initial stock level 𝑁  i.e., 𝛿 (𝑃 ) = 𝑃 (𝑛   𝑁 + 1) −   𝑃 (𝑛   𝑁 + 1). 
Also, a spare part configuration N is said to be a Non-Dominated-Solution (NDS) if and only if any other 
configuration of equal cost achieves a lower level of reliability.  
Our goal is to define a step-by-step procedure that permits to generate a sequence of NDS that, at 
increasing cost levels, maximizes the reliability of the system, at the minimum value of the spare parts 
inventory. 
Let us start by computing 𝑅 (𝑇|𝑵). Since all P parts are installed in series, we immediately have that:  𝑅 (𝑇|𝑵) = 𝑅 (𝑇|𝑁 , 𝑁 , … , 𝑁 ) = 𝑅 (𝑇|𝑁 ) (1) 

Where 𝑅 (𝑇|𝑁 ) can be seen as the share of the system’s reliability, which is ascribable to part i, when 𝑁  spare parts of type i are available in the warehouse. 
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Since spare part i can be substituted 𝑁  times, 𝑅 (𝑇|𝑁 ) coincides with the probability 𝑃 (𝑛   𝑁 ) of not 
having stock out of spare part i. In the over-simplistic case of exponentially distributed lifetimes (i.e., 
constant failure late ), since failures are independent, the fault of a generic spare part i coincides with a 
Poisson random variable, with parameter 𝛬  equal to: 𝛬 = 𝜆 ∙ 𝑡      ∀𝑖 = 1, 2, … , 𝑃 (2) 

Where: 
 𝜆  is the constant failure rate of spare part i installed at location j. 
 𝑡 ≤ 𝑇 is the requested operating time of part i installed at location j. 
 𝑀 ≤ 𝑀 is the number of locations where part i is installed. 

In this case, we have: 

𝑃 (𝑛 = 𝑘) = 𝑃 (𝑘) = ∑ 𝜆 ∙ 𝑡  ∙ 𝑒 ∑  𝑘! = 𝛬 ∙ 𝑒𝑘!  
(3) 

Thus, the system’s reliability 𝑅 (𝑇|𝑵) can be easily computed as follows: 𝑅 (𝑇|𝑵) = 𝑅 (𝑇|𝑁 ) = 𝛬 ∙ 𝑒𝑘!  (4) 

Lastly, by introducing natural logarithms, eq. (4) can be simplified as follows: ln 𝑅 (𝑇|𝑵) = ln 𝑅 (𝑇|𝑁 ) = ln 𝑅 (𝑇|𝑁 )  (5) 

With respect to 𝑁 , 𝑅 (𝑇|𝑁 ) is a monotonically increasing function and this property is maintained also 
by its logarithm ln 𝑅 (𝑇|𝑁 ) . Also, from eq. (5) it is easy to see that the logarithm of the marginal 
increase of the system’s reliability 𝛿 𝑅 (𝑇|𝑵)  corresponds, exactly, to the logarithm of the marginal 
increase of the non-stock-out probability 𝛿 𝑃 (𝑛   𝑁 ) . Indeed: ln 𝛿 (𝑅 ) = ln 𝑅 (𝑇|𝑁 , … , (N + 1), … , 𝑁 ) − ln 𝑅 (𝑇|𝑁 , … , N , … , 𝑁 ) = 

= ln 𝑅 (𝑇|𝑁 + 1) − ln 𝑅 (𝑇|𝑁 ) = ln 𝛿 (𝑅 ) = ln 𝛿 (𝑃 )  
(6) 

This is an important finding because, in terms of the system’s reliability, the addition of an extra spare 
part has an “addictive” and “separable” effect. Owing to this fundamental property, spare parts can be 
considered independently and, starting from a null initial inventory (i.e., 𝑁 = 0 ∀ 𝑖), an optimal 
algorithm, hereafter referred to as the Spare parts Configuration Constructive Algorithm (SpCCA), can 
be formulated as follows: 
 

1. Compute the algorithm of the marginal increase of reliability ln 𝛿 (𝑅 )  for each spare part i. Since 
the algorithm starts from a null initial inventory (i.e., 𝑁 = 0 ∀ 𝑖), ln 𝛿 (𝑅 ) , at Step 1 this 
computation simplifies as in (7): ln 𝛿 (𝑅 )  = ln 𝑒 ∙ (Λ + 1) −ln(𝑒 ) = ln(Λ + 1) (7) 

2. Select the spare part that maximizes the Reliability to Cost Ratio, computed as in (8): ln 𝛿 (𝑅 )𝐶 = ln 𝛿 (𝑅 )𝐶  (8) 

where 𝐶  is the purchase cost of spare part i. 
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3. Let 𝑖∗be the selected spare part, then 𝑵 = {𝑁 , 𝑁 , … , (𝑁 ∗ + 1) … , 𝑁 } is the new NDS. 
4. Update the inventory cost: 𝐶 = 𝐶 ∙ 𝑁 + ⋯ + 𝐶 ∙ 𝑁  
5. Update the system’s reliability: 𝑅 (𝑇|𝑵) = 𝑅 (𝑇|𝑁 ) ∙ 𝑅 (𝑇|𝑁 ) ∙ … ∙ 𝑅 𝑇|𝑁   
6. If the reliability 𝑅 (𝑇|𝑵) is insufficient and the budget has not been used up yet, use equations (4) 

to (6) to update the marginal increase of reliability ln 𝛿𝑖∗(𝑅𝑖∗) , for the newly inserted spare parts 
part 𝑖∗. Return to Step 2. Otherwise exit, an optimal NDS has been found. 

3. The improved algorithm  
The use of a constant failure rate is suitable for electronic devices, but not for mechanical parts subjected 
to ageing and wearing. Thus, to extend the SpCCA to the case of time-dependent failure rate 𝜆(𝑡), 
substantial modifications are needed.  

3.1 Variable failure rate; the single location case 
 
When the failure rate grows over time, faults cannot be modelled as Poisson random variables and Eq. 
(4) does not hold. To find the general way to compute 𝑅 (𝑇|𝑁 ) we start by observing that, at time 𝑡 = 0 
there are exactly (𝑁 + 𝑋 ) spare parts of type i: 𝑁  are in the warehouse and the other X are installed in 
the system. Since 𝑁  substitution can be made at most, a stock-out for part i will not take place, if and 
only if the (𝑁 + 1)-th failure will occur after the mission time T. Owing to this observation, and letting 𝑆( ) = 𝑇 + 𝑇 + ⋯ + 𝑇 + 𝑇( )  be the sum of the (𝑁 + 1) failure times of spare part i, we 
have that: 𝑅 (𝑇|𝑁 ) = 𝑃 𝑆( ) > 𝑇 . 

To compute 𝑃 𝑆( ) > 𝑇 , we assume that spare parts cannot be repaired, but they can only be 
replaced with new ones. In other words, letting 𝜆 (0) and 𝜆 (𝑡 ) be, respectively, the failure rate of spare 
part i at the beginning of its useful life and immediately after its replacement, we have that 𝜆 (𝑡 ) =𝜆 (0). Also, only for the moment, we consider the simplified, but common case of P = M, that is we 
assume that each part can be installed in a single location of the system. Under these hypotheses, the 
replacement process can be modelled as a “renewal process”, because failure times (of spare parts of the 
same type) are i.i.d. random variables, with probability distribution function 𝑓(𝑡) that, from reliability 
theory, is known to be as in (9):  𝑓(𝑡) = 𝜆 (𝑡) ∙ 𝑒𝑥𝑝 − 𝜆 (𝜏)𝑑𝜏 . (9) 

So, 𝑅 (𝑇|𝑁 ) can be computed as in Eq. (10), where the probability distribution function of 𝑆( ) is 
obtained taking the 𝑁 -fold convolution 𝑐( )(𝑡) of 𝑓(𝑡): 𝑅 (𝑇|𝑁 ) = P 𝑆( ) > 𝑇 = 1 − 𝑐𝑖( )(𝑡)𝑑𝑡 = 1 − 𝐶𝑖( )(𝑇). (10) 

Similarly, the probability 𝑃 (𝑛 = 𝑁 ) to have exactly 𝑁  failures in the interval (0, T] is given by Eq. (11): 𝑃 (𝑛 = 𝑁 ) = P 𝑆( ) > 𝑇 − P 𝑆( ) > 𝑇= 1 − 𝑐𝑖( +1)(𝑡)𝑑𝑡 − 1 − 𝑐𝑖( )(𝑡)𝑑𝑡 = 𝐶𝑖( )(𝑇) − 𝐶𝑖( +1)(𝑇). (11) 

Noting that 𝐶( )(𝑇)  ≡  𝐹 (𝑇) and that 𝐶( )(𝑇) = 1, we also have that: 𝑅 (𝑇|0) = 1 − 𝐶( )(𝑇) = 1 − 𝐹 (𝑇) = 𝑅 (𝑇), (12) 
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where 𝑅 (𝑇) = 1 − 𝐹 (𝑇)  is the reliability of part i. 

Using this set of equations to compute the value of the reliability 𝑅 (𝑇|𝑁 ), the SpCCA described in 
Section 2 remains optimal, also for parts with time-dependent failure rate. 

3.2 Variable failure rate; the multiple locations case 
 
If a part i can be installed in 𝑀  different locations, although independent, failure times may not be 
identically distributed. This is because each location j could have a specific failure rate 𝜆 (𝑡) and/or a 
different required operation time 𝑡 ≤ 𝑇. The equality  𝑅 (𝑇|𝑁 ) = P 𝑆( ) > 𝑇  is still valid, but 𝑆( ) cannot be computed as the 𝑁 -fold convolution 𝑐( )(𝑡) of the probability distribution 
function 𝑓(𝑡). For this reason, a combinatorial approach is needed. 

Let us consider a generic part i and a series of failures 𝑭𝒊 ≡ 𝑓 , , 𝑓 , , … , 𝑓 , , … 𝑓 , , where 𝑓 ,  is the 
number of failures occurred at location j, within the mission time T. At the end of the mission, relatively 
to part i, the system will be up if and only if the cumulative number of failures, occurred at each location 
j, is lower or equal than the available number of spare parts 𝑁 . In this regard, we can indicate as “positive-
series” 𝑭𝒌,𝑵𝒊 a series of failures that leaves the system in an operating state (i.e., such that ∑ 𝑓 , ≤ 𝑁 ), 
and we can indicate with 𝓕𝑵𝒊 ≡ 𝑭𝟏,𝑵𝒊 , … , 𝑭𝒌,𝑵𝒊 , … , 𝑭𝑲𝒊,𝑵𝒊  the set of all the  possible 𝐾  positive series 
of part i. 𝓕𝒊 can be organized in a 𝐾 × 𝑀  combinatorial table 𝑪𝑻𝒊, and sorted in terms of a total number 
of failures. For instance, considering a part i that can be installed in three different locations (𝑀 = 3), 
and for which two spare parts are available ( 𝑁 = 2 ), there is a total of ten positive series, such that ∑ 𝑓 , ≤ 2. This is shown in Table 1, where positive series are highlighted in bold. 

Table 1 
The combinatorial table for Mi = 3 and Ni = 2  

Failures at 
Location #1 

Failures at 
Location #2 

Failures at 
Location #3 

Total 
Failures 

0 0 0 0 
1 0 0 1 
0 1 0 1 
0 0 1 1 
2 0 0 2 
0 2 0 2 
0 0 2 2 
1 1 0 2 
1 0 1 2 
0 1 1 2 

Due to the independence of failure times, the occurrence probability of the k-th positive sequence 𝑭𝒌,𝑵𝒊 
equals the product of the probability of each one of its elements 𝑓 , . Also, since each sequence in 𝓕𝑵𝒊 
corresponds to an operating state of the system, 𝑅 (𝑇|𝑁 ) can be obtained summing the occurrence 
probability of all sequences in 𝓕𝒊. In short: 𝑅 (𝑇|𝑁 ) = 𝑃 𝑭𝒌,𝑵𝒊 = 𝑃 𝑛 , =  𝑓 ,( ) =   = 𝑃 𝑛 , = 𝑪𝑻𝒊[𝑘, 𝑗] , (14) 

where: 
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 𝑃 𝑛 , =  𝑓 ,( )  is the probability that part i breaks down exactly 𝑛 , =  𝑓 ,  times at location j and 
the superscript k indicate the reference sequence. 

 𝐶𝑇 [𝑘, 𝑗] is the value (i.e., number of failures) of the cell in position (k, j). 

Also, since failure times of part i installed at location j are i.i.d., the probability 𝑃 𝑛 , = 𝑪𝑻𝒊[𝑘, 𝑗]  can 
be computed as in (11). For instance, considering the example of Table 1 we have: 𝑅 (𝑇|𝑁 ) = 𝑃 𝑛 , = 0 ∙ 𝑃 𝑛 , = 0 ∙ 𝑃 𝑛 , = 0 + ⋯ + 𝑃 𝑛 , = 0 ∙ 𝑃 𝑛 , = 1 ∙ 𝑃 𝑛 , = 1 =    = 𝐶𝑖,1( )(𝑇) − 𝐶𝑖,1(1)(𝑇) ∙ 𝐶𝑖,2( )(𝑇) − 𝐶𝑖,2(1)(𝑇) ∙ 𝐶𝑖,3( )(𝑇) − 𝐶𝑖,3(1)(𝑇) + ⋯ + 𝐶𝑖,1( )(𝑇) − 𝐶𝑖,1(1)(𝑇) ∙∙ 𝐶𝑖,2( )(𝑇) − 𝐶𝑖,2(2)(𝑇) ∙ 𝐶𝑖,3( )(𝑇) − 𝐶𝑖,3(2)(𝑇)  

Please note that we added the subscript j both to 𝑛 ,  and to the convolution 𝐶 ,( )(𝑇), because the 
distribution function of the failure rate of part i also depends on the location where it is installed.  
Lastly, considering that SpCCA proceeds by marginal increments in the number of spare parts, to 
compute 𝑅 (𝑇|𝑁 + 1)  there is no need to consider all rows of 𝑪𝑻𝒊, but only the ones that correspond, 
exactly, to a number (𝑁 + 1) of failures. More formally, letting 𝐾( ) and 𝐾( ) be, respectively, the 
number of positive series when 𝑁  and (𝑁 + 1) spare parts are available, the following recursive formula 
can be finally obtained: 𝑅 (𝑇|𝑁 + 1) = 𝑅 (𝑇|𝑁 ) + 𝑃(𝑛 = 𝑪𝑻 [𝑖, 𝑗])( )

( ) . (15) 

For instance, relatively to the example of Table 1, if spares parts were incremented from two to three 
units, eleven additional rows (corresponding to three failures) should be added to  𝑪𝑻  and only these 
newly inserted rows would be needed to compute 𝑅 (𝑇|𝑁 + 1). This is shown in Table 2, where new 
rows are highlighted in bold. Lastly, it is worth noting that, thanks to the recurrent structure of TMi, the 
combinatorial table can be easily generated in an automatic way. A straightforward algorithm, based on 
integer partitions and on multiset permutations, is detailed in Appendix A. 
 
Table 2 
The combinatorial table for Mi = 3 and Ni = 3  

Sequence Failures at 
Location #1 

Failures at 
Location #2 

Failures at 
Location #3 

Total 
Failures 

1 0 0 0 0 
2 1 0 0 1 
… … … … … 
9 1 0 1 2 
10 0 1 1 2 
11 0 1 1 3 
12 3 0 0 3 
13 0 3 0 3 
14 0 0 3 3 
15 2 1 0 3 
16 2 0 1 3 
17 1 2 0 3 
18 1 0 2 3 
19 0 2 1 3 
20 0 1 2 3 
21 1 1 1 3 
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4. The Weibull case 
 
We now focus on a specific form of the failure rate 𝜆(𝑡) that is frequently used to model the failure rate 
of mechanical parts: 𝜆(𝑡) = 𝜂 ∙ 𝛽 ∙ 𝑡 . (16) 

In (16) both parameters 𝜂 and 𝛽 are non-null positive values: 𝜂 is a shape parameter, whereas 𝛽 is a scale 
parameter that determines the trend of the failure rate over time. More specifically, 𝛽 > 1 is used to 
model mechanical parts subjected to wearing and/or degradation because, in this case, 𝜆(𝑡) increases 
over time. Conversely, with 𝛽 = 1 the failure rate is constant, typical behaviour for most electronics 
component. A special case is that of 0 < 𝛽 < 1, which corresponds to a decreasing failure rate, a 
particular behaviour that can sometimes be found during the “infant mortality stage” of new parts. 
We also note that the failure rate modelled as in (16) corresponds to a two parameters Weibull probability 
function, with cumulative distribution function 𝐹(𝑡) given by: 𝐹(𝑡) = 1 − 𝑒𝑥𝑝 − . (17) 

4.1 A Gamma Normal series truncation approximation 
 
Unfortunately, for a Weibull distribution model, it is not possible to analytically obtain the 
function 𝐶( )(𝑇). Although this value could be numerically computed, the easiest way could be that 
to apply the Gamma-Normal Series Truncation approximation, proposed by Jiang (2008), to approximate 
a Weibull with the mixture of a Gamma 𝑔 𝑡; 𝑘 = (𝜇 𝜎⁄ ) ; 𝜃 = (𝜎 𝜇⁄ )  and of a Normal 𝜙(𝜇, 𝜎) 
distribution, both having the same first two moments of the original Weibull distribution. 
As known, if a random variable 𝑋  is 𝑔(𝑡; 𝑘; 𝜃) then ∑ 𝑋 ~ 𝑔(𝑡; 𝑛𝑘; 𝜃) provided all 𝑋  are i.i.d. 
Similarly, if 𝑍  is 𝜙(𝑡; 𝜇, 𝜎) then ∑ 𝑍 ~ 𝜙 𝑡; 𝑛𝜇; 𝜎 𝑁  provided all 𝑍  are i.i.d. Since the 
replacement process, we are considering is a Renewal Process, the i.i.d hypothesis holds and we can take 
advantage of the above-mentioned properties of the Gamma and Normal functions, to approximate the 
cumulative distribution of the n-fold convolution 𝐶 (𝑡), of a Weibull random variable. This can be made 
as shown in Eq. (18): 𝐶 (𝑡) = 𝑝 ∙ 𝐺(𝑡; 𝑛𝑘, 𝜃) + 𝑞 ∙ Φ 𝑡; 𝑛𝜇; 𝜎√𝑛 , (18) 𝑝 = 1 + 0.4115 ∙ (1 − 𝛽), (19) 𝑞 = 1 − 𝑝, (20) 

where 𝐺 and Φ are, respectively, the cumulative distribution functions of the Gamma and of the Normal 
distribution, and 𝛽 is the scale parameter of the original Weibull distribution. 
Specifically, as shown by Jiang (2008), using as coefficients of the mixture distribution the values of p 
and q obtained through Eq. (19) and Eq. (20), the approximation error E, defined as in Eq. (21) is always 
less than 1%: 𝐸 = max 𝑀 𝑡 − 𝑀 𝑡 , (21) 

where: 
 𝑀 𝑡  is the expected number of replacements in (0, tj] as defined in Eq. (22). 
 𝑀 𝑡  is the estimation of 𝑀 𝑡 , obtained via numerical computation of 𝐶( ) 𝑡 . 
 𝑀 𝑡  is the estimation of 𝑀 𝑡  obtained with the Gamma-Normal Series Truncation 

approximation of 𝐶( ) 𝑡 . 
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𝑀 𝑡 = 𝑗 ∙ 𝑃 𝑛 = 𝑗, 𝑡 = 𝑗 ∙ 𝐶( ) 𝑡 − 𝐶( ) 𝑡 = 𝐶( ) 𝑡 . (22) 

We conclude this Subsection noting that using equation (11) and/or (14) to compute 𝑅 (𝑇|𝑁 ) and using 
Eq. (18) to compute the n-fold convolution 𝐶 (𝑡), the standard SpCCA remains optimal also for 
mechanical parts characterized by a Weibull distributed failure rate. Consequently, hereafter this 
enhanced approach will be referred to as the Weibull-SpCCA. 

4.2 A lower bound approximation of 𝑅 (𝑇|𝑁 ) 
 
When the n-fold convolution 𝐶 (𝑡) are approximated, also 𝑅 (𝑇|𝑁 ) is affected by an approximation 
error. So, it may be useful to evaluate an exact lower bound of 𝑅 (𝑇|𝑁 ). To this aim, the Minimal Repair 
Model (MRM) can be used. According to the MRM, reparations/substitutions bring the system back to 
the operating state in which it was, immediately before the fault. Formally, the MRM assumes that λ (t ) =  𝜆 (𝑡 ) ≠ 𝜆 (0) where 𝜆 (𝑡 ) is the failure rate just before the failure occurred. Obviously, 
since we supposed that spare parts can be substituted but never repaired, the MRM underestimates the 
real reliability of the system and, as such, it gives a lower bound of the overall system’s reliability. 
 
For our purpose, the main advantage of the MRM model is the absence of discontinuity points of the 
function λ (𝑡) i.e, at time t when a failure occurs  λ (t ) =  λ (t ). In virtue of this fact, the distribution 
of the number of failures in Δ𝑡 follows a Non-Homogeneous Poisson process, similar to an ordinary 
Poisson process, except that the average rate of arrivals may vary over time. 
The important point is that, a Non-Homogeneous Poisson, the probability  𝑃 (𝑛 = 𝑘) can be simply 
computed as in (23): 

𝑃 (𝑛 = 𝑘) = 𝐻 (𝑇) ∙ 𝑒𝑘! , (23) 

where: 

𝐻 (𝑇) = 𝜆 (τ)𝑑𝜏. (24) 

Thus  𝑅 (𝑇|𝑁 ) can be exactly evaluated as in Eq. (25): 

𝑅 (𝑇|𝑁 ) = ∫ 𝜆 (τ)𝑑𝜏 ∙ 𝑒 ∫ ( )𝑘! = 𝐻 (𝑇) ∙ 𝑒 ( )𝑘! . (25) 

Also, if part i is installed in Mi locations, the overall failure rate is given by the sum of all 𝐻 , (𝑇): 

𝐻 (𝑇) = 𝜆 (τ)𝑑𝜏 = 𝜆 (τ)𝑑𝜏 = 𝐻 𝑡 . (26) 

Lastly, we observe that, for a Weibull distribution, Eq. (26) simplifies as follows: 

𝐻 (𝑇) = 𝜂 ∙ 𝛽 ∙ 𝑡 𝑑𝜏 = 𝑡𝜂 . (27) 

Hereafter, the use of this lower bound approach for the computation of 𝑅 (𝑇|𝑁 ) will be referred to as 
the Weibull-MRM-SpCCA. 



  

 

26 

5. Numerical analysis 
 
To assess the robustness of the Weibull-SpCCA, a software application, developed in Delphi®, was built. 
Given a specific instance of the spare parts configuration problem, the application returns the Pareto 
optimal frontier; its first point corresponds to an empty warehouse (in this case the solution cost is zero 
and the system’s reliability equals the product of the reliability of all its parts), whereas the last one, is 
the most reliable spare parts configuration that can be generated with the available budget. The problem 
instance passed as input can be randomly generated or manually defined by the user. Anyway, the 
following parameters are considered: mission time, required reliability level, available budget (or 
available warehouse space), number of locations, number of parts, their cost (or occupied space) and 
failure rate.  
For each spare parts configuration lying on the Pareto optimal frontier, the software also returns a 
numerical estimation of the corresponding reliability level. This estimation is obtained performing a 
Monte Carlo simulation, which takes advantage of the inverse function technique, to generate failure 
times accordingly to the chosen failure rate (Law, 2014). The interested reader is referred to Appendix B 
for further details. 

5.1. Robustness of the Gamma Normal series truncation approximation 
 

At first, we used the software to assess the accuracy of the Gamma Normal approximation in estimating  𝑅 (𝑇|𝑁 ). To this aim, we considered a mission time T of 1000 units of time and an unreliable part (with 𝛽 = 1.2,  𝜂 = 800, Mean Time Between Failure MTBF = 752.5 units of time), and we computed  𝑅 (𝑇|𝑁 ) both via simulation (averaged over 100,000 repetitions) and using the set of equations given 
in Section 3 and Section 4. Results, for different levels of 𝑁  in the range [0; 11] and of 𝑀  in the range 
[1;4], are shown in Fig. 1. 

 
Fig. 1. Comparison of different estimates of  𝑅 (𝑇|𝑁 ) for an unreliable part. 

In Fig. 1, continuous, dotted and dashed lines represent, respectively, the values of 𝑅 (𝑇|𝑁 ) obtained 
with the Gamma Normal approximation, with the MRM approach and via Monte Carlo simulation. The 
different colours refer to the number of locations: green corresponds to a single location, while red 
corresponds to four locations. 
 
As can be seen, the Gamma Normal approximation is robust and accurate, as the continuous and the 
dashed line almost coincide. Also, the MRM approach works quite well; being a lower bound its value 
is always below that of the other curves and, as expected, the estimation error amplifies when the number 
of locations increases. Anyhow, the average percentage error, relative to the value of 𝑅 (𝑇|𝑁 ) obtained 
through simulation, is rather low, as clearly shown by Table 3. 
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Table 3 
Percentage Error in the estimation of  𝑅 (𝑇|𝑁 ) for an unreliable part 

 MRM – Lower Bound Gamma Normal Approximation 
Number 

of Locations Average % Error Max % Error Min % 
Error 

Average % 
Error Max % Error Min % Error 

1 3.3% 7.4% 0.1% 0.2% 0.7% 0.0% 
2 5.1% 11.7% 0.1% 0.3% 0.7% 0.0% 
3 7.4% 16.3% 0.4% 0.5% 1.8% 0.0% 
4 10.8% 22.2% 0.6% 0.7% 2.6% 0.0% 

As clearly shown by Fig. 2 and by Table 4, the Gamma Normal approximation remains robust also for a 
very unreliable part with 𝛽 = 1.6,  𝜂 = 500 and MTBF = 448.3 units of time. Conversely, the lower 
bound provided by the MRM approach becomes almost useless. In this extreme condition, the probability 
to observe many failures is high and, consequently, the minimal repair hypothesis becomes too restrictive 
and the real value of 𝑅 (𝑇|𝑁 ) is strongly underestimated. 

 
Fig. 2. Comparison of different estimates of  𝑅 (𝑇|𝑁 ) for a very unreliable part. 

Table 4 
Percentage Error in the estimation of  𝑅 (𝑇|𝑁 ) for a very unreliable part 

 MRM – Lower Bound Gamma Normal Approximation 
Number 

of Locations Average % Error Max % Error Min % 
Error 

Average % 
Error Max % Error Min % Error 

1 34.6% 83.0% 0.5% 0.3% 0.6% 0.1% 
2 65.8% 189.7% 0.9% 1.2% 1.8% 0.7% 
3 153.3% 352.0% 8.5% 1.6% 2.7% 0.8% 
4 321.6% 584.2% 48.2% 2.1% 3.9% 0.8% 

 

5.2 Performance of the WCA 
 
Next, we used the software application to investigate the quality of the spare part configurations 
generated by the Weibull SpCCA. As mentioned above, apart from the small approximation error in the 
estimation of the n-fold convolutions, the solution generated by the Weibull SpCCA is optimal. What we 
want to investigate is how much better this solution is, relatively to the ones generated by the MRM and 
by the Exponential SpCCA. To this end, we compared the non-dominated spare parts configurations 
generated by the three constructive algorithms, in eight alternative scenarios, generated as a full factorial 
combination of the following parameters:  
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 parts can be either Unreliable (U) or Very Unreliable (VU). In the case of U parts, 𝛽 is uniformly 
distributed on [1, 1.2] and 𝜂 is uniformly distributed on [0.8T, 1.2T], with an average MTBF of 
0.965·T units of time. In the case of VU parts, 𝛽 is uniformly distributed on [1.2, 1.6] and 𝜂 is 
uniformly distributed on [0.5T, 0.9T], with an average MTBF of 0.638·T units of time. 

 The number of critical parts P can be either 5 or 10.  
 The number of locations 𝑀  for each critical part i, can be randomly generated either from the set 

{1, 2} or from the set {2, 3, 4}. 
 
In each simulated scenario, the mission time T equals 1000 units of time, the budget equals 100, the price 
of each component is randomly generated in the range [0.1; 1.5] and the target level of reliability is set 
to 90%. 
For the sake of completeness, we also considered two additional critical scenarios, characterized by 10 
critical parts, four of type U, four of type VU and two Halfway (H) between U and VU, with an average 
MTBF of 0.8·T units of time. Each part is installed in 2 and in 4 locations, in the first and in the second 
scenario, respectively.  
For each one of the 10 alternative scenarios, 100 instances were randomly generated and solved with the 
three algorithms. We note that to ensure comparability, the constant failure rate 𝜆, needed by the 
exponential approach, was defined as in Eq. (28):  

𝜆 = 𝜂 ∙ Γ 1 + 1𝛽  (28) 

where Γ(𝑥) is the Gamma Function. In this way, the MTBF of the parts is the same, both in case of 
Weibull and of the Exponentially distributed failure times. 
An example of the obtained Pareto Optimal Solution is shown in Fig. 3, relative to the case of 4 parts of 
type U, 4 of type VU and 2 of type (H), each one installed in 4 different locations of the mechanical 
system.  

 
Fig. 3. An example of the Pareto Optimal Frontier generated by the three constructive algorithms 

The Pareto optimal frontier generated by the SpCCA is the only one that stops before the budget has been 
fully utilized. As soon as the target reliability of 90% is reached, with the purchase of 65 spare parts, the 
algorithm stops. Conversely, due to the underestimation of the true value of the system’s reliability, 
neither the Exponential (in red) nor the MRM (in blue) approach reaches the target and so, new spare 
parts are continuously added, until the budget runs out.  
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This concept is clearly exemplified in Table 5, which show the size, the cost and the true reliability of 
the last non dominated solution generated by each approach. The optimal solution proposed by the 
Weibull SpCCA has a size of 65, uses 91.4% of the budget and perfectly match the reliability target. 
Conversely, the exponential model proposes a solution of size 71 that consumes all of the budgets, with 
an underestimated reliability of 84.5%. This solution is definitively oversized, as its true reliability is 
97% much higher than the target. A similar and even worse solution is proposed by the MRM SpCCA. 
 
Table 5 
Last generated configuration 

Algorithm Last NDS 
Spare part configuration Size % of 

Budget 
Computed value 

of 𝑅 (𝑇|𝑁) 
True value of 𝑅 (𝑇|𝑁) 

MRM {9, 10, 10, 9, 5, 5, 5, 5, 6, 7} 71 100% 0.510 0.970 

Exponential {10, 10, 10, 10, 5, 4, 4, 4, 6, 7} 70 100% 0.845 0.930 

Weibull {7, 9, 9, 8, 5, 5, 6, 5, 6, 6,} 65 91.4% 0.900 0.905 

For this reason, in case of Weibull SpCCA, the last point of the Pareto frontier always coincides with the 
spare parts configuration that reaches the target at the minimum cost, or, in case of insufficient budget, 
it is the configuration ensuring the maximum reliability that can be achieved with the available budget. 
Conversely, the last point of the Pareto frontier of the other two approaches is an oversized configuration, 
with a number of spare parts higher than the required ones. Owing to this consideration, the alternative 
algorithms were compared relative to the percentage error E, computed as in Eq. (29):  𝐸 = 𝑅(𝑆𝑃𝐶 ) − 𝑅 𝑆𝑃𝐶 ,𝑅(𝑆𝑃𝐶 )  , (29) 

where: 
 𝑅(𝑆𝑃𝐶 ) is the true reliability of the spare part configuration 𝑆𝑃𝐶  corresponding to the last point 

of the Pareto optimal frontier generated by the Weibull SpCCA. 
 N is the number of spare parts (i.e., the size) of the spare parts configuration 𝑆𝑃𝐶 . 
 𝑅 𝑆𝑃𝐶 ,  is the true reliability of the spare part configuration of size N lying on the Pareto optimal 

frontier generated by the other two approaches. 

Table 6 
Obtained performance  

SIMULATED SCENARIO EXPONENTIAL SpCCA MRM SpCCA 
Number and type 

of parts 
Number of 
Positions 

Average % 
Error 

Max % 
Error 

Min % 
Error 

Average % 
Error 

Max % 
Error 

Min % 
Error 

5 U {1, 2} 1.40% 5.75% 0.00% 0.90% 4.95% 0.00% 
5 VU {1, 2} 1.40% 5.20% 0.00% 1.60% 5.40% 0.00% 
5 U {2, 3, 4} 1.40% 5.00% 0.00% 1.50% 4.50% 0.00% 

5 VU {2, 3, 4} 1.51% 5.80% 0.00% 6.40% 13.90% 0.00% 
10 U {1, 2} 3.50% 10.30% 0.00% 3.40% 14.30% 0.00% 

10 VU {1, 2} 4.80% 15.60% 0.00% 11.64% 32.50% 1.50% 
10 U {2, 3, 4} 5.00% 13.80% 0.00% 6.60% 12.50% 0.00% 

10 VU {2, 3, 4} 5.45% 20.00% 1.20% 13.60% 28.00% 4.60% 
4U 4VU 2H {2} 1.80% 4.35% 0.00% 16.40% 26.80% 8.60% 

4UP 4VUP 2H {4} 2.10% 4.90% 0.00% 39.40% 50.00% 28.50% 
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Obtained results are shown in Table 6. As expected, the Weibull SpCCA is always the best approach, 
whereas the performance of the MRM SpCCA rapidly deteriorates, as soon as parts’ reliability decrease 
and/or the number of locations increases. Instead, the basic Exponential SpCCA ensures stable and rather 
good performance, as indicated by an average error that is higher than 5% only in case of extreme 
scenarios. Hence, one could argue that the Exponential SpCCA could be used also for mechanical parts 
subjected to ageing and wearing. Actually, the generated solution would be good, if not even optimal, 
but the real value of the obtained reliability would remain unknown since the exponential model 
underestimate the value of 𝑅 (𝑇|𝑁 ) and, consequently, that of 𝑅 (𝑇|𝑵). Also, and perhaps more 
important, as we mentioned before, due to the underestimation of 𝑅 (𝑇|𝑵), the Exponential SpCCA 
tends to build an oversized configuration with more spare parts than required, yet the target reliability 
level could be achieved with a much cheaper configuration.  

6. Conclusions and future works 
 
The paper focused on a specific case of spare parts inventory optimization, where a mechanical system 
that must work, continuously, for a mission time T during which, although it can be repaired, spare parts 
cannot be resupplied. To solve the problem, an optimal constructive algorithm was developed. The 
algorithm proceeded by steps and generated the Pareto optimal frontier of the non-dominated spare parts 
inventory configurations maximizing the overall system’s reliability at increasing levels of cost. The 
algorithm was introduced in general terms and could be used for any probability distributions of the 
failure times of the critical parts of the system. A specific version of the algorithm, called the Weibull 
SpCCA, was also formulated to treat the very common case of Weibull distributed failure times. In this 
peculiar condition, some approximations were made, especially to compute the n-fold convolutions of 
Weibull random variables, needed for the estimation of the system’s reliability. Due to the introduced 
approximations, a software application was also developed to assess the accuracy and quality of the 
algorithm. Obtained results, compared with exact lower bounds and with solutions obtained via Monte 
Carlo simulation, are more than satisfactory and certified the quality of the Weibull SpCCA and its 
practical usability. 

At present, the algorithm is based on the fundamental hypothesis that all the critical parts of the system 
operate in series and so they must all be working for the system to be operational. Future researches are 
intended to relax this constraint, to be able to consider more complex arrangements of the system’s 
critical parts. We also note that the Pareto optimal frontier may not be unique. In fact, there could be 
different spare parts configurations with the same cost and the same reliability or, in any case, with very 
similar values. Thus, it could be interesting to enlarge the Pareto optimal frontier including all the non-
dominated solutions (for each pair of cost and reliability), so as to give the user a wider range of options.  
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Appendix A. Automatic generation of the combinatorial table 
 
To explain how the combinatorial table 𝑪𝑻𝒊 could be automatically built, let us consider again the 
numerical example of Section 3.2, and suppose that a total of two failures have occurred. This event 
corresponds to all the positive sequences listed from Row 5 to Row 10 of Table 1. Since parts are installed 
in three different locations, to get a total of two failures, either they both occurred in the same location 
or there was a single fault in two different locations. This subdivision corresponds, exactly, to the integer 
partitions of the number two. We remind that, in number theory, an integer partition of a positive integer 
n, is a way of writing n as a sum of positive integers. For 𝑛 = 2 there are only two possible partitions: 〈2〉 and 〈1; 1〉. Also, since 𝑀 = 3, to fully describe our event, we must rewrite the previous partitions, 
as the sum of three addendums. In other words, we need to insert an addendum equal to zero for each 
location where no faults occurred i.e., 〈2〉  → 〈2; 0; 0〉 and 〈1; 1〉 → 〈1; 1; 0〉. 
Lastly, in order to come up with all possible events corresponding to two failures, we need to evaluate in 
how many ways these failures can be rearranged among 𝑀  locations. That is, we need to evaluate all the (𝑀 ! (𝑚 ! 𝑚 ! … 𝑚 !)⁄ ) multiset permutations (i.e., permutations with repetitions) of n failures in 𝑀  
locations, when 𝑚 , 𝑚 , … , 𝑚  failures occur in the same location. For instance, considering partition 〈2; 0; 0〉 we have: 𝑀 = 3, 𝑚 = 2, 𝑚 = 0, 𝑚 = 0. So, there are (3 ! (2! 0! 0!)⁄ ) = 3 multiset 
permutations to be considered. These are {2, 0, 0}, {0, 2, 0}, {0, 0, 2}), which correspond to Row 5 to 
Row 7 of Table 1. 
It follows that the rows of 𝑪𝑻𝒊 corresponds to:  
 the integer partitions (with a number of addendum lower or equal to the available positions 𝑀 ) of 

all the natural numbers equal or lower than 𝑁 ; 
 the multiset of each integer partition. 

Generating all the integer partitions of the number n in lexicographical order (i.e., from the first trivial 
partition 〈𝑛〉 to the last one made of n repetitions of the number 1 〈1 , 1 , … , 1 〉) is straightforward. 
Specifically, given the partition 𝑰〈𝜋 ; … ; 𝜋 〉 obtained at a certain step, the next one, in lexicographical 
order, is generated by means of the following steps: 
 Identify the last component of partition 𝑰 greater than one. Let this component be π . 
 Compute 𝑆 = π( ) + ⋯ + π . 
 Create a new partition as follows: 

- Copy all elements π ; … ; π( ) i.e., the part of the sequence to the left of π  is preserved. 
- The element π  must be decreased by one (π = π − 1) and followed by the first integer 

partition of the number S with all addendums equal or lower than (π − 1). 
- This partition is made of ⌊(S (π − 1)⁄ )⌋ repetitions of (π − 1) and [𝑆 𝐦𝐨𝐝 (π − 1)] 

repetitions of 1, where mod is the modulus operator returning the reminder after division. 
Generating permutations is, instead, a more complex problem. Running through this topic goes beyond 
the purpose of this paper, also because, in case of spare parts optimization, the number of different 
locations (and thus the number of elements that need to be permuted) is rather low. Thus, any exhaustive 
algorithm could be used without dramatically worsening the computation time. However, the software 
that we implemented took advantage of the very performing HT algorithm proposed by Hu and Tien 
(1976). Briefly, this algorithm integrates the algorithm by Johnson (1963) that lists, using only adjacent 
transpositions, all permutation of n distinct numbers, and the algorithm by Lehmer (1964) that lists all 



F. Zammori et al.  / International Journal of Industrial Engineering Computations 11 (2020) 33

the permutation of a n-bit vectors (i.e., a 0 - 1 binary vectors of length n). For more details the interested 
reader is referred to the paper by Korsh and Lipschutz (1995) where a C++ implementation of the 
permutation algorithm can be found.  
 

Appendix B. The Monte Carlo simulation pseudo-code 
 
Let 𝐹(𝑡) be the cumulative distribution function of a random variable 𝑋. If 𝐹(𝑡) is continuous and one-
to-one, then 𝐹(𝑈) has the same probability distribution of 𝑋, provided that 𝑈 is a random variable 
uniformly distributed on [0, 1]. Thus, a Weibull distributed failure time 𝑓  (of component i installed at 
location j) can be generated as in (a.1): 𝑓 = 𝜂 ∙ ln 11 − 𝑈 , (A.1) 

where: 𝜂 ,  and 𝛽 ,  are the Weibull’s parameters. 
Given a spare parts inventory configuration 𝑵 = {𝑁 , 𝑁 , … , 𝑁 … , 𝑁 }, for each part 𝑖 ∈ {1, … , 𝑃} and 
for each one of its possible locations 𝑗 ∈ {1, … , 𝑀 }, a sequence of failure times 𝒇𝒊𝒋 =𝑓 , 𝑓 , … , 𝑓 , … , 𝑓 , 𝑓( )  is randomly generated using (a.1), until the sum of the failure times 
does not exceed the required operational time 𝑡 ≤  𝑇, i.e., ∑ 𝑓 ≤ 𝑡  and ∑ 𝑓 > 𝑡 . In other 
words, 𝐾  is the number of the randomly generated failures of part i occurred at location j, during the 
mission time T. Since component i is installed in 𝑀  locations, for a mission to be successfully completed, 
the sum of the number of failures 𝐾  on all locations 𝑀 , and for all part i must be lower that the available 
stock 𝑁 , i.e., if ∑ 𝐾 ≤ 𝑁   ∀𝑖. By operating in this way, the system’s reliability can be estimated as 
the frequency of the successful missions, relatively to the total number of simulated missions. This is 
clearly detailed in the Delphi code of figure a.1.  

Interface 
Type 
Tspare = Record 

  M: Integer; // Number of locations 
  N: Integer; // Number of spare parts available in the warehouse 
  Tmission: Array of Integer; 
  Eta:  Array of real; // Weibull  
  Beta: Array of real; // Weibull  
  Tfailure: Array of real; // Failure time at each location 
  Reliability: Real; 

 End; 
Function LifeSim(Spare: Tspare): Boolean;  // Simulates the life of a spare and returns true if it survives 
Function CompR (Var Cpn : Array of Tspar; SimNum: Integer = 100000): Real; // Computes the system’s reliability 
Function FTime (Eta, Beta: Real): Real; // Generates Weibull distributed failure times  

Implementation 
Function FTime (Eta, Beta: Real): Real; 
// Failure times t are generating as follows: 𝑡 =  𝐹 (𝑦), where y is uniformly distributed in [0, 1]  
Var Base, Exponent, y: Real; 
begin 

y := Random ();  
Base := Ln(1/(1-y)); 
Exponent := (1/Beta); 
FTime := Eta * Power (Base, Exponent); 

 end; 
Function LifeSim(Spare: Tspare): Boolean; 
Var Survive, Stop: Boolean; 
Var  j, N: Integer; 
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Begin 
Survive := True; 
N := Spare.N; 
For j:= 0 To (Spare.M - 1) Do 
Begin 

If Survive Then 
Begin 

Spare.Tfailure[j] := 0; // for each (new) location j the lifetime restarts from zero 
Stop := False; 
Repeat 

Spare.Tfailure[j]:= Spare.Tfailure[j] + Ftime(Spare.Eta[j], Spare.Beta[j]) 
If  Spare.Tfailure[j] >= Spare.Tmission[j] Then Stop := true // spare has survived 

           Else Dec(N); // spare has not survived and must be replaced 
If N < 0 Then // stock out 

           Begin 
Stop := True; 
Survive := False; 

End; 
Until Stop; 

End 
End; 
LifeSim := Survive; 

End; 
Function CompR (Var Spares: Array of Tspare; SimNum: Integer = 100000): Real; 
Var R: Real; 
Var Survive: Boolean; 
Var Successes, i, j: Integer; 
Begin 

R := 1; 
For i := 0 to High(Spares) Do // 𝑅 (𝑇|𝑁 ) is computed (via simulation) for each spare part 
Begin 

Successes := 0; 
For j := 1 To SimNum Do  
Begin 

Survive := SimLifea(Spares[i]); 
If Survive Then Inc(Successes); 

End; 
If Successes > 0 Then Spares[i].R := (Success/SimNum) 

Else Spares[i].R := 0;  
    R:= R*Cpn[i].Aff; //Overall reliability 

End; 
ComputeR := R; 

End; 
End. 

Fig. A.1. Reliability’s simulation pseudo code 
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