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We deal with the problem of bridging the gap between two scales in neuronal modeling. At the 
fi rst (microscopic) scale, neurons are considered individually and their behavior described by 
stochastic differential equations that govern the time variations of their membrane potentials. 
They are coupled by synaptic connections acting on their resulting activity, a nonlinear function of 
their membrane potential. At the second (mesoscopic) scale, interacting populations of neurons 
are described individually by similar equations. The equations describing the dynamical and the 
stationary mean-fi eld behaviors are considered as functional equations on a set of stochastic 
processes. Using this new point of view allows us to prove that these equations are well-posed 
on any fi nite time interval and to provide a constructive method for effectively computing their 
unique solution. This method is proved to converge to the unique solution and we characterize 
its complexity and convergence rate. We also provide partial results for the stationary problem 
on infi nite time intervals. These results shed some new light on such neural mass models as 
the one of Jansen and Rit (1995): their dynamics appears as a coarse approximation of the 
much richer dynamics that emerges from our analysis. Our numerical experiments confi rm 
that the framework we propose and the numerical methods we derive from it provide a new 
and powerful tool for the exploration of neural behaviors at different scales.
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control parameters. This vision, inherited from statistical physics 
requires that the space scale be large enough to include a large 
number of microscopic components (here neurons) and small 
enough so that the region considered is homogeneous. This is in 
effect for instance the case of cortical columns.

However, obtaining the evolution equations of the effective 
mean-fi eld from microscopic dynamics is far from being evident. 
In simple physical models this can be achieved via the law of large 
numbers and the central limit theorem, provided that time cor-
relations decrease suffi ciently fast. This type of approach has been 
generalized to such fi elds as quantum fi eld theory or non equilib-
rium statistical mechanics. To the best of our knowledge, the idea 
of applying mean-fi eld methods to neural networks dates back 
to Amari (Amari, 1972; Amari et al., 1977). In his approach, the 
author uses an assumption that he called the “local chaos hypoth-
esis”, reminiscent of Boltzmann’s “molecular chaos hypothesis”, 
that postulates the vanishing of individual correlations between 
neurons, when the number N of neurons tends to infi nity. Later 
on, Sompolinsky et al. (1998) used a dynamic mean-fi eld approach 
to conjecture the existence of chaos in an homogeneous neural 
network with random independent synaptic weights. This approach 
was formerly developed by Sompolinsky and colleagues for spin-
glasses (Crisanti and Sompolinsky, 1987a,b; Sompolinsky and 
Zippelius, 1982), where complex effects such as aging or coexistence 
of a diverging number of metastable states, renders the mean-fi eld 
analysis delicate in the long time limit (Houghton et al., 1983).

INTRODUCTION
Modeling neural activity at scales integrating the effect of thou-
sands of neurons is of central importance for several reasons. 
First, most imaging techniques are not able to measure individual 
neuron activity (“microscopic” scale), but are instead measuring 
mesoscopic effects resulting from the activity of several hundreds 
to several hundreds of thousands of neurons. Second, anatomi-
cal data recorded in the cortex reveal the existence of structures, 
such as the cortical columns, with a diameter of about 50 μm to 
1 mm, containing of the order of 100–100000 neurons belonging 
to a few different species. These columns have specifi c functions. 
For example, in the visual cortex V1, they respond to preferential 
orientations of bar-shaped visual stimuli. In this case, informa-
tion processing does not occur at the scale of individual neurons 
but rather corresponds to an activity integrating the collective 
dynamics of many interacting neurons and resulting in a mes-
oscopic signal. The description of this collective dynamics requires 
models which are different from individual neurons models. In 
particular, if the accurate description of one neuron requires “m” 
parameters (such as sodium, potassium, calcium conductances, 
membrane capacitance, etc…), it is not necessarily true that an 
accurate mesoscopic description of an assembly of N neurons 
requires Nm parameters. Indeed, when N is large enough averaging 
effects appear, and the collective dynamics is well described by an 
effective mean-fi eld, summarizing the effect of the interactions of 
a neuron with the other neurons, and depending on a few effective 
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On the opposite, these effects do not appear in the neural 
 network considered in Sompolinsky et al. (1998) because the syn-
aptic weights are independent (Cessac, 1995) (and especially non 
symmetric, in opposition to spin-glasses). In this case, the Amari 
approach and the dynamic mean-fi eld approach lead to the same 
mean-fi eld equations. Later on, the mean-fi eld equations derived 
by Sompolinsky and Zippelius (1982) for spin-glasses were rig-
orously obtained by Ben-Arous and Guionnet (Ben-Arous and 
Guionnet, 1995, 1997; Guionnet, 1997). The application of their 
method to a discrete time version of the neural network considered 
in Sompolinsky et al. (1998) and in Molgedey et al. (1992) was done 
by Moynot and Samuelides (2002).

Mean-fi eld methods are often used in the neural network com-
munity but there are only a few rigorous results using the dynamic 
mean-fi eld method. The main advantage of dynamic mean-fi eld 
techniques is that they allow one to consider neural networks where 
synaptic weights are random (and independent). The mean-fi eld 
approach allows one to state general and generic results about the 
dynamics as a function of the statistical parameters controlling the 
probability distribution of the synaptic weights (Samuelides and 
Cessac, 2007). It does not only provide the evolution of the mean 
activity of the network but, because it is an equation on the law of 
the mean-fi eld, it also provides information on the fl uctuations 
around the mean and their correlations. These correlations are of 
crucial importance as revealed in the paper by Sompolinsky et al. 
(1998). Indeed, in their work, the analysis of correlations allows 
them to discriminate between two distinct regimes: a dynamics 
with a stable fi xed point and a chaotic dynamics, while the mean 
is identically 0 in the two regimes.

However, this approach has also several drawbacks explaining 
why it is so seldom used. First, this method uses a generating func-
tion approach that requires heavy computations and some “art” 
for obtaining the mean-fi eld equations. Second, it is hard to gen-
eralize to models including several populations. Finally, dynamic 
mean-fi eld equations are usually supposed to characterize in fi ne 
a stationary process. It is then natural to search for stationary solu-
tions. This considerably simplifi es the dynamic mean-fi eld equa-
tions by reducing them to a set of differential equations (see Section 
“Numerical Experiments”) but the price to pay is the unavoidable 
occurrence in the equations of a non free parameter, the initial 
condition, that can only be characterized through the investigation 
of the nonstationary case.

Hence it is not clear whether such a stationary solution exists, 
and, if it is the case, how to characterize it. To the best of our 
knowledge, this diffi cult question has only been investigated for 
neural networks in one paper by Crisanti et al. (1990).

Different alternative approaches have been used to get a mean-
fi eld description of a given neural network and to fi nd its solu-
tions. In the neuroscience community, a static mean-fi eld study of 
multi-population network activity was developed by Treves (1993). 
This author did not consider external inputs but incorporated 
dynamical synaptic currents and adaptation effects. His analysis 
was completed in Abbott and Van Vreeswijk (1993), where the 
authors considered a unique population of nonlinear oscillators 
subject to a noisy input current. They proved, using a stationary 
Fokker–Planck formalism, the stability of an asynchronous state 
in the network. Later on, Gerstner (1995) built a new approach 

to characterize the mean-fi eld dynamics for the Spike Response 
Model, via the introduction of suitable kernels propagating the 
collective activity of a neural population in time.

Brunel and Hakim (1999) considered a network composed 
of integrate-and-fi re neurons connected with constant synaptic 
weights. In the case of sparse connectivity, stationarity, and con-
sidering a regime where individual neurons emit spikes at low rate, 
they were able to study analytically the dynamics of the network 
and to show that the network exhibited a sharp transition between a 
stationary regime and a regime of fast collective oscillations weakly 
synchronized. Their approach was based on a perturbative analysis 
of the Fokker–Planck equation. A similar formalism was used in 
Mattia and Del Giudice (2002) which, when complemented with 
self-consistency equations, resulted in the dynamical description 
of the mean-fi eld equations of the network, and was extended to 
a multi-population network.

Finally, Chizhov and Graham (2007) have recently proposed 
a new method based on a population density approach allowing 
to characterize the mesoscopic behavior of neuron populations 
in conductance-based models. We shortly discuss their approach 
and compare it to ours in Section “Discussion”.

In the present paper, we investigate the problem of deriving the 
equations of evolution of neural masses at mesoscopic scales from 
neurons dynamics, using a new and rigorous approach based on 
stochastic analysis.

The article is organized as follows. In Section “Mean-Field 
Equations for Multi-Populations Neural Network Models” we 
derive from fi rst principles the equations relating the membrane 
potential of each of a set of neurons as function of the external 
injected current and noise and of the shapes and intensities of the 
postsynaptic potentials in the case where these shapes depend only 
on the postsynaptic neuron (the so-called voltage-based model). 
Assuming that the shapes of the postsynaptic potentials can be 
described by linear (possibly time-dependent) differential equa-
tions we express the dynamics of the neurons as a set of stochastic 
differential equations. Assuming that the synaptic connectivities 
between neurons satisfy statistical relationship only depending on 
the population they belong to, we obtain the mean-fi eld equa-
tions summarizing the interactions of the P populations in the 
limit where the number of neurons tend to infi nity. These equa-
tions can be derived in several ways, either heuristically following 
the lines of Amari (Amari, 1972; Amari et al., 1977), Sompolinsky 
(Crisanti et al., 1990; Sompolinsky et al., 1998), and Cessac (Cessac, 
1995; Samuelides and Cessac, 2007), or rigorously as in the work of 
Ben-Arous and Guionnet (Ben-Arous and Guionnet, 1995, 1997; 
Guionnet, 1997). The purpose of this article is not the derivation 
of these mean-fi eld equations but to prove that they are well-posed 
and to provide an algorithm for computing their solution. Before 
we do this we provide the reader with two important examples of 
such mean-fi eld equations. The fi rst example is what we call the 
simple model, a straightforward generalization of the case studied 
by Amari and Sompolinsky. The second example is a neuronal 
assembly model, or neural mass model, as introduced by Freeman 
(1975) and exemplifi ed in Jansen and Rit’s (1995) cortical column 
model.

In Section “Existence and Uniqueness of Solutions in Finite 
Time” we consider the problem of solutions over a fi nite time 
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 interval [t
0
, T]. We prove, under some mild assumptions, the 

existence and uniqueness of a solution of the dynamic mean-fi eld 
equations given an initial condition at time t

0
. The proof consists 

in showing that a nonlinear equation defi ned on the set of multidi-
mensional Gaussian random processes defi ned on [t

0
, T] has a fi xed 

point. We extend this proof in Section “Existence and Uniqueness 
of Stationary Solutions” to the case of stationary solutions over 
the time interval [−∞, T] for the simple model. Both proofs are 
constructive and provide an algorithm for computing numerically 
the solutions of the mean-fi eld equations.

We then study in Section “Numerical Experiments” the com-
plexity and the convergence rate of this algorithm and put it to good 
use: We fi rst compare our numerical results to the theoretical results 
of Sompolinsky and colleagues (Crisanti et al., 1990; Sompolinsky 
et al., 1998). We then provide an example of numerical experiments 
in the case of two populations of neurons where the role of the 
mean-fi eld fl uctuations is emphasized.

Along the paper we introduce several constants. To help the 
reader we have collected in Table 1 of Appendix D, the most impor-
tant ones and the place where they are defi ned in the text.

MEAN-FIELD EQUATIONS FOR MULTI-POPULATIONS 
NEURAL NETWORK MODELS
In this section we introduce the classical neural mass models and 
compute the related mean-fi eld equations they satisfy in the limit 
of an infi nite number of neurons.

THE GENERAL MODEL
General framework
We consider a network composed of N neurons indexed by 
i ∈ {1,…,N} belonging to P populations indexed by α ∈ {1,…,P} 
such as those shown in Figure 1. Let Nα be the number of neurons 
in population α. We have N NP= ∑α= α1 . We defi ne the population 
which the neuron i, i = 1,…,N belongs to.

Defi nition 1. The function p: {1,…,N} → {1,…,P} associates to 
each neuron i ∈ {1,…,N}, the population α = p(i) ∈ {1,…,P}, it 
belongs to.

We consider that each neuron i is described by its membrane 
potential V

i
(t), and the related instantaneous fi ring rate is deduced 

from it through a relation of the form ν
i
(t) = S

i
(V

i
(t)) (Dayan and 

Abbott, 2001; Gerstner and Kistler, 2002), where S
i
 is a sigmoidal 

function.
A single action potential from neuron j generates a postsynaptic 

potential PSP
ij
(u) on the postsynaptic neuron i, where u is the time 

elapsed after the spike is received. We neglect the delays due to the 
distance traveled down the axon by the spikes.

Assuming that the postsynaptic potentials sum linearly, the aver-
age membrane potential of neuron i is

V t t t V ti ij
j k t t

k i

k

( ) ,
, ,

= ( ) ( )∑ PSP
>

− +
0

0

where the sum is taken over the arrival times of the spikes produced 
by the neurons j after some reference time t

0
. The number of spikes 

arriving between t and t + dt is ν
j
(t)dt. Therefore we have

V t t s v s ds V t

t s S V s

i ij j i

t

t

j

ij j j

( ) ( ) ( )

( ) ( )

= − ( )

= − ( )

∫∑ PSP

PSP

 +

 

0

0

dds V ti

t

t

j

+ 0

0

( )∫∑ ,

 

(1)

or, equivalently

v t S t s v s ds V ti i ij j i

t

t

j

( ) ( ) ( ) .= − ( )
⎛

⎝
⎜

⎞

⎠
⎟∫∑ PSP + 0

0  

(2)

The PSP
ij
s can depend on several variables in order to account 

for instance for adaptation or learning.
We now make the simplifying assumption that the shape of 

the postsynaptic potential PSP
ij
 only depends on the postsynap-

tic population, which corresponds to the voltage-based models in 
Ermentrout’s (1998) classifi cation.

The voltage-based model. The assumption, made in Hopfi eld 
(1984), is that the postsynaptic potential has the same shape no 
matter which presynaptic population caused it, the sign and ampli-
tude may vary though. This leads to the relation

PSPij ij it J g t( ) ( ).=

g
i
 represents the unweighted shape (called a g-shape) of the postsy-

naptic potentials and Jij is the strength of the postsynaptic potentials 
elicited by neuron j on neuron i. At this stage of the discussion, 
these weights are supposed to be deterministic. This is refl ected 
in the notation Jij which indicates an average value1. From Eq. 1 
we have

V t g t s J v s ds V ti i

t

t

ij j
j

i( ) ( ) ( ) .= −
⎛

⎝⎜
⎞

⎠⎟
+ ( )∫ ∑

0

0
FIGURE 1 | General network considered: N neurons belonging to 

P populations are interconnected with random synaptic weights whose 

probability distributions only depend upon the population indexes, 

see text.
1When we come to the mean-fi eld equations they will be modeled as random 
 variables.
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So far we have only considered the synaptic inputs to the neu-
rons. We enrich our model by assuming that the neuron i receives 
also an external current density composed of a deterministic part, 
noted I

i
(t), and a stochastic part, noted n

i
(t), so that

V t g t s J v s I s n s ds V ti i

t

t

ij j
j

i i i( ) ( ) ( ) ( ) ( ) .= − + +
⎛

⎝⎜
⎞

⎠⎟
+ ( )∫ ∑

0

0

 

(3)

We assume, and this is essential for deriving the mean-fi eld 
equations below, that all indexed quantities depend only upon the 
P populations of neurons (see Defi nition 1), i.e.,

g t g t J J I t I t

n t

i p i ij p i p j i p i

i

( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )= = =def def def

de∼ff n t S Sp i j p j( ) ( )( ) ( ) ( ),⋅ = ⋅
 

(4)

where x ∼ y indicates that the two random variables x and y have 
the same probability distribution. In other words, all neurons in the 
same population are described by identical equations (in law).

The g-shapes describe the shape of the postsynaptic potentials 
and can reasonably well be approximated by smooth functions.

In detail we assume that gα, α = 1,…,P is the Green function of 
a linear differential equation of order k, i.e., satisfi es

b t
d g

dt
t tl

l

k l

lα
α δ

=
∑ =

0

( ) ( ) ( ),
 

(5)

where δ(t) is the Dirac delta function.
The functions b

lα(t), l = 0,…,k, α = 1,…,P, are assumed to be 
continuous. We also assume for simplicity that

b
kα(t) ≡ cα ≠ 0, (6)

for all t ∈ �, α = 1,…,P. We note Dk
α the corresponding differential 

operator:

D g t b t
d g

dt
t tk

l
l

k l

lα α α δ( ) ( ) ( ) ( )= =
=
∑def

0

α

 
(7)

Applying Dk
α to both sides of Eq. 3, using Eq. 7 and the fact that 

ν
j
(s) = S

j
(V

j
(s)), we obtain a kth-order differential equation for V

i

D V t J S V t I t n ti
k

i ij j j i i
j

N

( ) ( ) ( ) ( ).= ( ) + +
=

∑
1  

(8)

With a slight abuse of notation, we split the sum with respect 
to j into P sums:

D V t J S V t I t n ti
k

i ij j j i i
j

NP

( ) ( ) ( ) ( )= ( ) + +
==

∑∑
11

β

β

We classically turn the kth-order differential Eq. 8 into a k-
dimensional system of coupled fi rst-order differential equations 
(we divided both sides of the last equation by c

i
, see Eq. 6):

dV t V t dt l k

dV t b t V t J S

li l i

k i lp i li ij

( ) ( ) ,

( ) ( ) ( )( )

= =

= +

+1

1

0 2…, −

−− pp j j
j

p i i
l

k

V t I t n t dt( ) ( )( ) ( ) ( )( ) + +
⎛

⎝⎜
⎞

⎠⎟
∑∑

=0

−1

 
(9)

A well-known example of g-shapes, see Section “Example II: The 
model of Jansen and Rit” below or Gerstner and Kistler (2002), is

g t Ke Y tt( ) ( ),/= − τ

 (10)

where Y(t) is the Heaviside function. This is an exponentially decay-
ing postsynaptic potential corresponding to

k b t
K

b t
K

= = =1
1 1

1 0( ) ( ) and
τ

in Eq. 5.
Another well-known example is

g t Kte Y tt( ) ( )./= − τ

 (11)

This is a somewhat smoother function corresponding to

k b t
K

b t b t= = = =2
1 2 1

2 1 0( ) ( ) ( )
τ

 and
τ2

in Eq. 5.

The dynamics. We modify the Eq. 9 by perturbing the fi rst k − 1 
equations with Brownian noise and assuming that n

i
(t) is white 

noise. This has the effect that the quantities that appear in Eq. 9 are 
not anymore the derivatives up to order k − 1 of V

i
. This becomes 

true again only in the limit where the added Brownian noise is 
null. This may seem artifi cial at fi rst glance but (1) it is a technical 
assumption that is necessary in the proofs of the well-posedness 
of the mean-fi eld equations, see Assumption 1 below, and (2) it 
generates a rich class of external stochastic input, as shown below. 
With this in mind, the Eq. 9 now read

dV t V t dt f t dW t l k

dV t b

li l i li li

k i lp i

( ) ( ) ( ) ( ) ,

( ) ( )

= + =

=

+1

1

0 2…, −

−− (( ) ( ) ( ) ( )( ) ( )t V t J S V t I t dt

f

li ij p j j
j

p i
l

k

k i

+ ( ) +
⎛

⎝⎜
⎞

⎠⎟

+

∑∑
=0

−1

−1 (( ) ( )t dW tk i−1  (12)

W
li
(t), l = 0,…,k − 1, i = 1,…,N, are kN independent standard 

Brownian processes. Because we want the neurons in the same 
class to be essentially identical we also assume that the functions 
f
li
(t) that control the amount of noise on each derivative satisfy

f
li
(t) = f

lp(i)
(t), l = 0,…,k − 1, i = 1,…,N

Note that in the limit f
lα(t) = 0 for l = 0,…,k − 1 and α = 1,…,P, 

the components V
li
(t) of the vector Vi t( ) are the derivatives of the 

membrane potential V
i
, for l = 0,…,k − 1 and the Eq. 12 turn 

into Eq. 9. The system of differential Eq. 12 implies that the class 
of admissible external stochastic input n

i
(t) to the neuron i are 

Brownian noise integrated through the fi lter of the synapse, i.e., 
involving the lth primitives of the Brownian motion for l ≤ k.

We now introduce the k − 1 N-dimensional vectors V
l
(t) = 

[V
l1
,…,V

lN
]T, l = 1,…,k − 1 of the lth-order derivative (in the limit 

of f
lp(i)

(t) = 0) of V(t), and concatenate them with V(t) into the 
Nk-dimensional vector

V

V

V

V

( )

( )

( )

( )

.t

t

t

tk

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1

−1  

(13)
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The N-neurons network is described by the Nk-dimensional 
vector V( )t . By defi nition the lth N-dimensional component Vl  of 
V is equal to V

l
. In the limit f

lα(t) = 0 we have

V V
V

V Vl l

l

l

d

dt
l k= = = =0 0,…, −1, with

We next write the equations governing the time variation of the 
k N-dimensional sub-vectors of V( )t , i.e., the derivatives of order 
0,…,k − 1 of V(t). These are vector versions of Eq. 12. We write

d t t dt t d t l kl l l lV V W( ) ( ) ( ) ( ) , .= + ⋅ =+1 0 2F …, −  (14)

F
l
(t) is the N × N diagonal matrix

diag ( ( ), , ( ), , ( ), , ( )),f t f t f t f tl l

N

lP lP

NP

1 1

1

… … …

where f
lα(t), α = 1,…,P is repeated Nα times, and the W

l
(t), 

l = 0,…,k − 2, are k − 1 N-dimensional independent standard 
Brownian processes.

The equation governing the (k − 1)th differential of the mem-
brane potential has a linear part determined by the differential 
operators Dk

α, α = 1,…,P and accounts for the external inputs 
(deterministic and stochastic) and the activity of the neighbors. 
We note L(t) the N × Nk matrix describing the relation between 
the neurons membrane potentials and their derivatives up to the 
order k − 1 and the (k − 1)th derivative of V. This matrix is defi ned 
as the concatenation of the k N × N diagonal matrixes

B
l
(t) = diag ( ( ), , ( ), , ( ), , ( ))b t b t b t b tl l

N

lP lP

NP

1 1

1

for l = 0,…,k − 1:

L( ) ( ) ( )t t tk= [ ]B B0 1,…, −

We have:

d t t t S t t dt t dk k kV V J V I W−1 −1 −1−( ) ( ) ( ) ( ) ( ) ( )= ⋅ + ⋅ ( )( ) +( ) + ⋅L 0 F (( ),t

(15)

where W
k−1

(t) is an N-dimensional standard Brownian  process 
independent of W

l
(t), l = 0,…,k − 2. The coordinates of the 

N-dimensional vector I(t) are the external deterministic input 
currents,

I(t) = I1[ ( ), , ( ), , ( ), , ( )] ,t I t I t I t
N

P P
T

NP

1

1

 

J  the N × N matrix of the weights Jij which are equal to J p i p j( ) ( ) (see 
Eq. 4), and S is a mapping from �N to �N such that

S(V)
i
 = S

p(i)
(V

i
) for i = 1,…,N. (16)

We defi ne

L

B B B

( )

( ) ( ) ( )

t

t t t

N N N N

N N N N N N

k

=

⎡

⎣

⎢
⎢
⎢

×

× × ×

0 0

0 0 0

1

×

−

Id

Id

N

N

0 1

⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥

,

where Id
N
 is the N × N identity matrix and 0

N × N
 the N × N null 

matrix. We also defi ne the two kN-dimensional vectors:

U

J V J V

t

N

N

N

N

S t S t

=

⋅ ( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

⋅

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
0

0

0

0

0( ) ( ( ))

⎥⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

and I

I

t

N

N

t

0

0

( )

,

where 0
N
 is the N-dimensional null vector.

Combining Eqs. 14 and 15 the full equation satisfi ed by V can 
be written:

d t t t dt t dt t tV L V U I W( ) ( ) ( ) ( )= + +( ) + ⋅− ,F
 

(17)

where the kN × kN matrix F(t) is equal to diag(F
0
,…,F

k−1
) and W

t
 

is an kN-dimensional standard Brownian process.

THE MEAN-FIELD EQUATIONS
One of the central goals of this paper is to analyze what happens 
when we let the total number N of neurons grow to infi nity. Can 
we “summarize” the kN equations (Eq. 17) with a smaller number 
of equations that would account for the populations activity? We 
show that the answer to this question is yes and that the populations 
activity can indeed be represented by P stochastic differential equa-
tions of order k. Despite the fact that their solutions are Gaussian 
processes, these equations turn out to be quite complicated because 
these processes are non-Markovian.

We assume that the proportions of neurons in each population 
are nontrivial, i.e.:

lim ( , ) { }, .
N

N

N
n P n

→∞
= ∈ ∀ =∑α

α α
α

α ∈0 1 11, , and

If it were not the case the corresponding population would not 
affect the global behavior of the system, would not contribute to 
the mean-fi eld equation, and could be neglected.

General derivation of the mean-fi eld equation
When investigating the structure of such mesoscopic neural assem-
blies as cortical columns, experimentalists are able to provide the 
average value Jij of the synaptic effi cacy J

ij
 of neural population j 

to population i. These values are obviously subject to some uncer-
tainty which can be modeled as Gaussian random variables. We also 
impose that the distribution of the J

ij
s depends only on the popula-

tion pair α = p(i), β = p(j), and on the total number of neurons 
Nβ of population β:

J
J

N N
ij ∼

σαβ

β

αβ

β

N , .
⎛

⎝
⎜

⎞

⎠
⎟

 

(18)

We also make the additional assumption that the J
ij
’s are inde-

pendent. This is a reasonable assumption as far as modeling cortical 
columns from experimental data is concerned. Indeed, it is already 
diffi cult for experimentalists to provide the average value of the 
synaptic strength Jαβ from population β to population α and to 
estimate the corresponding error bars (σαβ), but measuring syn-
aptic effi cacies correlations in a large assembly of neurons seems 
currently out of reach. Though, it is known that synaptic weights 
are indeed correlated (e.g., via synaptic plasticity mechanisms), 
these correlations are built by dynamics via a complex interwoven 
evolution between neurons and synapses dynamics and  postulating 
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the form of synaptic weights correlations requires, on theoretical 
grounds, a detailed investigation of the whole history of neurons–
synapses dynamics.

Let us now discuss the scaling form of the probability distribu-
tion (Eq. 18) of the J

ij
’s, namely the division by Nβ for the mean 

and variance of the Gaussian distribution. This scaling ensures 
that the “local interaction fi eld” ∑ =j

N

ij jJ S V t1
β ( ( )) summarizing the 

effects of the neurons in population β on neuron i, has a mean and 
variance which do not depend on Nβ and is only controlled by the 
phenomenological parameters Jαβ, σαβ.

We are interested in the limit law when N → ∞ of the 
N-dimensional vector V defi ned in Eq. 3 under the joint law of 
the connectivities and the Brownian motions, which we call the 
mean-fi eld limit. This law can be described by a set of P equations, 
the mean-fi eld equations. As mentioned in the introduction these 
equations can be derived in several ways, either heuristically as in 
the work of Amari (Amari, 1972; Amari et al., 1977), Sompolinsky 
(Crisanti et al., 1990; Sompolinsky et al., 1998), and Cessac (Cessac, 
1995; Samuelides and Cessac, 2007), or rigorously as in the work of 
Ben-Arous and Guionnet (Ben-Arous and Guionnet, 1995, 1997; 
Guionnet, 1997) . We derive them here in a pedestrian way, prove 
that they are well-posed, and provide an algorithm for computing 
their solution.

The effective description of the network population by popula-
tion is possible because the neurons in each population are inter-
changeable, i.e., have the same probability distribution under 
the joint law of the multidimensional Brownian motion and the 
connectivity weights. This is the case because of the relations 
(Eqs. 4 and 16) which imply the form of Eq. 17.

The mean ideas of dynamic mean-fi eld equations. Before diving 
into the mathematical developments let us comment briefl y what 
are the basic ideas and conclusions of the mean-fi eld approach. 
Following Eq. 8, the evolution of the membrane potential of some 
neuron i in population α is given by:

b t
d V

dt
t J S V t I t n t p il

l

k l
i

l ij j j
j

N

i iα α
= =
∑ ∑= ( ) + + =

0 1

( ) ( ) ( ) ( ) ( ), ( ) ..

 
(19)

Using the assumption that S
i
, I

i
, n

i
 depend only on neuron popu-

lation, this gives:

b t
d V

dt
t V t I t n t il

l

k l
i

l i

P

iα β
β

αη ∈α
= =
∑ ∑= ( ) + +

0 1

( ) ( ) ( ) ( ) ( ), ,

 

(20)

where we have introduced the local interaction fi eld η
iβ(V(t)) = 

∑ =j
N

ij jJ S V t1
β

β( ( )), summarizing the effects of neurons in population 
β on neuron i and whose probability distribution only depends on 
the pre- and postsynaptic populations α and β.

In the simplest situation where the J
ij
’s have no fl uctuations 

(σαβ = 0) this fi eld reads η Φβ αβ βi V t J V t( ( )) ( ( ))= . The term 
Φβ(V(t)) = 1

1N j

N

jS V t
β

β
β∑ = ( ( )) is the frequency rate of neurons in 

population β, averaged over this population. Introducing in 
the same way the average membrane potential in population β, 
V t V tN j

N

jβ β

β( ) ( )= ∑ =
1

1 , one obtains:

b t
d V

dt
t J V t I t n tl

l

k l

l

P

α
α

αβ β
β

α αΦ
= =
∑ ∑= + +

0 1

( ) ( ) ( ( )) ( ) ( ).

 

(21)

This equation resembles very much Eq. 19 if one makes the 
following reasoning: “Since Φβ(V (t) is the frequency rate of neu-
rons in population β, averaged over this population, and since, 
for one neuron, the frequency rate is ν

i
(t) = S

i
(V

i
(t)) let us write 

Φβ(V(t)) = Sβ(Vβ(t))”. This leads to:

b t
d V

dt
t J S V t I t n tl

l

k l

l

P

α
α

αβ β β
β

α α
= =
∑ ∑= ( ) + +

0 1

( ) ( ) ( ) ( ) ( ),

 

(22)

which has exactly the same form as Eq. 19 but at the level of a 
neuron population. Equations such as (22), which are obtained 
via a very strong assumption:

1 1

1 1N
S V t S

N
V tj

j

N

j
j

N

β
β β

β

β β

( ) ( ) ,( ) =
⎛

⎝
⎜

⎞

⎠
⎟

= =
∑ ∑

 

(23)

are typically those obtained by Jansen and Rit (1995). Surprisingly, 
they are correct and can be rigorously derived, as discussed below, 
provided σαβ = 0.

However, they cannot remain true, as soon as the synaptic weights 
fl uctuate. Indeed, the transition from Eqs. 19 to 22 corresponds to 
a projection from a NP-dimensional space to a P-dimensional one, 
which holds because the NP × NP dimensional synaptic weights 
matrix has in fact only P linearly independent rows. This does not 
hold anymore if the J

ij
’s are random and the synaptic weights matrix 

has generically full rank. Moreover, the effects of the nonlinear 
dynamics on the synaptic weights variations about their mean, is 
not small even if the σαβs are and the real trajectories of Eq. 19 can 
depart strongly from the trajectories of Eq. 22. This is the main 
message of this paper.

To fi nish this qualitative description, let us say in a few words 
what happens to the mean-fi eld equations when σαβ ≠ 0. We show 
below that the local interaction fi elds ηαβ(V (t)) becomes, in the limit 
Nβ → ∞, a time-dependent Gaussian fi eld Uαβ(t). One of the main 
results is that this fi eld is non-Markovian, i.e., it integrates the whole 
history, via the synaptic responses g which are convolution products. 
Despite the fact that the evolution equation for the membrane poten-
tial averaged over a population writes in a very simple form:

b t
d V

dt
t U t I t n tl

l

k l

l

P

α
α

αβ
β

α α
= =
∑ ∑= + +

0 1

( ) ( ) ( ) ( ) ( ),

 

(24)

it hides a real diffi culty, since Uαβ(t) depends on the whole past. 
Therefore, the introduction of synaptic weights variability leads to a 
drastic change in neural mass models, as we now develop.

The Mean-Field equations. We note C([t
0
, T], �P) (respectively 

C((−∞, T], �P)) the set of continuous functions from the real inter-
val [t

0
, T] (respectively (−∞, T]) to �P. By assigning a probability 

to subsets of such functions, a continuous stochastic process X 
defi nes a positive measure of unit mass on C([t

0
, T], �P) (respec-

tively C((−∞, T], �P)). This set of positive measures of unit mass is 
noted M1

+
0([ , ],( )C t T P�  (respectivelyM1

+ (( , ], ))(C T P− ∞ � .
We now defi ne a process of particular importance for describing 

the limit process: the effective interaction process.

Defi nition 2. (Effective interaction process). Let X ∈ 
M1

+
0([ , ],( ))C t T P�  (respectively M1

+ (( , ], ))(C T P− ∞ �  be a given 
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Gaussian stochastic process. The effective interaction term is 
the Gaussian process UX ∈ M1

+
0([ , ],( ))C t T P P� × , (respectively 

M1
+ (( , ], )(C T P P− ×∞ � ) defi ned by:

�[ ( )] ( )

( ), ( )
( , )

U t J m t

U t U s
t s

X X

X X
X

αβ αβ β

αβ γδ
αβ βα Δ α γ

=

( ) =
Cov =

if2 aand

otherwise

β δ=⎧
⎨
⎩

⎧

⎨
⎪

⎩
⎪

,

0
 

(25)

where

m t S X tX
β β β( ) ( ) ,= ( )⎡⎣ ⎤⎦

def
�

and

Δβ β β β β
X t s S X t S X s( , ) [ ( ( )) ( ( )) ]=def

�

In order to construct the solution of the mean-fi eld equations 
(see Section “Existence and Uniqueness of Solutions in Finite 
Time”) we will need more explicit expressions for m tX

β ( ) and Δβ
X t s( , )  

which we obtain in the next proposition.

Proposition 1. Let μ(t) = �[X
t
] be the mean of the process X and 

C(t, s) = �[(X
t
 − μ(t)) (X

s
 − μ(s))T] be its covariance matrix. 

The vectors mX(t) and ΔX(t, s) that appear in the defi nition of 
the effective interaction process UX are defi ned by the following 
expressions:

m t S x C t t t DxX
β β ββ βμ( ) ( , ) ( ) ,= +( )∫

�  
(26)

and

Δβ
X t s S

C t t C s s C t s

C t t
x

C

( , )
( , ) ( , ) ( , )

( , )

(

=
−⎛

⎝
⎜⎜

+

∫ β
ββ ββ ββ

ββ

ββ

2

2�

tt s

C t t
y s S y C t t t Dx Dy

, )

( , )
( ) ( , ) ( ) ,

ββ
β β ββ βμ μ+ ⎞

⎠⎟
+( )

 

(27)

where

Dx dx
x

=
−1

2

2

2

π
e .

is the probability density of a 0-mean, unit variance, Gaussian 
variable.

Proof. The results follow immediately by a change of variable 
from the fact that Xβ(t) is a univariate Gaussian random variable 
of mean μβ(t) and variance Cββ(t, t) and the pair (Xβ(t), Xβ(s)) is 
bivariate Gaussian random variable with mean (μβ(t), μβ(s)) and 
covariance matrix

C t t C t s

C t s C s s
ββ ββ

ββ ββ

( , ) ( , )

( , ) ( , )

⎡

⎣
⎢

⎤

⎦
⎥

 

Choose P neurons i
1
,…,i

P
, one in each population (neuron iα 

belongs to the population α). We defi ne the kP-dimensional vector 
V ( )N t( ) by choosing, in each of the k N-dimensional components 

…Vl t l k( ), , ,= −0 1, of the vector V( )t  defi ned in Eq. 13 the coor-
dinates of indexes i

1
,…,i

P
. Then it can be shown, using either a 

heuristic argument or large deviations techniques (see Appendix A), 
that the sequence of kP-dimensional processes ( )Vt t

N
N≥ ≥0 1

( )  converges 

in law to the process V V V V( ) [ ( ) , ( ) , , ( ) ]t t t tT T
k

T T= … −1 1  solution of 
the following mean-fi eld equation:

d dt tV V( ) = ( ) ( )+ ( ) ( ) dt t t t tt− +( ) + ⋅L I WUV F .
 

(28)

L is the P
k
 × P

k
 matrix

L

B B B

( )

( ) ( ) ( )

t

t t t

P P P P

P P P P

k

=

⎡

⎣

⎢
⎢
⎢

0 0

0 0 0

1

× ×

× × ×

−

Id

Id

P

P P

P

0 1

⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥

.

The P × P matrixes B
l
(t), l = 0,…,k − 1 are, with a slight abuse of 

notations, equal to diag(b
l1
(t),…,b

lP
(t)). ( )Wt t t≥ 0

 is a kP- dimensional 
standard Brownian process. UV has the law of the P-dimensional 
effective interaction vector associated to the vector V (fi rst P-
dimensional component of V) and is statistically independent of 
the external noise ( )Wt t t≥ 0

 and of the initial condition V( )t0  (when 
t

0
 > −∞):

U

U

I

I

t

t

V

V

=

⋅

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

0

0

1

0

0

P

P

P

P

t

t

t( )

( )

( )F == ( )diag F F0( ), , ( ) .t tk−1

We have used for the matrixes F
l
(t), l = 0,…,k − 1 the same abuse 

of notations as for the matrixes B
l
(t), i.e., F

l
(t) = diag(f

l1
(t),…,f

lP
(t)) 

for l = 0,…,k − 1. I(t) is the P-dimensional external current 
[I

1
(t),…,I

P
(t)]T.

The process (Ut t t
V ) ≥ 0

 is a P × P-dimensional process and is applied, 
as a matrix, to the P-dimensional vector 1 with all coordinates equal 
to 1, resulting in the P-dimensional vector Ut

V ⋅1 whose mean and 
covariance function can be readily obtained from Defi nition 2:

� �[ ] ( ), ( ) ( )Ut
V V V V⋅ = = ( )⎡⎣ ⎤⎦

=
∑1 J m t m t S t

P

αβ β
β

β β β
1  

(29)

and

Cov
if =

0 otherwise
Ut s

V V
V

⋅( ) ⋅( )( ) =
⎧
⎨
⎪

⎩
=∑1 U

α

αβ ββ
σ α γ

1
2

1

γ

Δ ( , )t s
P

⎪⎪
 

(30)

We have of course

Δβ β β β β
V V V( , ) ( ) ( )t s S t S s= ( ) ( )⎡⎣ ⎤⎦�

Equations (28) are formally very similar to Eq. 17 but there are 
some very important differences. The fi rst ones are of dimension 
kP whereas the second are of dimension kN which grows arbitrarily 
large when N → ∞. The interaction term of the second, J V⋅S t( ( )), 
is simply the synaptic weight matrix applied to the activities of 
the N neurons at time t. The interaction term of the fi rst equa-
tion, Ut

V, though innocuous looking, is in fact quite complex (see 
Eqs. 29 and 30). In fact the stochastic process Ut

V, putative solution 
of Eq. 28, is in general non-Markovian.
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To proceed further we formally integrate the equation using the 
fl ow, or resolvent, of the Eq. 28, noted Φ

L
(t, t

0
) (see Appendix B), 

and we obtain, since we assumed L continuous, an implicit repre-
sentation of V( )t :

V V V( ) , ( ) , ( )

,

t t t t t s s ds

t s

L L

t

t

L

t

= ( ) + ( )⋅ +( )

+ ( )⋅

∫Φ Φ

Φ

0 0

0

0

U Is

tt

s d∫ ⋅F( ) Ws

 

(31)

We now introduce for future reference a simpler model which is 
quite frequently used in the description on neural networks and has 
been formally analyzed by Sompolinsky and colleagues (Crisanti 
et al., 1990; Sompolinsky et al., 1998) in the case of one popula-
tion (P = 1).

Example I: The Simple Model
In the Simple Model, each neuron membrane potential decreases 
exponentially to its rest value if it receives no input, with a time 
constant τα depending only on the population. In other words, we 
assume that the g-shape describing the shape of the PSPs is Eq. 10, 
with K = 1 for simplicity. The noise is modeled by an independent 
Brownian process per neuron whose standard deviation is the same 
for all neurons belonging to a given population.

Hence the dynamics of a given neuron i from population α of 
the network reads:

dV t
V t

J S V t I ti
i

p i
ij p j

j

NP

j p i( )
( )

( ) ( )
( )

( ) ( )= − + ( ) +
⎡

⎣
⎢
⎢ ==

∑∑τ

β

β 11

⎤⎤

⎦
⎥
⎥

+

dt

f dW tp i i( ) ( ).
 

(32)

This is a special case of Eq. 12 where k = 1, b
0α(t) = 1/τα, b

1α(t) = 1 
for α = 1,…,P. The corresponding mean-fi eld equation reads:

d t
t

t t dt f dW t
P

V V V
α αβ α

β
α α( )

( )
( ) ( ) ( ),

{ ,

= − + +
⎛

⎝⎜
⎞

⎠⎟
+

∀ ∈
=

∑α

ατ

α

U I
1

1 ……, },P  (33)

where the processes (Wα(t))
t ≥ t0

 are independent standard Brownian 
motions, UV V( ) ( ( ); { , , })t U t P t= αβ α β ∈, 1 …  is the effective interaction 
term, see Defi nition 2. This is a special case of Eq. 28 with L = 
diag( 1 1

1τ τ, ,…
P
), and F = diag(f

1
,…,f

P
).

Taking the expected value of both sides of Eq. 33 and using we 
obtain Eq. 26 that the mean μα(t) of Vα(t) satisfi es the differential 
equation

d t

dt

t
J S x C t t t Dx I t

Pμ μ
τ

μα

α
αβ β β

β
α

α
ββ

( ) ( )
( , ) ( ) ( ),= − + +( ) +∫∑

= �1

If Cββ(t, t) vanishes for all t ≥ t
0
 this equation reduces to:

d t

dt

t
J S t I t

Pμ μ
τ

μα α

α
αβ β β

β
α

( ) ( )
( ) ( ),= − + ( ) +

=
∑

1

which is precisely the “naive” mean-fi eld equation (Eq. 22) obtained 
with the assumption (Eq. 23). We see that Eq. 22 are indeed correct, 
provided that Cββ(t, t) = 0, ∀t ≥ t

0
.

Equation 33 can be formally integrated implicitly and we obtain 
the following integral representation of the process Vα(t):

V V V
α α αβ

β
α

α α( ) = ( )+t te e U s I s
t t t s

t

t P− − − −

=
∫ ∑ +

⎛

⎝⎜
⎞( ) ( )

( ) ( )
0

0
1

τ τ
0 ⎠⎠⎟

+
− −

∫

ds

f e dW s
t s

t

t

α α
α

( )

( )τ

0  

(34)

where t
0
 is the initial time. It is an implicit equation on the 

probability distribution of V(t), a special case of (Eq. 31), with 
ΦL

t t t tt t e e P( , ) , ,( )/ ( )/
0

0 1 0= − − − −diag( ).τ τ…
The variance Cαα(t, t) of Vα(t) can easily be obtained from Eq. 34. 

It reads

C t t e C t t
f

e

e
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+
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+
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2
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t

tP

u v dudv
)

( , ) ,τα
β

β
00

1
∫∫∑

=

⎤

⎦
⎥
⎥

Δ

where Δβ(u, v) is given by Eq. 27.
If σαβ = 0 and if sα = 0 then Cαα(t, t) = 0, ∀t ≥ t

0
 is a solution of this 

equation. Thus, mean-fi eld equations for the simple model reduce 
to the naive mean-fi eld Eq. 22 in this case. This conclusion extends 
as well to all models of synaptic responses, ruled by Eq. 5.

However, the equation of Cαα(t, t) shows that, in the general 
case, in order to solve the differential equation for μα(t), we need 
to know the whole past of the process V. This exemplifi es a previ-
ous statement on the non-Markovian nature of the solution of the 
mean-fi eld equations.

Example II: The model of Jansen and Rit
One of the motivations of this study is to characterize the global 
behavior of an assembly of neurons in particular to get a better 
understanding of recordings of cortical signals like EEG or MEG. 
One of the classical models of neural masses is Jansen and Rit’s 
mass model (Jansen and Rit, 1995), in short the JR model (see 
Figure 2).

The model features a population of pyramidal neurons that 
receives inhibitory inputs from local inter-neurons, excitatory feed-
backs, and excitatory inputs from neighboring cortical units and 
sub-cortical structures such as the thalamus. The excitatory input 
is represented by an external fi ring rate that has a deterministic 
part I

1
(t) accounting for specifi c activity of other cortical units and 

a stochastic part n
1
(t) accounting for a non specifi c background 

activity. We formally consider that the excitatory feedback of the 
pyramidal neurons is a new neural population, making the number 
P of populations equal to 3. We also represent the external inputs 
to the other two populations by the sum of a deterministic part 
I

j
(t) and a stochastic part n

j
(t), j = 2, 3, see Figure 2.

In the model introduced originally by Jansen and Rit, the con-
nectivity weights were assumed to be constant, i.e., equal to their 
mean value. Nevertheless, there exists a variability of these coef-
fi cients, and as we show in the sequel, the effect of the connectivity 
variability impacts the solution at the level of the neural mass. 
Statistical properties of the connectivities have been studied in 
details for instance in (Braitenberg and Schüz, 1998).
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We consider a network of N neurons, Nα, α = 1, 2, 3 belonging to 
population α. We index by 1 (respectively 2, and 3) the pyramidal 
(respectively excitatory feedback, inhibitory interneuron) popula-
tions. We choose in each population a particular neuron indexed 
by iα, α = 1, 2, 3. The evolution equations of the network can be 
written for instance in terms of the potentials V

i1
, V

i2
 and V

i3
 labeled 

in Figure 2 and these equations read:

V g J S V J S V I n

V g J

i i j j
j

N

i j j
j

N

i

1 1

2

1

3

2

1
1 1

1 1

1

= ∗ ( ) + ( ) + +
⎛

⎝⎜
⎞

⎠⎟

= ∗

= =
∑ ∑

ii j j
j

N

i i j j
j

N

S V I n

V g J S V I n

2

1

3 3

1

1
2 2

3
1

3 3

( ) + +
⎛

⎝⎜
⎞

⎠⎟

= ∗ ( ) + +
⎛

⎝⎜

=

=

∑

∑
⎞⎞

⎠⎟

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

In the mean-fi eld limit, denoting by Vα, α = 1, 2, 3 the aver-
age membrance potential of each class, we obtain the following 
equations:

V

V

V

V V

V

V

1 1 1 1

2 1 2 2

3 3 3 3

= ∗ + + +( )
= ∗ + +( )
= ∗ + +(

g I n

g I n

g I n

U U

U

U

12 13

21

31 ))

⎧

⎨
⎪⎪

⎩
⎪
⎪

 
(35)

where UV V= =( ) , , ,Uαβ α β 1 2 3 is the effective interaction process associ-
ated with this problem, i.e., a Gaussian process of mean:

� �

� �

�

U S

U S

U

12

13

21

V

V

V

V

V

⎡⎣ ⎤⎦ = ( )⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ = ( )⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ =

J

J

J

12 2

13 3

211 1

31 1

�

� �

S

U S

V

VV

( )⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ = ( )⎡⎣ ⎤⎦

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪ 31 J ,

All other mean values correspond to the non-interacting popu-
lations and are equal to 0. The covariance matrix can be deduced 
from Eq. 25:

Cov
if and

0 otherwise
U t U s

t s
αβ

σV V
V

( ), ( )
( , )

γδ
αβ β α β γ δ( ) =

= =⎧
⎨
⎩

2 Δ

where

Δβ α β
V V V( , ) ( ) ( )t s t s= ( ) ( )⎡⎣ ⎤⎦� S S

This model is a voltage-based model in the sense of Ermentrout 
(1998). Let us now instantiate the synaptic dynamics and com-
pare the mean-fi eld equations with Jansen’s population equations2 
(sometimes improperly called also mean-fi eld equations).

The simplest model of synaptic integration is a fi rst-order 
integration, which yields exponentially decaying postsynaptic 
potentials:

g t K t

t

t

( ) =
⎧
⎨
⎪

⎩⎪

−
e τ ≥ 0

<0 0

Note that this is exactly Eq. 10. The corresponding g-shape satis-
fi es the following fi rst-order differential equation

g t g t K t( ) ( ) ( ),= − +1

τ
δ

In this equation τ is the time constant of the synaptic integration 
and K the synaptic effi ciency. The coeffi cients K and τ are the same 
for the pyramidal and the excitatory feedback population (charac-
teristic of the pyramidal neurons and defi ning the g-shape g

1
), and 

different for the inhibitory population (defi ning the g-shape g
3
). In 

the pyramidal or excitatory (respectively the inhibitory) case we 
have K = K

1
, τ = τ

1
 (respectively K = K

3
, τ = τ

3
). Finally, the sigmoid 

functions S is given by

S v
er v v

( ) ,max
( )

=
+ −

ν
1 0

where ν
max

 is the maximum fi ring rate, and v
0
 is a voltage reference.

A B

FIGURE 2 | (A) Neural mass model: a population of pyramidal cells interacts 
with itself in an excitatory mode and with an inhibitory population of inter-
neurons. (B) Block representation of the model. The g boxes account for the 
synaptic integration between neuronal populations. S boxes simulate cell bodies 

of neurons by transforming the membrane potential of a population into an 
output fi ring rate. The coeffi cients Jαβ are the random synaptic effi ciency of 
population β on population α (1 represents the pyramidal population, 2 the 
excitatory feedback, and 3 the inhibitory inter-neurons).

2We have modifi ed the original model which is not voltage-based.
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With this synaptic dynamics we obtain the fi rst-order Jansen 
and Rit’s equation:

d

dt
K U U I n

d

dt
K U I n

V V

V V

V V

V

1

1

1 1 12 13 1 1

2

1

2 1 21 2 2

1

1

= − + + + +( )

= − + + +(
τ

τ
))

= − + + +( )

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

d

dt
K U I n

V V V3

3

3 3 31 3 3

1

τ
 

(36)

The “original” Jansen and Rit’s equation (Grimbert and 
Faugeras, 2006; Jansen and Rit, 1995) amount considering only 
the mean of the process V and assuming that �[S

i
(V

j
)] = S

i
(�[V

j
]) 

for i, j ∈ {1, 2, 3}, i.e., that the expectation commutes with the sig-
moidal function S. This is a very strong assumption, and that the 
fl uctuations of the solutions of the mean-fi eld equation around 
the mean imply that the sigmoid cannot be considered as linear 
in the general case.

A higher order model was introduced by van Rotterdam et al. 
(1982) to better account for the synaptic integration and to bet-
ter reproduce the characteristics of real postsynaptic potentials. 
In this model the g-shapes satisfy a second-order differential 
equation:

g t Kt t

t

t

( ) ,=
⎧
⎨
⎪

⎩⎪

−
e τ ≥ 0

<0 0

We recognize the g-shape defi ned by Eq. 11 solution of the sec-
ond-order differential equation y t y t y t K t( ) ( ) ( ) ( ).+ + =2 1

2τ τ
δ  With 

this type of synaptic integration, we obtain the following mean-
fi eld equations:

d

dt

d

dt
K U U I n

d

dt

d

2
1

2
1

1

1
2 1 1 12 13 1 1

2
2

2
1

2 1

2

V V V

V V

= − − + + + +( )

= −

τ τ

τ

V V

22

1
2 2 1 21 2 2

2
3

2
3

3

3
2 3 3 31

1

2 1

dt
K U I n

d

dt

d

dt
K U

− + + +( )

= − − + +

τ

τ τ

V

V V V

V

V II n3 3+( )

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪  

(37)

Here again, going from the mean-fi eld Eq. 37 to the original 
Jansen and Rit’s neural mass model consists in studying the equa-
tion of the mean of the process given by Eq. 37 and commuting 
the sigmoidal function with the expectation.

Note that the introduction of higher order synaptic integrations 
results in richer behaviors. For instance, Grimbert and Faugeras 
(2006) showed that some bifurcations can appear in the second-
order JR model giving rise to epileptic like oscillations and alpha 
activity, that do not appear in the fi rst-order model.

EXISTENCE AND UNIQUENESS OF SOLUTIONS IN FINITE TIME
The mean-fi eld equation (Eq. 31) is an implicit equation of the 
stochastic process (V(t))

t ≥ t0
. We prove in this section that under 

some mild assumptions this implicit equation has a unique solu-
tion. These assumptions are the following.

Assumption 1.
(a) The matrix L(t) is C 0 and satisfi es L(t)  ≤ k

L
 for all t in 

[t
0
, T], for some matrix norm   and some strictly positive 

constant k
L
.

(b) The matrix F(t) has all its singular values lowerbounded (res-
pectively upperbounded) by the strictly positive constant3 
λΓ

min (respectively λmax
Γ ) for all t in [t

0
, T].

(c) The deterministic external input vector I(t) is bounded and 
we have I(t) ∞ ≤ I

max
 for all t in [t

0
, T] and some strictly posi-

tive constant I
max

.

This solution is the fi xed point in the set M1
+

0([ , ],( ))C t T kP�  of 
kP-dimensional processes of an equation that we will defi ne from 
the mean-fi eld equations. We will construct a sequence of Gaussian 
processes and prove that it converges in distribution toward this 
fi xed point.

We fi rst recall some results on the convergence of random vari-
ables and stochastic processes.

CONVERGENCE OF GAUSSIAN PROCESSES
We recall the following result from Bogachev (1998) which formal-
izes the intuition that a sequence of Gaussian processes converges 
toward a Gaussian process if and only if the means and covariance 
functions converge. In fact in order for this to be true, it is only 
necessary to add one more condition, namely that the correspond-
ing sequence of measures (elements of M1

+
0([ , ],( ))C t T kP� ) do not 

have “any mass at infi nity”. This property is called uniform tightness 
(Billingsley, 1999). More precisely we have

Defi nition 3. (Uniform tightness). Let { }Xn n=1
∞  be a sequence of kP-

dimensional processes defi ned on [t
0
, T] and P

n
 be the associated 

elements of M1
+

0([ , ],( ))C t T kP� . The sequence M1
+

0([ , ],( ))C t T kP�  
is called uniformly tight if and only if for all ε > 0 there exists a 
compact set K of C([t

0
, T], �kP ) such that P

n
(K) > 1 − ε, n ≥ 1.

Theorem 1. Let { }Xn n=
∞

1 be a sequence of kP-dimensional Gaussian 
processes defi ned on [t

0
, T] or on an unbounded interval4 of �. The 

sequence converges to a Gaussian process X if and only if the following 
three conditions are satisfi ed:

• The sequence { }Xn n=1
∞  is uniformly tight.

• The sequence μn(t) of the mean functions converges for the uni-
form norm.

• The sequence Cn of the covariance operators converges for the 
uniform norm.

We now, as advertised, defi ne such a sequence of Gaussian 
processes.

Let us fi x Z
0
, a kP-dimensional Gaussian random variable, inde-

pendent of the Brownian and of the process ((X)
t
)t ∈ [t

0
,T].

Defi nition 4. Let X be an element of M1
+

0([ , ],( ))C t T kP�  and F
k
 

be the function M M1
+

0 1
+

0([ , ], ([ , ],( )) ( ))C t T C t TkP kP� �→  such 
that

3We note Γ(t) the matrix F(t)F(t)T.
4In Bogachev (1998; Chapter 3.8), the property is stated whenever the mean and 
covariance are defi ned on a separable Hilbert space.
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Fk t L L s
X

t

t

L

X t t Z t s s ds

t s

( ) , ,

, ( )

= ( )⋅ + ( )⋅ +( )

+ ( )⋅

∫Φ Φ

Φ

0 0

0

U I( )

F s dd
t

t

Ws

0

∫

where US
X and I( )s  are defi ned5 in Section “Mean-Field Equations 

for Multi-Populations Neural Network Models”.
Note that, by Defi nition 2 the random process (F

k
(X))

t ∈ [t0, T]
, 

k ≥ 1 is the sum of a deterministic function (defi ned by the external 
current) and three independent random processes defi ned by Z

0
, 

the interaction between neurons, and the external noise. These 
three processes being Gaussian processes, so is (F

k
(X))

t ∈ [t0, T]
. Also 

note that (F
k
(X))

t0
 = Z

0
. It should be clear that a solution V of the 

mean-fi eld equation (Eq. 31) satisfi es V(t
0
) = Z

0
 and is a fi xed point 

of F
k
, i.e., F

k
(V)t = V(t).

Let X be a given stochastic process of M1
+

0([ , ],( ))C t T kP�  such that 
X Zt0 0=  (hence Xt0

 is independent of the Brownian). We defi ne the 
sequence of Gaussian processes { } ( ))X C t Tn n

kP
=0

∞ ∈M1
+

0([ , ],�  by:

X X

X X X nn k n k
n

k

0

1 0
0

=
= = =

⎧
⎨
⎩ + F F F( ) ( ).( ) ( )≥ 0, Id

 
(38)

In the remaining of this section we show that the sequence of 
processes { ( )}( )Fk

n
nX =0
∞  converges in distribution toward the unique 

fi xed-point Y of F
k
 which is also the unique solution of the mean-

fi eld equation (Eq. 31).

EXISTENCE AND UNIQUENESS OF A SOLUTION FOR THE MEAN-FIELD 
EQUATIONS
The following upper and lower bounds are used in the sequel.

Lemma 1. Consider the Gaussian process (( ) ) .[ , ]U 1t
X

t t t T⋅ ∈ 0
 UX is 

defi ned in Sections “The Mean-Field Equations” and “Introduction” 
is the P-dimensional vector with all coordinates equal to 1. We have

� Ut
X J S⋅⎡⎣ ⎤⎦ ≤ =

∞ ∑1 μ
α αβ

β
β ∞

def max

 

(39)

for all t
0
 ≤ t ≤ T. The maximum eigenvalue of its covariance 

matrix is upperbounded by σ σα β αβ β ∞max

def 22 2= ∑max || ||S  where 
Sβ ∞ is the supremum of the absolute value of Sβ. We also 

note σ σα,β αβmin

def 22 = min .
Proof. The proof is straightforward from Defi nition 4. 

The proof of existence and uniqueness of solution, and of the 
convergence of the sequence (Eq. 38) is in two main steps. We fi rst 
prove that the sequence of Gaussian processes { ( )}( )Fk

n
nX =0
∞ , k ≥ 1 is 

uniformly tight by proving that it satisfi es Kolmogorov’s criterion 
for tightness. This takes care of condition 1 in Theorem 1. We then 
prove that the sequences of the mean functions and covariance 
operators are Cauchy sequences for the uniform norms, taking 
care of conditions 2 and 3.

Uniform tightness
We fi rst recall the following theorem due to Kolmogorov (Kushner, 
1984, Chapter 4.1).

Theorem 2. (Kolmogorov’s criterion for tightness). Let { }Xn n=1
∞  be a 

sequence of kP-dimensional processes defi ned on [t
0
, T]. If there exist 

α, β, C > 0 such that

� X t X s C t s s t t T nn n( ) ( ) | | , , ,−⎡
⎣

⎤
⎦ ≤ − ∀ ∈[ ] ≥+β α1

0 1

then the sequence is uniformly tight.
Using this theorem we prove that the sequence { ( )}( )Fk

n
nX =0
∞ , k ≥ 1 

satisfi es Kolmogorov’s criterion for β = 4 and α ≥ 1. The reason 
for choosing β = 4 is that, heuristically, dW � (dt)1/2. Therefore in 
order to upperbound �[ ( ) ( ) ]X t X sn n− β  by a power of | t − s | ≥ 2 
(hence strictly larger than 1) we need to raise X t X sn n( ) ( )−  to 
a power at least equal to 4. The proof itself is technical and uses 
standard inequalities (Cauchy–Schwarz’s and Jensen’s), properties 
of Gaussian integrals, elementary properties of the stochastic inte-
gral, and Lemma 1. It also uses the fact that the input current is 
bounded, i.e., that max , , sup | ( )|[ , ] mα α= … ≤ <1 0

P I t It t T∈ ∞, ax  this is 
Assumption (c) in 1.

Theorem 3. The sequence of processes { ( )}( )Fk
n

nX =0
∞ , k ≥ 1 is uniformly 

tight.
Proof. We do the proof for k = 1, the case k > 1 is similar. If 

we assume that n ≥ 1 and s < t we can rewrite the difference 
F F1 1

( ) ( )( ) ( )n
t

n
sX X−  as follows, using property (i) in Proposition B.1 

in Appendix B.

F F1 1 0 0 0

( ) ( )( ) ( ) , ,

,

n
t

n
s L L t

L L

X X t t s t X

t s Id s

− = ( ) − ( )( )
+ ( ) −( )

Φ Φ
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Φ

The righthand side is the sum of seven terms and therefore 
(Cauchy–Schwarz inequality):
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7 1 1
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2 2

0

0
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2 2 2 2
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5For simplicity we abuse notations and identify X  and X.
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Because Φ
L
(t, t

0
) − Φ

L
(s, t

0
)  ≤ |t − s| L  we see that all terms in 

the righthand side of the inequality but the second one involving 
the Brownian motion are of the order of (t − s)2. We raise again both 
sides to the second power, use the Cauchy–Schwarz inequality, and 
take the expected value:
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Remember that U 1u
XnF ( )( )−

⋅
1

 is a P-dimensional diagonal Gaussian 
process, noted Y

u
 in the sequel, therefore:
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The second-order moments are upperbounded by some regular 
function of μ and σ

max
 (defi ned in Lemma 1) and, because of the 

properties of Gaussian integrals, so are the fourth-order moments.
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This shows that the term �[ ∫ s
t

L ut u u dΦ ( , ) ( ) ]F W 4  in Eq. 40 is 
of the order of (t − s)1+a where a ≥ 1. Therefore we have
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for all s, t in [t
0
, T], where C is a constant independent of t, s. 

According to Kolmogorov criterion for tightness, the sequence of 
processes { ( )}( )F1 0

n
nX =
∞  is uniformly tight.

The proof for F
k
, k > 1 is similar. 

The mean and covariance sequences are Cauchy sequences
Let us note μn(t) [respectively Cn(t, s)] the mean (respectively the 
covariance matrix) function of X

n 
= F
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n−1
), n ≥ 1. We have:
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where m uXn

β ( ) is given by Eq. 26. Similarly we have
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(42)

Note that the kP × kP covariance matrix Cov( )U Uu
X

v
Xn n,  has only 

one nonzero P × P block:

Cov CovU U U 1 U 1u
X

v
X

u
X

v
Xn n n n, , ,( ) = ⋅ ⋅( )

kk  
(43)

According to Defi nition 2 we have

Cov diag 2U 1 U 1u
X

v
X Xn n n⋅ ⋅( ) =

⎛

⎝⎜
⎞

⎠⎟∑, ( , ) ,σ Δαβ β
β

u v

where Δβ
Xn u v( , ) is given by Eq. 27 and Dx is defi ned in 

Proposition 1.
In order to prove our main result, that the two sequences of func-

tions (μn) and (Cn) are uniformly convergent, we require the following 
four lemmas that we state without proofs, the proofs being found in 
Appendixes E–H. The fi rst lemma gives a uniform (i.e., independent 
of n ≥ 2 and α = 1,…,kP) strictly positive lowerbound for C t tn

αα( , ). 
In what follows we use the following notation: Let C be a symmetric 
positive defi nite matrix, we note λmin

C  its smallest eigenvalue.

Lemma 2. The following uppperbounds are valid for all n ≥ 1 and 
all s, t ∈ [t

0
, T].
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where μ and σ
max

 are defi ned in Lemma 1, λmax
Γ  is defi ned in 

Assumption 1.

Lemma 3. For all t ∈ [t
0
, T] all α = 1,…,kP, and n ≥ 1, we have

C t t kn Z

αα λ λ( , ) ,min min≥ =Σ 0

0 0
def >

where λ
min

 is the smallest singular value of the positive symmet-
ric defi nite matrix Φ

L
(t, t

0
)Φ

L
(t, t

0
)T for t ∈ [t

0
, T] and λmin

∑Z0

 is the 
smallest eigenvalue of the positive symmetric defi nite covariance 
matrix ∑Z0.

The second lemma also gives a uniform lowerbound for the 
expression C s s C t t C t sn n n

αα αα αα( , ) ( , ) ( , )− 2 which appears in the defi ni-
tion of Cn+1 through Eqs. 43 and 27. The crucial point is that this 
function is O(|t − s|) which is central in the proof of Lemma 5.

Lemma 4. For all α = 1,…,kP and n ≥ 1 the quantity 
C s s C t t C t sn n n

αα αα αα( , ) ( , ) ( , )− 2 is lowerbounded by the positive sym-
metric function:

θ λ λ λΣ( , ) | | ,min min mins t t s
Z

= −def 2 0 Γ

where λmin
Γ  is the strictly positive lower bound, introduced in 

Assumption 1, on the singular values of the matrix F(u) for u ∈ 
[t

0
, T].
The third lemma shows that an integral that appears in the proof 

of the uniform convergence of the sequences of functions (μn) and 
(Cn) is upperbounded by the nth term of a convergent series.

Lemma 5. The 2n-dimensional integral
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where the functions ρ
i
(u

i
, v

i
), i = 1,…,n are either equal to 1 or 

to 1/ ( , )θ u vi i  (the function θ is defi ned in Lemma 4), is upper-
bounded by kn/(n − 1)! for some positive constant k.

With these lemmas in hand we prove Proposition 3. The proof 
is technical but its idea is very simple. We fi nd upperbounds for the 
matrix infi nite norm of Cn+1(t, s) − Cn(t, s) and the infi nite norm of 
μn+1(t) − μn(t) by applying the mean value Theorem and Lemmas 3 
and 4 to the these norms. These upperbounds involve integrals of 
the infi nite norms of Cn(t, s) − Cn−1(t, s) and μn(t) − μn−1(t) and, 
through Lemma 4, one over the square root of the function θ. 
Proceeding recursively and using Lemma 5, one easily shows that the 
infi nite norms of Cn+1 − Cn and μn+1 − μn are upperbounded by the 
nth term of a convergent series from which it follows that the two 
sequences of functions are Cauchy sequences, hence convergent.

Proposition 3. The sequences of covariance matrix functions 
Cn(t, s) and of mean functions μn(t), s, t in [t

0
, T] are Cauchy 

sequences for the uniform norms.
Proof. We have
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We take the infi nite matrix norm of both sides of this equal-
ity and use the upperbounds Φ ∞

∞
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−≤ =∞L 0  (see Appendix B) to obtain6

6The notation  V is introduced in Appendix C.
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According to Eq. 27 we are led to consider the difference 
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where the constants k
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A similar process applied to the mean values yields:
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where μ is defi ned in Lemma 1. We now use the mean value 
Theorem and Lemmas 3 and 4 to fi nd upperbounds for Pn u v( , ) −
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where θ(u, v) is defi ned in Lemma 4. Grouping terms together and 
using the fact that all integrated functions are positive, we write:
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Note that, because of Lemma 3, all integrals are well-defi ned. 
Regarding the mean functions, we write:
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Proceeding recursively until we reach C 0 and μ0 we obtain 
an upperbound for Cn+1(t, s) − Cn(t, s) ∞ (respectively for 
μn+1(t) − μn(t) ∞) which is the sum of <5n terms each one being 

the product of k raised to a power ≤n, times 2μ
max

 or 2Σ
max

 (upper-
bounds for the norms of the mean vector and the covariance 
matrix defi ned in Lemma 2), times a 2n-dimensional integral I

n
 

given by
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where the functions ρ
i
(u

i
, v

i
), i = 1,…,n are either equal to 1 or to 

1/ ( , )θ u vi i . According to Lemma 5, this integral is of the order of 
some positive constant raised to the power n divided by (n − 1)!. 
Hence the sum is less than some positive constant k raised to the 
power n divided by (n − 1)!. By taking the supremum with respect to 
t and s in [t

0
, T] we obtain the same result for Cn+1 − Cn

∞ (respec-
tively for μn+1 − μn

∞). Since the series ∑ ≥n
k
n

n

1 !
 is convergent, this 

implies that Cn+p − Cn
∞ (respectively μn+p − μn

∞) can be made 
arbitrarily small for large n and p and the sequence Cn (respectively 
μn) is a Cauchy sequence. 

Existence and uniqueness of a solution of the mean-fi eld equations
It is now easy to prove our main result, that the mean-fi eld equa-
tions (Eq. 31) or equivalently (Eq. 28) are well-posed, i.e., have a 
unique solution.

Theorem 4. For any nondegenerate kP-dimensional Gaussian 
random variable Z

0
, independent of the Brownian, and any initial 

process X such that X(t
0
) = Z

0
, the map F

k
 has a unique fi xed point 

in M1 0
+( ([ , ], ))C t T kP  toward which the sequence { ( )}( )Fk

n
nX =
∞

1 of 
Gaussian processes converges in law.

Proof. Since C([t
0
, T], �kP ) (respectively C([t

0,
 T]2, �kP × kP )) is 

a Banach space for the uniform norm, the Cauchy sequence μn 
(respectively C n) of Proposition 3 converges to an element μ of 
C([t

0
, T], �kP ) (respectively an element C of C([t

0,
 T]2, �kP × kP)). 

Therefore, according to Theorem 1, the sequence { ( )}( )Fk
n

nX =
∞

0 of 
Gaussian processes converges in law toward the Gaussian process 
Y with mean function μ and covariance function C. This process 
is clearly a fi xed point of F

k
.

Hence we know that there exists at least one fi xed point for the 
map F

k
. Assume there exist two distinct fi xed points Y

1
 and Y

2
 of F

k
 

with mean functions μ
i
 and covariance functions C

i
, i = 1, 2, with the 

same initial condition. Since for all n ≥ 1 we have Fk
n

i iY Y i( )( ) , , ,= = 1 2  
the proof of Proposition 3 shows that μ μ1 2

n n− ∞ (respectively 
C Cn

n1
2− ∞) is upperbounded by the product of a positive number 

a
n
 (respectively b

n
) with μ

1
 − μ

2 ∞) (respectively with ( C
1
 − C

2 ∞). 
Since lim

n→∞ a
n
 = lim

n→∞ b
n
 = 0 and μ μi

n
i= , i = 1, 2 (respectively 

C Ci
n

i= , i = 1, 2), this shows that μ
1
 = μ

2
 and C

1
 = C

2
, hence the two 

Gaussian processes Y
1
 and Y

2
 are indistinguishable. 

CONCLUSION
We have proved that for any nondegenerate Gaussian initial con-
dition Z

0
 there exists a unique solution of the mean-fi eld equa-

tions. The proof of Theorem 4 is constructive, and hence provides 
a way for computing the solution of the mean-fi eld equations by 

 iterating the map F
k
 defi ned in 3.2, starting from any initial process 

X satisfying X(t
0
) = Z

0
, for instance a Gaussian process such as an 

Ornstein–Uhlenbeck process. We build upon these facts in Section 
“Numerical Experiments”.

Note that the existence and uniqueness is true whatever the 
initial time t

0
 and the fi nal time T.

EXISTENCE AND UNIQUENESS OF STATIONARY SOLUTIONS
So far, we have investigated the existence and uniqueness of solu-
tions of the mean-fi eld equation for a given initial condition. We 
are now interested in investigating stationary solutions, which allow 
for some simplifi cations of the formalism.

A stationary solution is a solution whose probability distribution 
does not change under the fl ow of the equation. These solutions 
have been already investigated by several authors (see Brunel and 
Hakim, 1999; Sompolinsky et al., 1998). We propose a new fra-
mework to study and simulate these processes. Indeed we show in 
this section that under a certain contraction condition there exists 
a unique solution to the stationary problem. As in the previous 
section our proof is constructive and provides a way to simulate 
the solutions.

Remark. The long-time mean-fi eld description of a network is 
still a great endeavor in mathematics and statistical physics. In this 
section we formally take the mean-fi eld equation we obtained and 
let t

0
 → −∞. This way we obtain an equation which is the limit of 

the mean-fi eld equation when t
0
 → −∞. It means that we consider 

fi rst the limit N → ∞ and then t
0
 → −∞. These two limits do not 

necessarily commute and there are known examples, for instance 
in spin-glasses, where they do not.

It is clear that in order to get stationary solutions, the stocha-
stic system has to be autonomous. More precisely, we modify 
Assumption 1 as follows

Assumption 2.
(a) The matrixes L(t) and F(t), the input currents I(t) do not 

depend upon t.
(b) The real parts of the eigenvalues of L are negative:

Re(λ) < −λ
L
 λ

L
 > 0 (48)

 for all eigenvalues λ of L.
(c) The matrix F has full rank.

Under Assumption (a) of 2, the resolvent Φ
L
(t, s) is equal to 

eL(t−s). Under Assumption (b) we only consider fi rst-order system 
since otherwise the matrix L has eigenvalues equal to 0. We now 
prove the following proposition.

Proposition 4. Under the previous assumptions we have:

1. lim ,

,

( )

( )

( )

t

t s

t s u
L

t

t s

ds e du M

T

0

0

0

→−∞

−

−
∞

∞

−∞

−

=

= = < ∞∫∫

e

e

e

def

L

L L

L

∞∞ ∞

∞

−∞

= = < ∞

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪ ∫∫ ds e du M

T

T

u

L

t
L def ,

0

2. the process Y e dt
t

t
t t s

s
0

0
= ∫ ⋅−L( )F W  is well-defi ned, Gaussian and 

stationary when t
0
 → −∞

.
.
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Proof. The fi rst point property follows from the fact that 
Re(λ) < −λ

L
 for all eigenvalues λ of L. This assumption also implies 

that there exists a norm on �P such that

e e tt tLL ≤ ∀ ≥−λ 0,

and hence

e ke tt tLL

∞
−≤ ∀ ≥λ 0,

 
(49)

for some positive constant k. This implies the remaining two 
properties.

We now address the second point of the property. The stochastic 
integral Y e dt

t
t
t t s

s
0

0
= ∫ ⋅−L( )F W  is well-defi ned ∀t ≤ T and is Gaussian 

with 0-mean. Its covariance matrix reads:

Y Y t s T

t

t t

t
t

t
t T

e e t s ds
0 0

0

′∑ ∫= ′ −−
∧ ′

L L ( ) ( ) .FF

Let us assume for instance that t' < t and perform the change of 
variable u = t − s to obtain

Y Y u T u

t t

t t

t tt
t

t
t T T

e e du e
0 0

0

′∑ ∫=
⎛

⎝
⎜

⎞

⎠
⎟

− ′

−
′−L L LFF ( ).

Under the previous assumptions this matrix integral is defi ned 
when t

0
 → −∞ (dominated convergence theorem) and we have

lim
t

Y Y Y Y
u T u

t t

t
t

t
t

t t
T

e e du
0

0 0

→−∞
−

+∞

= =
⎛
⎝⎜

⎞
⎠⎟∑ ∑ ∫

−∞ −∞

def
′ ′

′

L LFF ee t t
TL ( ),′ −

 

(50)

which is a well-defi ned function of t' − t. 

The second point of Proposition 4 guarantees the existence of 
process

X W0( ) .( )t e dt s
s

t

= ⋅−

−∞
∫ L F

as the limit of the processes Yt
t0 when t

0
 → −∞. This process is a 

stationary distribution of the equation:

d t t dt d tX L X W0 0( ) ( ) ,= ⋅ + ⋅F  (51)

it is Gaussian, of mean �[X
0
(t)] = 0 and of covariance matrix Σ0 is 

equal to ΣY Yt t
−∞ −∞

 defi ned by Eq. 50 and which is independent of t.
We call long term mean-fi eld equation (LTMFE) the implicit 

equation:

V U I XL V( ) ( )( )t e ds tt s
s

t

= ⋅ +( ) +−

−∞
∫ 1 0

 

(52)

where X
0
 is the stationary process defi ned by Eq. 51 and where UV(t) 

is the effective interaction process introduced previously.
We next defi ne the long term function F Mstat 1

+: ( (( , ],C T−∞
P PC T) ( (( , ], ) :→ −∞M1

+

Fstat( ) ( ( ).( )X U 1 I XL
t

t s
t

e ds t= ⋅ + +−

−∞
∫ s

X ) 0

Proposition 5. The function F
stat

 is well-defi ned on 
M1

+( (( , ], )C T P−∞ .

Proof. We have already seen that the process X
0
 is well-defi ned. 

The term ∫ = ∫−∞ −∞
−t t t se ds e dsL LI I( ) ( )( )t-s  is also well-defi ned because 

of the assumptions on L.
Let X be a given process in M1

+ −∞( (( , ], )C T P . To prove the 
proposition we just have to ensure that the Gaussian process 
∫ ⋅−∞

−t t s
s
Xe dsL U 1( )  is well-defi ned. This results from the contraction 

assumption on L and the fact that the functions Sβ are bounded. We 
decompose this process into a “long memory” term ∫ ⋅−∞

−0 e dst s
s
XL U 1( )  

and the interaction term from time t = 0, namely ∫ ⋅−
0
t t s

s
Xe dsL U 1( ) . 

This latter term is clearly well-defi ned. We show that the memory 
term is also well-defi ned as a Gaussian random variable.

We write this term e e dst
s
XL L U 1∫ ⋅−∞

−0 s  and consider the second 
factor. This random variable is Gaussian, its mean reads ∫∞ −

0 e s s
XL Uμ  

where

μU− = −⎡⎣ ⎤⎦ +
⎛
⎝⎜

⎞
⎠⎟= =

∑s
X

J X s I
P

P

αβ β β α
β

� S ( ( ))
1 1α …

The integral defi ning the mean is well-defi ned because of Eq. 49 
and the fact that the functions Sβ are bounded. A similar reasoning 
shows that the corresponding covariance matrix is well-defi ned. 
Hence the Gaussian process ∫ ⋅−∞

−0 e dss
XL U 1s  is well-defi ned, and 

hence for any process X C T P∈ −∞+M1 ( (( , ], ), the process F
stat

(X) 
is well-defi ned. 

We can now prove the following proposition.

Proposition 6. The mean vectors and the covariance matrices of 
the processes in the image of F

stat
 are bounded.

Proof. Indeed, since �[X
0
(t)) = 0, we have:

� Fstat( ) ( ) .X L U
t

t s
t

L LTe ds M Is[ ] = ≤ + =
∞

−

−∞ ∞

∞∫ ( ) X

μ μ μdef

In a similar fashion the covariance matrices of the processes in 
the image of F

stat
 are bounded. Indeed we have:

�

�

F Fstat stat

(t-s )1 diag S

( ) ( )

(

X X

L

t t
T

tt

e X

⎡⎣ ⎤⎦ = ∑

+
−∞−∞
∫∫

0

2σαβ β β(( )) ( ( )) ,( )s S X s e ds dst s
1 2 1 2

2
β β

β
⎡⎣ ⎤⎦( )∑ −LT

resulting in

� F Fstat stat

def
( ) ( )

max
.X Xt t

T

L

LTk⎡⎣ ⎤⎦ ≤ ∑ + ⎛
⎝⎜

⎞
⎠⎟

= ∑
∞ ∞

0 2

2σ
λ

 

Lemma 6. The set of stationary processes is invariant by F
stat

.
Proof. Since the processes in the image of F

stat
 are Gaussian 

processes, one just needs to check that the mean of the process is 
constant in time and that its covariance matrix C(s, t) only depends 
on t − s.

Let Z be a stationary process and Y = F
stat

(Z). We denote by 
μα

Z the mean of the process Zα(t) and by C t sZ
α ( )−  its covariance 

function. The mean of the process U Z
αβ reads:

m t Z t
C

x e dxZ

Z

x

C

Z

Z

α β β β

β

β

μ

π

β

β
,

( )
( ) ( ( ))

( )
( )= ⎡⎣ ⎤⎦ =

−( )

∫�
�

S S
1

2 0

2

2 0

and hence does not depends on time. We note μZ the mean vector 
of the stationary process UZ·1.
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Similarly, its covariance function reads:

Δαβ β β β β

β β
βμ

Z

Z

t s Z t Z s

x y
x

( , ) ( ( )) ( ( ))

( ) ( )exp

= ⎡⎣ ⎤⎦

= −
−

∫

�

�

S S

S S
2

1

2 yy

C

C t s

C t s

C

x

Z

T Z

Z

Z

Z

Z

−
⎛

⎝⎜
⎞

⎠⎟ −
⎛

⎝⎜
− ⎞

⎠⎟
⎛

⎝
⎜

×
−

−

μ

μ

β

β

β

β

β

β

( )

( )

( )

( )

0

0

1

yy
dxdyZ−

⎛

⎝⎜
⎞

⎠⎟
⎞

⎠
⎟μβ

which is clearly a function, noted Δ −αβ
Z t s( ), of t − s. Hence UZ · 1 is 

stationary and we denote by C t suZ

( )−  its covariance function.
It follows that the mean of Y

t
 reads:

μY
tt Z

t e ds

( ) ( )

( )

= [ ]

= [ ]+ ⋅( )⎡

⎣
⎢

⎤

⎦
⎥

=

∞
∫

�

� �

Fstat

X0
t-s

-

t

s
ZL I U 1( ) +

ee ds

e du Z

L

L

I U 1

I

( )

+

t-s

-

t

s
Z

u

-

0

∞

∞

∫

∫

⋅⎡⎣ ⎤⎦( )

=
⎛
⎝⎜

⎞
⎠⎟

+�

( )μ

since we proved that �[U 1s
Z ⋅ =] μZ  was not a function of s.

Similarly, we compute the covariance function and check that it 
can be written as a function of (t − s). Indeed, it reads:

C t s e du dvY t u s v
st

T

( , ) ( )= ⋅ ⋅

+

− −

−∞−∞
∫∫ L LU 1 U 1( )Cov( , )

Cov( 0

u
Z

v
Z e

X (( ), ( ))

= ( +( )) Cov( ( ), ( ))

0t X s

C t s X X sU Z T

e u v e du dv tu vL L− − +
−∞
∫ 0 0

0

−−∞
∫
0

since the process X
0
 is stationary. CY (t, s) is clearly a function of t − s. 

Hence Y is a stationary process, and the proposition is proved.
 

Theorem 5. The sequence of processes { ( )}Fstat
( )n

nX =
∞

0 is uniformly tight.
Proof. The proof is essentially the same as the proof of Theorem 3, 

since we can write

F Fstat stat
( ) ( )( ) ( ) ( )X e X e ds et

t t s
t

t u
t

= + ⋅ + +∫L L LU 1 I0

0 0

− −
s
X

sdF W∫∫

F
stat

(X)
t
 appears as the sum of the random variable F

stat
(X)

0
 and 

the Gaussian process defi ned by ∫ ⋅ + + ∫− −
0 0
t t s

s
X t t u

se ds e dL LU 1 I( ) ( )( ) F W  
which is equal to F

k
(X)

t
 defi ned in Section “Existence and 

Uniqueness of Solutions in Finite Time” for t
0
 = 0. Therefore 

F Fstat
( ) ( )n

t k
n

tX X( ) ( )=  for t > 0. We have proved the uniform tight-
ness of the sequence of processes { ( )}Fk

n
nX( )

=
∞

0 in Theorem 3. Hence, 
according to Kolmogorov’s criterion for tightness, we just have to 
prove that the sequence of Gaussian random variables:

F F
stat
( ) ( )( ) ( )( ) ( )

( )n
L

XX u du
n

0

0

0= − ⋅ + +
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

−∞
∫ Φ U I Xu

stat 1 0

⎭⎭⎪ ≥n 0

is uniformly tight. Since it is a sequence of Gaussian random vari-
ables, it is suffi cient to prove that their means are bounded and 

their covariance matrices upperbounded to obtain that for any 
ε > 0 there exists a compact Kε such that for any n ∈ �, we have 
�( stat

( )F n X K( ) )0 1∈ ≥ −ε ε . This is a consequence of Proposition 6 for 
the fi rst random variable and of the defi nition of X

0
 for the second. 

By Kolmogorov’s criterion the sequence of processes { stat
( )F n

nX( )} =
∞

0 
is uniformly tight. 

In order to apply Theorem 1 we need to prove that the sequences 
of covariance and mean functions are convergent. Unlike the case 
of t

0
 fi nite, this is not always true. Indeed, to ensure existence and 

uniqueness of solutions in the stationary case, the parameters of the 
system have to satisfy a contraction condition, and Proposition 3 
extends as follows.

Proposition 7. If λ
L
 defi ned in Eq. 48 satisfi es the conditions (Eq. 53) 

defi ned in the proof, depending upon k
C
 (defi ned in Eq. 45), k

0
, μ

LT
 

and Σ
LT

 (defi ned in Proposition 6)then the sequences of covariance 
matrix functions Cn(t, s) and of mean functions μn(t), s, t in [t

0
, T] 

are Cauchy sequences for the uniform norms.
Proof. The proof follows that of Proposition 3 with a few modifi -

cations that we indicate. In establishing the equation corresponding 
to Eq. 44 we use the fact that Φ

L
(t, u) ∞ ≤ ke−λL(t−u) for some positive 

constant k and all u, t, u ≤ t. We therefore have:

C t s C t s kn n t s u v
st

L L+

∞

− + − +

−∞−∞

− ≤ ∫∫1 2( , ) ( , ) ,( ) ( )e e u
X

v
Xnλ λ Cov U U nn

n n

u
X

v
X

( )

− ( )
∞

Cov U U-1 -1,
v

du dv

The rest of the proof proceeds the same way as in Proposition 3. 
Equations 46 and 47 become:

C t s C t s

K
f u v

C

n n

t s
u v

t s

nL

L

+

∞

− +
+

−∞ ∨

−

≤
⎛

⎝
⎜ ∫

1

2

( , ) ( , )

( , )
( )

( )

[ , ]

e λ
λe

(( , ) ( , )

( , )
( , )

( )

[ , ]

u v C u v dudv

f u v
C u u C

n

u v

t s

n n
L

−

+ −

−

∞

+

−∞ ∨

−∫

1

1

2

eλ

(( , )

( , ) ( , )( )

[ , ]

(

u u dudv

C u v C u v dudvL

L

u v

t s

n n

u

∞

+

−∞ ∨

−

∞
+ −

+

∫ e

e

λ

λ

2

1

++

−∞ ∨

−

∞

+

−∞ ∨

∫

∫

−

+

v

t s

n n

u v

t s

n

C u u C u u dudv

L

)

[ , ]

( )

[ , ]

( , ) ( , )

(

2

2

1

eλ μ uu u dudvn) ( ) ,−
⎞

⎠
⎟

−

∞
μ 1

and

μ λ λn n t s u v

t s

n

n

t t K C u u

C

L L+

∞

− + +

−∞ ∨

−

− ≤ ⎛
⎝⎜

−

∫1

1

2

( ) ( ) ( , )( ) ( )

[ , ]

μ e e

(( , ) ( ) ( ) ,( )

[ , ]

u u dudv u u dudvL u v n n

t s

∞
+ −

∞
−∞ ∨

+ − ⎞
⎠⎟

∫ eλ μ μ 1

2

for some positive constant K, function of k, k
C
 (defi ned in Eq. 45), 

and k
0
.

Proceeding recursively until we reach C 0 and μ0 we obtain 
an upperbound for Cn+1(t, s) − Cn(t, s) ∞ (respectively for 
μn+1(t) − μn(t) ∞) which is the sum of <5n terms each one being 
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the product of Kn, times 2 μ
LT

 or 2Σ
LT

, times a 2n-dimensional inte-
gral I

n
 given by:

ρ ρ1 1 1 1 1 1
2

1 1
2

2

u v u v
t s u v

n n n

un

, ,
, , ,

( ) ⎛
⎝⎜

( )
−∞ ∨[ ] −∞ ∨[ ]

− − −
−∞ ∨

∫ ∫
−

…
vv

u v
n n n n n

u v

n

L n n

n n

u v du dv

−

− −

[ ]

+

−∞ ∨[ ]

∫

∫

⎛
⎝⎜

× ( )⎛
⎝⎜

⎞

2
2

1 1
2

eλ ρ( )

,

,
⎠⎠⎟

⎞
⎠⎟

⎞

⎠⎟
− −du dv du dvn n1 1 1 1… ,

where the functions ρ
i
(u

i, 
v

i
), i = 1,…,n are either equal to 1 or to 

1/ ( , )θ u vi i .
It can be shown by straightforward calculation that each sub-

integral contributes at most either

K K

L L

0
2

01 3
2λ

ρ π
λ

if or
2i = ,

in the other case. Hence we obtain factors of the type

K
Kn

L

P

L

n p n p

L

n p

0 2
0

3 2

1 1
3

λ
π

λ
π

λ
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

− − +

2 2/

( ))

,
2

0K n

where 0 ≤ p ≤ n. If λ
L
 < 1, (λ

L
)(3n + P)/2 ≥ λL

n2  and else ( )( )/λL
n p3 2+ ≥ 

λL
n3 2/ . Since ( / ) ( / )π π2 2n p n− ≤  we obtain the two conditions

1 5 12
0 0

3
2> > 5 πλ π λ λL L LKK KK≥ ≥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪2
or

2
and  (53)

Putting all these results together we obtain the following theo-
rem of existence and uniqueness of solutions for the LTMFE:

Theorem 6. Under the contraction conditions (Eq. 53), the function 
F

stat
 has a unique solution in M1

+( (( , ], )C T P−∞  which is stationary, 
and for any process X, the sequence { ( )}Fstat

(n) X n=
∞

0 of Gaussian processes 
converges in law toward the unique fi xed point of the function F

stat
.

Proof. The proof is essentially similar to the one of Theorem 4. 
Indeed, the mean and the covariance matrixes converge since they 
are Cauchy sequences in the complete space of continuous functions 
equipped with the uniform norm. Using Theorem 1, we obtain that 
the sequence converges to a process Y which is necessarily a fi xed 
point of F

stat
. Hence we have existence of a fi xed point for F

stat
. 

The uniqueness comes from the results obtained in the proof of 
Proposition 7. The limiting process is necessarily stationary. Indeed, 
let X be a stationary process. Then for any n ∈ �, the process Fstat

(n) ( )X  
will be stationary by the virtue of Lemma 6, and hence so will be 
the limiting process which is the only fi xed point of F

stat
. 

Hence in the stationary case, the existence and uniqueness of 
a solution is not always ensured. For instance if the leaks are too 
small (i.e., when the time constants of the decay of the membrane 
potentials are too long) then the sequence can diverge or have mul-
tiple fi xed points.

NUMERICAL EXPERIMENTS
SIMULATION ALGORITHM
Beyond the mathematical results, the framework that we introduced 
in the previous sections gives us a strategy to compute numerically 
the solutions of the dynamic mean-fi eld equations. Indeed, we pro-
ved in Section “Existence and Uniqueness of Solutions in Finite 

Time” that under very moderate assumptions on the covariance 
matrix of the noise, the iterations of the map F

k
 starting from 

any initial condition converge to the solution of the mean-fi eld 
equations.

This convergence result gives us a direct way to compute nume-
rically the solution of the mean-fi eld equations. Since we are dealing 
with Gaussian processes, determining the law of the iterates of the 
map F

k
 amounts to computing its mean and covariance functions. 

In this section we describe our numerical algorithm in the case of 
the Simple Model of Section “Example I: The Simple Model”.

Computing Fk

Let X be a P-dimensional Gaussian process of mean μX = 
( ( )) ...μ αα

X
Pt =1  and covariance C C s tX X

P= ∈( ( , )) ., { ... }αβ α β 1  We fi x a time 
interval [t

0
 = 0, T] and denote by Y the image of the process X under 

F
1
. In the case of the simple model, the covariance of Y is diagonal. 

Hence in this case the expressions we obtain in Section “Existence 
and Uniqueness of Solutions in Finite Time” simply read:

μ μα α αβ
β

β β α
τα ταY X
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t e e J S X s I s
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( ) ( ) .μ
1

where we denoted v sα
X ( ) the standard deviation of Xα at time s, 

instead of C s sX
αα( , ). Thus, knowing v sX

α ( ), s ∈ [0, t] we can compute 
μα

Y t( ) using a standard discretization scheme of the integral, with 
a small time step compared with τα and the characteristic time of 
variation of the input current Iα. Alternatively, we can use the fact 
that μα

Y  satisfi es the differential equation:

d

dt
J S x v t t Dx I t

Y Y P
X Xμ μ

τ
μα α

α
αβ

β
β β β α= − + +( ) +

= −∞

+∞

∑ ∫
1

( ) ( ) ( ),

and compute the solution using a Runge–Kutta algorithm (which is 
faster and more accurate). Note that, when all the standard devia-
tions of the process X are null for all time t ∈ [0, T], we obtain 
a standard dynamical system. Nevertheless, in the general case, 
v tβ

X ( ) > 0 for some β’s, and the dynamical evolution of μα
Y  depends 

on the Gaussian fl uctuations of the fi eld X. These fl uctuations must 
be computed via the complete equation of the covariance diagonal 
coeffi cient C t sY

αα( , ), which reads:
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Unless if we assume the stationarity of the process (see e.g., 
Section “The Importance of the Covariance: Simple Model, One 
Population”), this equation cannot be written as an ordinary diffe-
rential equation. We clearly observe here the non-Markovian nature 
of the problem: C t sX

αα( , ) depends on the whole past of the process 
until time t ∨ s.

This covariance can be split into the sum of two terms: the 
external noise contribution C t s v eOU t s X s s

αα ( , ) [ ( ) ( )( )/ /= +− + −e τ
α

τ τα α α α0
2

1

2
2  

and the interaction between the neurons. The external noise con-
tribution is a simple function and can be computed directly. To 
compute the interactions contribution to the standard deviation 
we have to compute the symmetric two-variables function:

H t s e e u v dudvX t s u v X
st

αβ
τ τ

αβ
α α( , ) ( , ) ,( )/ ( )/= − + +∫∫ Δ

00

from which one obtains the standard deviation using the formula

C t s C t s H t sY OU X
P

α αα αβ αβα
β

σ( , ) ( , ) ( , ).= +
=

∑ 2

1

To compute the function H t sX
αβ( , ), we start from t = 0 and s = 0, 

where H X
αβ( , ) .0 0 0=  We only compute Hαβ

X t s( , ) for t > s because of 
the symmetry. It is straightforward to see that:

H t dt s H t s
dt

D t s dt o dtX X X
αβ αβ

α
αβτ

( , ) ( , ) ( , ) ( ),+ = −
⎡

⎣
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with

D t s e e t v dvX s v X
s
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τ τ

αβ
α α( , ) ( , ) ./ /= − ∫ Δ

0

Hence computing H t dt sX
αβ( , )+  knowing H t sX

αβ( , ) amounts to 
computing D t sαβ( , ). Fix t ≥ 0. We have D tαβ( , )0 0=  and

D t s ds D t s
ds

t s ds dsX X X
αβ αβ

α
αβτ

( , ) ( , ) ( , ) ( ).+ =
⎛
⎝⎜

⎞
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+ +1− Δ o

This algorithm enables us to compute H t sX
αβ( , ) for t > s. We 

deduce H t sX
αβ( , ) for t < s using the symmetry of this function. 

Finally, to get the values of H t sX
αβ( , ) for t = s, we use the symmetry 

property of this function and get:

H t dt t dt H t t
dt

D t t dt o dtX X X
αβ αβ

ατ
+ αβ, ( , ) ( , ) ( ).+( ) = −

⎡

⎣
⎢

⎤

⎦
⎥ + +1

2
2

These numerical schemes provide an effi cient way for computing 
the mean and the covariance functions of the Gaussian process 
F

1
(X) (hence its probability distribution) knowing the law of the 

Gaussian process X. The algorithm used to compute the solution 
of the mean-fi eld equations for the general models GM1 and GMk 
is a straightforward generalization.

Analysis of the algorithm
Convergence rate. As proved in Theorem 4, given Z

0
 a nondegene-

rate kP-dimensional Gaussian random variable and X a Gaussian 
process such that X(0) = Z

0
, the sequences of mean values and cova-

riance functions computed theoretically converge uniformly toward 
those of the unique fi xed point of the map F

k
. It is clear that our 

algorithm converges uniformly toward the real function it  emulates. 

Hence for a fi nite N, the algorithm will converge uniformly toward 
the mean and covariance matrix of the process Fk

N X( ).
Denote by X

f
 the fi xed point of F

k
 in M1 0

+( ([ , ], )),C t T kP�  of 

mean μX f t( ) and covariance matrix C t s
X f ( , ) and by Fk

N ( )X  the 
numerical approximation of Fk

N X( ) computed using the algorithm 

previously described, whose mean is noted μFk
N X t( )( ) and whose 

covariance matrix is noted C t sk
N XF ( )( , ). The uniform error between 

the simulated mean after N iterations with a time step dt and the 
fi xed point’s mean and covariance is the sum of the numerical error 
of the algorithm and the distance between the simulated process 
and the fi xed point, is controlled by:

μ μF Fk
N

f k
N

fX X X X

NC C O N T dt R k( ) ( )
max(( ) ( ))− + − = + +

∞ ∞  
(54)

where k
max

 = max(k, k) and k and k) are the constants that 
appear in the proof of Proposition 3 for the mean and cova-
riance functions, and R

N
(x) is the exponential remainder, i.e., 

R x xN n N
n n( ) ./ != ∑ =

∞

Indeed, we have:

μ μ μ μ μF F F Fk
N

f k
N

k
N

k
N

fX X X X X X( ) ( ) ( ) ( )− ≤ − + −
∞ ∞ ∞

μ  (55)

The discretization algorithm used converges in O(dt). Let us 
denote by C

1
 the convergence constant, which depends on the shar-

pness of the function we approximate, which can be uniformly 
controlled over the iterations. Iterating the numerical algorithm 
has the effect of propagating the errors. Using these simple remarks 
we can bound the fi rst term of the righthand side of Eq. 55, i.e., the 
approximation error at the Nth iteration:

μ μFk
N X X C N dt( ) ( )− ≤

∞

F N
k

1

Because the sequence of mean values is a Cauchy sequence, we 
can also bound the second term of the righthand side of Eq. 55:

μ μ μ μF F FN
k k k( ) ( ) ( )

!
: ( )X X X X

n N

n

N
n N

f
n n k

n
R k− ≤ − ≤ =

∞ ∞=

∞

=

∞
+∑ ∑1

for some positive constant k introduced in the proof of Proposition 3. 
The remainders sequence (R

n
(k))

n ≥ 0
 converges fast toward 0 (an 

estimation of its convergence can be obtained using the fact that 
limsup ( )!

/
k k

k
→∞ =1 1 0 by Stirling’s formula).

Hence we have:

μ μFk
N

fX X

NC N dt R k( ) ( )− ≤ +
∞

1  (56)

For the covariance, the principle of the approximation is exactly 
the same:

C C C C C Ck
N

f k fX X X X X XF F F F( ) ( ) ( ) ( )− ≤ − + −
∞ ∞ ∞

N
k
N

k
N

The second term of the righthand side can be controlled using 
the same evaluation by R kN ( ) where k  is the constant introduced in 
the proof of Proposition 3, and the fi rst term is controlled by the rate 
of convergence of the approximation of the double integral, which 
is bounded by C

2
(N + T) dt where C

2
 depends on the parameters 

of the system and the discretization algorithm used.
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Hence we have:

C C C N T t dt R kk
N

fX X

N
F ( ) ( ) ( )− ≤ + − +

∞
2 0  (57)

The expressions (Eqs. 56 and 57) are the sum of two terms, one 
of which is increasing with N and T and decreasing with dt and the 
other one decreasing in N. If we want to obtain an estimation with 
an error bounded by some ε > 0, we can for instance fi x N such 
that max( ( ), ( ))R k R kN N < ε

2  and then fi x the time step dt smaller 
than min( ),( ( ( )))

ε
2 21 2 0C N C N T t

ε
+ − .

Complexity. The complexity of the algorithm depends on the 
complexity of the computations of the integrals. The algorithm 
described hence has the complexity O N T

dt( ( ) )2 .

THE IMPORTANCE OF THE COVARIANCE: SIMPLE MODEL, 
ONE POPULATION
As a fi rst example and a benchmark for our numerical scheme we 
revisit the work of Sompolinsky et al. (1998). These authors studied 
the case of the simple model with one population (P = 1), with the 
centered sigmoidal function S(x) = tanh(gx), centered connectivity 
weights J = 0 of standard deviation σ = 1 and no input (I = 0; Λ = 0). 
Note therefore that there is no “noise” in the system, which therefore 
does not match the nondegeneracy conditions of Proposition 2 and 
of Theorem 4. This issue is discussed below. In this case, the mean 
equals 0 for all t. Nevertheless, the Gaussian process is nontrivial as 
revealed by the study of the covariance C(t, s).

Stationary solutions
Assuming that the solution of the mean-fi eld equation is a sta-
tionary solution with C t s C t s c( , ) ( ) ( )≡ − = τ , Sompolinsky and his 
collaborators found that the covariance obeyed a second-order 
differential equation:

d C

d

V

C
q

2

2τ
∂
∂

= − . (58)

This form corresponds to the motion of a particle in a potential 
well and it is easy to draw the phase portrait of the corresponding 
dynamical system. However, there is a diffi culty. The potential V

q
 

depends on a parameter q which is in fact precisely the covariance 
at τ = 0 (q = C(0)). In the stationary case, this covariance depends 
on the whole solution, and hence cannot be really considered as 
a parameter of the system. This is one of the main diffi culties in 
this approach: mean-fi eld equations in the stationary regime are 
self-consistent.

Nevertheless, the study of the shape of V
q
, considering q as a free 

parameter gives us some information. Indeed, V
q
 has the following 

Taylor expansion (V
q
 is even because S is odd):

V C C C O Cq( ) ( )= + +λ γ
2 4

2 4 6

where λ = − 〈 ′〉( )1 2 2 2g J S q  and γ = 〈 〉1
6

2 2 3 2J g S q
( ) ), 〈φ〉

q
 being the ave-

rage value of φ under the Gaussian distribution with mean 0 and 
variance q = C(0).

If λ > 0, i.e., when g J S q
2 2 2 1〈 ′〉 <) , then the dynamical system 

(Eq. 58) has a unique solution C(t) = 0, ∀t ≥ 0. This corresponds 
to a stable fi xed point (i.e., a deterministic trajectory, μ = 0 with 

no fl uctuations) for the neural network dynamics. On the other 
hand, if g J S q

2 2 2 1〈 ′〉 ≥) , there is a homoclinic trajectory in Eq. 58 con-
necting the point q = C* > 0 where V

q
 vanishes to the point C = 0. 

This solution is interpreted by the authors as a chaotic solution in 
the neural network. A stability analysis shows that this is the only 
stable7 stationary solution (Sompolinsky et al., 1998).

The equation for the homoclinic solution is easily found 
using energy conservation and the fact that V

q
(q) = 0 and 

dV

dC
q ( )q = 0. 

One fi nds:

u
dC

dx
V Cq= = − − ( ).

At the fourth-order in the Taylor expansion of V
q
 this gives

C( )

cosh

.τ

λ
γ

=

−

−
⎛
⎝⎜

⎞
⎠⎟

2

2

λ τ

Though λ depends on q it can be used as a free parameter for 
interpolating the curve of C(τ) obtained from numerical data.

Numerical experiments
This case is a good benchmark for our numerical procedure since 
we know analytically the solutions we are searching for. We expect 
to fi nd two regimes. In one case the correlation function is iden-
tically 0 in the stationary regime, for suffi ciently small g values or 
for a suffi ciently small q (trivial case). The other case corresponds 
to a regime where C(τ) > 0 and C(τ) → 0 has τ → + ∞ (“chaotic” 
case). This regime requires that g be suffi ciently large and that q be 
large too. We took τα = 0:25, σαα = 1. For these values, the change in 
dynamics predicted by Sompolinsky and collaborators is g

c
 = 4.

In Sections “Existence and Uniqueness of Solutions in Finite 
Time” and “Existence and Uniqueness of Stationary Solutions” we 
have introduced the assumption of nondegeneracy of the noise, 
in order to ensure that the mean-fi eld process was nondegenerate. 
However, in the present example, there is no external noise in the 
evolution, so we can observe the effects of relaxing this hypothesis 
in a situation where the results of Proposition 2 and of Theorem 4 
cannot be applied. First, we observed numerically that, without 
external noise, the process could become degenerate [namely some 
eigenvalues of the covariance matrix Cα(t, s) become very small 
and even vanish.]. This has also an incidence on the convergence 
of the method which presents numerical instabilities, though the 
iterations leads to a curve which is well fi tted by the theoretical 
results of Sompolinsky et al. (see Figure 3). The instability essen-
tially disappears if one adds a small noise. But, note that in this case, 
the solution does not match with Sompolinsky et al. theoretical 
calculation (see Figure 3).

Modulo this remark, we have fi rst considered the trivial case 
corresponding to small g values. We took g = 0.5 and T = 5. We 
choose as initial process the stationary Ornstein–Uhlenbeck process 
corresponding to the uncoupled system with Λ = 0.1. We drew 
μα(0) randomly from the uniform distribution in [−1, 1] and vα(0) 
randomly from the uniform distribution in [0, 1].

7More precisely, this is the only minimum for the large deviation functional.
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Starting from this initial stationary process, we iterated the 
function F

1
. Then, during the iterations, we set sα = 0 in order to 

match the conditions imposed by Sompolinsky and colleagues. We 
observe that the method converges toward the expected solution: 
the mean function converges to 0, while the variance v(t) decreases 
exponentially fast in time toward a constant value corresponding 
to the stationary regime. This asymptotic value decreases between 
two consecutive iterations, which is consistent with the theoreti-
cal expectation that v(t) = 0 in the stationary regime of the trivial 
case. Finally, we observe that the covariance C(t − s, s) stabilizes to 
a curve that does not depend on s and the stationary value (large 
t − s) converges to 0.

We applied the same procedure for g = 5 corresponding to the 
“chaotic” regime. The behavior was the same for μ(t) but was quite 
different for the covariance function C(t, s). Indeed, while in the fi rst 
case the stationary value of v(t) tends to 0 with the number of ite-
rations, in the chaotic case it stabilizes to a fi nite value. In the same 
way, the covariance C(t − s, s) stabilizes to a curve that does not 
depend on s. The shape of this curve can be extrapolated thanks to 
Sompolinsky et al. results. We observe a very good agreement with 
the theoretical predictions with a fi t f x a

b x4( ) ,cosh( ( ))= − δ  correspon-
ding to the fourth expansion of V

q
. Using a sixth-order expansion 

of V x x x xq
a b c( ) = + +2

2
4

4
6

2 gives a fi t

f x
x K

x

6 2 1

1

1
( )

cosh( ( ))
,

cosh ( ( ))2

=
− + − −

ρ
δ

λ δ
λ

where ρ, K, λ are explicit functions of a, b, c, we obtain a slightly 
better approximation.

MEAN-FIELD EQUATIONS FOR TWO POPULATIONS WITH A NEGATIVE 
FEEDBACK LOOP
Let us now present a case where the fl uctuations of the Gaussian 
fi eld act on the dynamics of μα(t) in a nontrivial way, with a beha-
vior strongly departing from the naive mean-fi eld picture. We con-
sider two interacting populations where the connectivity weights 
are Gaussian random variables J Jαβ ≡ = ( , )N αβ αβσ 1  for (α, β) ∈ 
{1, 2}2. We set Sβ(x) = tanh(gx) and Iα = 0, sα = 0, α = 1, 2.

Theoretical framework
The dynamic mean-fi eld equation for μα(t) is given, in differential 
form, by:

d

dt
J S v t x t Dx

μα α

α
αβ

β
β β

μ
τ

μ α= − + +( ) =
= −∞

∞

∑ ∫
1

2

1 2( ) ( ) , , .

Let us denote by Gα(μ, v(t)) the function in the righthand side 
of the equality. Since S is odd, ∫ =−∞

∞ S v t x Dx( ( ) )β 0. Therefore, 
we have Gα(0, v(t)) = 0 whatever v(t), and hence the point μ

1
 = 0, 

μ
2
 = 0 is always a fi xed point of this equation.
Let us study the stability of this fi xed point. To this purpose, we 

compute the partial derivatives of Gα(μ, v(t)) with respect to μβ for 
(α, β) ∈ {1, 2}2. We have:

∂G
v t gJ v t x t Dxα

β

αβ

α
αβ β βμ

μ
δ
τ

μ
∂

( ) = − + − +( )( )
−∞

∞

∫, ( ) tanh ( ) ( ) ,1 2

and hence at the point μ
1
 = 0, μ

2
 = 0, these derivatives read:

∂G
v t gJ h v tα

β

αβ

α
αβ βμ

δ
τ∂

( ) = − + ( )0, ( ) ( ) ,

where h v t v t x Dx( ( )) tanh ( ( ) ) .β β = 1− ∫−∞
∞ 2

In the case vα(0) = 0, J = 0, sα = 0, implying vα(t) = 0, t ≥ 0, the 
equation for μα reduces to:

d

dt
J S t

μ μ
τ

μα α

α
αβ β

β

= − +
=

∑ ( ( ))
1

2

which is the standard Amari–Cohen–Grossberg–Hopfi eld system. 
This corresponds to the naive mean-fi eld approach where Gaussian 
fl uctuations are neglected. In this case the stability of the fi xed point 
μ = 0 is given by the sign of the largest eigenvalue of the Jacobian 
matrix of the system that reads:

−
−

⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

1

1

11 12

21 22

1

2

0

0
τ

τ
g

J J

J J
.

For the sake of simplicity we assume that the two time con-
stants τα are equal and we denote this value τ. The eigenvalues are 
in this case − +1

τ gλ, where λ are the eigenvalues of J  and have 
the form:

λ1 2

11 22 11 22

2

12 214

2, .=
+ ± −( ) +J J J J J J

Hence, they are complex whenever J J J J12 11 22 421
2(  ) ,< − − /  cor-

responding to a negative feedback loop between population 1 and 
2. Moreover, they have a real part only if J J11 22+   is nonzero (self 
interaction).

This opens up the possibility to have an instability of the fi xed 
point (μ = 0) leading to a regime where the average value of the 
membrane potential oscillates. This occurs if J J11 22 0+  >  and if g 
is larger than:

g
J Jc =

+
2

11 22τ( )
.

The corresponding bifurcation is a Hopf bifurcation.

FIGURE 3 | Numerical solution of the mean-fi eld equation after 

14 iterations in the chaotic case (g = 5). We clearly see the numerical 
instabilities in the no-noise case, which do not exist in the low-noise case.
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The situation is different if one takes into account the fl uc-
tuations of the Gaussian fi eld. Indeed, in this case the stability of 
the fi xed point μ = 0 depends on v(t). More precisely, the real and 
imaginary part of the eigenvalues of DG(0, v(t)) depend on v(t). 
Therefore, the variations of v(t) act on the stability and oscillations 
period of v(t). Though the evolution of μ(t), v(t) are coupled we 
cannot consider this evolution as a coupled dynamical system, since 
v(t) = C(t, t) is determined by the mean-fi eld equation for C(t, s) 
which cannot be written as an ordinary differential equation. Note 
that we cannot assume stationarity here, as in the previous case, 
since μ(t) depends on time for suffi ciently large g. This opens up the 
possibility of having complex dynamical regimes when g is large.

Numerical experiments
We have considered the case J J11 22 5 0 1= = =,τ .  giving a Hopf 
 bifurcation for g

c
 = 2 when J = 0 (Figure 4). The trajectory of 

μ
1
(t) and v

1
(t) is represented in Figure 4 in the case g = 3. When 

J = 0, μ
1
(t) presents regular oscillations (with non-linear effects 

since g = 3 is larger than the critical value for the Hopf bifurcation, 
g

c
 = 2). In this case, the solution v

1
(t) = 0 is stable as seen on the 

fi gure. When J ≠ 0 the Gaussian fi eld has (small) fl uctuations which 
nevertheless strongly interact with the dynamics of μ

1
(t), leading 

to a regime where μ
1
(t) and v

1
(t) oscillate periodically.

DISCUSSION
The problem of bridging scales is overwhelming in general when 
studying complex systems and in particular in neuroscience. After 
many others we looked at this diffi cult problem from the theore-
tical and numerical viewpoints, hoping to get closer to its solution 
from relatively simple and physically/biologically plausible fi rst 
principles and assumptions. One of our motivations is to better 
understand such phenomenological neural mass models as that of 
Jansen and Rit (1995).

We consider several populations of neurons and start from a 
microscopic, i.e., individual, description of the dynamics of the 
membrane potential of each neuron that contains four terms.

The fi rst one controls the intrinsic dynamics of the neuron. It is 
linear in this article but this assumption is not essential and could 
probably be safely removed if needed.

The second term is a stochastic input current, correlated or 
uncorrelated. The corresponding noise model is very rich, depen-
ding on the degree k of smoothness of the g-shapes. It features 
integrated Brownian noise up to order k − 1.

The third term is a deterministic input current, and the fourth 
one describes the interaction between the neurons through random 
connectivity coeffi cients that weigh the contributions of other neu-
rons through a set of functions that are applied to their membranes 
potentials. The only hypothesis on these functions is that they are 
smooth and bounded, as well as their fi rst-order derivative. The 
obvious choice of sigmoids is motivated by standard rate models 
ideas. Another appealing choice is a smooth approximation to 
a Dirac delta function thereby opening a window on the world 
of spiking neurons. Thus, the model presented in this paper is 
more general than the instantaneous rate model that is underlying 
Ermentrout’s voltage-based model (Ermentrout, 1998) even though 
we have not explored this avenue.

We then derive the mean-fi eld equations and provide a construc-
tive and new proof, under some mild assumptions, of the existence 
and uniqueness of a solution of these equations over fi nite and infi nite 
time intervals. The key idea is to look at this mean-fi eld description 
as a global problem on the probability distribution of the membranes 
potentials, unlike previous studies. Our proof provides an effi cient 
way of computing this solution and our numerical experiments show 
a good agreement with previous studies. It is interesting to note that 
a suffi cient condition for the convergence of our algorithm is related 
to the previously mentioned noise model. We prove that if the noise 
matrix F is full rank, with bounded eigenvalues, then the algorithm is 
in general convergent. An important fact to note is that the solutions 
of the mean-fi eld equations that we construct are fundamentally 
non-Markovian eliminating the need for such approximations as the 
introduction of the q parameter summarizing the whole history of 
the non-Markovian process, see below.

In the case where the nonlinearities are chosen to be sigmoi-
dal our results shed a new light on existing neural mass models. 
Indeed, as shown in Section “General Derivation of the Mean-
Field Equation”, these appear as approximations of the mean-fi eld 
 equations where the intricate but fundamental coupling between 
the time variations of the mean membrane potentials and their fl uc-
tuations, as represented by the covariance functions, is neglected.

An alternative approach has been recently proposed by Chizhov 
and collaborators8 (Chizhov and Graham, 2007; Chizhov et al., 
2007). The approach of these authors consists in reducing the large 
number, N, of degrees of freedom of the neural assembly by con-
structing a probability density ρ on the phase space of neurons 
states in the limit N → ∞. This is a non-rigorous approach where 
the evolution equations for ρ are heuristically derived. Especially, 
it is assumed that ρ depends on two parameters only: the current 
time t and the time elapsed since the last spike t*. Under these 

-1
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t

mu(t), J=0
mu(t), J=2, n=100

v(t), J=0
v(t) x 100, J=2, n=100

FIGURE 4 | Evolution of the mean µ
1
(t) and variance V

1
(t) for the mean-

fi eld of population 1, for J = 0 and 2, over a time window [0, 20]. n is the 
number of iterations of F1 defi ned in Section “Existence and Uniqueness of 
Solutions in Finite Time”. This corresponds to a number of iterations for which 
the method has essentially converged (up to some precision). Note that V1(t) 
has been magnifi ed by a factor of 100. Though Gaussian fl uctuations are small, 
they have a strong infl uence on μ1(t).

8We thank one of the referees for pointing out these references to us.
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 assumptions the initial phase space of neurons states is mapped to a 
two dimensional space t, t*, while ρ(t, t*)dt characterizes the fraction 
of neurons which have fi red in the time interval [t − t*, t − t* + dt]. 
Therefore, this approach intrinsically holds for integrate and fi re 
neurons models where the neuron’s membrane potential history 
is summarized by the last spike time, when it is reset to a constant 
value. As noticed by these authors, this allows to circumvent the 
main problem in mean-fi eld approaches for fi ring rate models, 
that we also discuss in the present paper: When using mean-fi eld 
theory to characterize stationary regimes, one needs to introduce 
ad hoc parameters (see e.g., the parameter q  introduced in Section 
“Stationary Solutions”) summarizing the whole history of the non-
Markovian process. Introducing a “history cut-off” while resetting 
the membrane potential to a constant value indeed removes this dif-
fi culty. Therefore, it might be interesting to compare our approach 
in the case of integrate-and-fi re models (see above remark on the 
choice of the nonlinearity), to the approach of Chizhov and colla-
borators. This could provide some rigorous basis for their analysis 
and allow to elucidate the role of fi eld fl uctuations which does not 
appear explicitly in the probability density approach.

CONCLUSION AND FURTHER WORK
On more general grounds, our goal is now to extend the present 
work in several directions.

BIFURCATIONS ANALYSIS OF THE DYNAMIC MEAN-FIELD EQUATIONS
From the present analysis, and as shown in the simple examples 
of Section “Numerical Experiments”, the mesoscopic dynamics of 
the average membrane potential of a neurons population can be 
really different from the classical phenomenological equations la 
Jansen–Rit if one includes the non-Markovian fl uctuations of the 
interaction fi elds, which summarize the cumulative effects of the 
nonlinear interactions of a given neuron with the bulk of other neu-
rons. Jansen–Rit equations are commonly used in the neuroscience 
community either to anticipate the dynamics of local fi eld potential 
in relation with imaging (Optical Imaging, MEGEEG), or to under-
stand neurophysiological disorders such as epilepsy. Bifurcations 
analysis of these equations reveal dynamical regimes that can be 
related to experiments (Grimbert and Faugeras, 2006). They can 
be generalized using more accurate neural models (Wendling et al., 
2005). Is there any need to generalize these equations, that we claim 
to be incomplete, while people commonly use them with some 
satisfaction? Are there new phenomena, experimentally accessible, 
that can be exhibited by the generalized mean-fi eld equations and 
that do not appear in the naive ones? These are obviously important 
questions that we intend to address in the near future. On math-
ematical grounds, the goal is to make a bifurcation analysis of the 
map F on the space of trajectories, introduced in the present paper. 
Do any new salient dynamical regimes appear? If such regimes 
exist, the goal will be, on experimental grounds, to interact with 
experimentalists in order to see in which conditions such a regime 
can be exhibited, and what are its implications on cortical columns 
dynamics or function.

INVESTIGATIONS OF NONSTATIONARY REGIMES
As discussed in this paper, and as is well-known in the physicists’ 
community (especially spin-glasses community), the dynamic 

mean-fi eld approach raises serious diffi culties as far as one is trying 
to describe stationary dynamics. On technical grounds, this relies on 
the non-commutativity of the two limits N → ∞ and t → ∞ already 
discussed in Sompolinsky and Zippelius (1982). As a result, one is 
led to introduce ad hoc phenomenological parameters, depending 
on initial conditions, that can be determined in statistical phys-
ics models where the distribution of equilibria is known (Gibbs 
distribution), using sophisticated techniques such as the replica 
“trick” (Houghton et al., 1983). For spin-glasses it is only in the 
high temperature regime that a simple solution to this problem is 
known. This restriction also appears in the present paper, where 
the existence and uniqueness of a stationary solution is proved only 
for low values of the gain parameter g (which plays a role similar 
to the inverse temperature). However, we are not so much inter-
ested in stationary dynamics, since brain processes are ultimately 
nonstationary. Our approach, valid for any fi nite time T, opens 
up the possibility to characterize mean-fi eld equations in tran-
sient regimes, with an analysis strategy that can moreover be easily 
implemented. To the best of our knowledge, this type of techniques 
has never been used in the statistical physics community, where 
iterations on space trajectories are not in the standard toolbox. 
Therefore, our work could allow the (numerical) investigation of 
cortical columns submitted to nonstationary inputs, with strong 
implications on neuroscience.

EXTENSION TO A LARGER CLASS OF MODELS
A very challenging question is the application of this theory to 
spiking neurons models. We have briefl y mentioned in Section 
“Discussion” that this may be possible through the use of non-
sigmoidal functions in the interaction terms. This idea could be 
applied to the analysis of Integrate and Fire models with conduct-
ance based synapses, which constitute good models of spiking neu-
rons. As discussed at the end of Section “Discussion”, the analysis 
of the mean-fi eld equations could be simplifi ed by the fact that 
memory is reset after a neuron fi res. There is however a need to 
characterize parameter space regions where neurons can take an 
arbitrary large time to fi re for the fi rst time (Cessac, 2008; Cessac 
and Viéville, 2008). This is the main obstruction in the application 
of our theory to this type of models.

APPENDIX
A. IDENTIFICATION OF THE MEAN-FIELD EQUATIONS
Ben-Arous and Guionnet studied from a mathematical point of 
view the problem of fi nding a mean-fi eld description of large net-
works of spin-glasses. They obtained using different methods of 
stochastic analysis a weak limit of the law of a given spin and proved 
their independence.

Our equations do not directly fi t in their study: indeed, the spin 
intrinsic dynamics is nonlinear while the interaction is linear, and 
everything in done in dimension one. Nevertheless, their proof 
extends to our case which is somehow more simple. For instance in 
the case of the Simple Model with one population, we can readily 
adapt their proof in our case. More precisely, let P = 1, the equation 
of the network reads:

τ σdV V J S V dt dWt
j

t
j

ij t
i

i

N

t
j= − +

⎛
⎝⎜

⎞
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+
=
∑ ( )

1
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In this case, we defi ne for X C t T∈ +M1 ( ([ , ], ))0 �  the effec-
tive interaction term ( )Ut

X  which is the effective interaction 
process defi ned in Section “The Mean-Field Equations”, i.e., 
the Gaussian process of mean J S Xtαβ�[ ( )] and of covariance: 
Cov( , ) =: [ ( ) ( )].2U U S X S Xt

X
s
X

t sσαβ�

Let us note P the law of the membrane potential when there 
is no interaction (it is an Ornstein–Uhlenbeck process), and 
the empirical measure ˆ .V N

N i
N

V i= ∑ =
1

1 δ  We can prove that under 
the probability distribution averaged over the connectivities, see 
below, the empirical measure satisfi es a large deviation principle 
with good rate function H defi ned as in Guionnet (1997). Using 
this large deviation result, we can prove annealed and quenched 
tightness of the empirical measure, and fi nally its convergence 
toward the unique process where the good rate function H achieves 
its unique minimum, which is defi ned by the property of having a 
density with respect to P and whose density satisfi es the implicit 
equation:

Q
d

U dW U dtt
Q

t t

TT

P
P

dQ Q= − ( )⎧
⎨
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⎢
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∫∫ε exp
1

2

2

00  

(59)

where ε denotes the expectation over the effective interaction proc-
ess UQ.

We can also prove following the steps of Ben-Arous and Guionnet 
(1997) that there exists a unique solution to this equation, and that 
this solution satisfi es the nonlinear non-Markovian stochastic dif-
ferential equation:

τ

ε
ε

dV V dt dB

dB dW dB U U
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 (60)

which can also be written as our mean-fi eld equation, averaged 
on the connectivities (see Ben-Arous and Guionnet, 1995). More 
precisely, let LV be the law of the solution of the equation:

τdV V dt dW U dt

V Z
t t t t

V= − + +
=

⎧
⎨
⎩Law of 0 0

,

which is exactly Eq. 33. They prove that V satisfi es the nonlinear 
equation:

V LV=L ε( )

This result is probably extendable to the multi-population case 
using the multidimensional Girsanov’s theorem, but the corre-
sponding mathematical developments are out of the scope of this 
paper.

B. THE RESOLVENT
In this appendix we introduce and give some useful properties of 
the resolvent Φ

L
 of a homogeneous differential equation:

dx

dt
t x t x t x= = ∈L( ) ( ) ( )0 0 ,�p

 
(61)

where L: [t
0
, T] → M

P × P
 (or (−∞, T] → M

P × P
) is C0.

Defi nition B.1. The resolvent of Eq. 61 is defi ned as the unique 
solution of the linear equation:

d t t
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t t t
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L Φ
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(62)

where Id
P
 is the P × P identity matrix.

Proposition B.1. The resolvent satisfi es the following properties:
  (i) Φ

L
(t + s, t

0
) = Φ

L
(t + s, t) · Φ

L
(t, t

0
)

 (ii) Φ
L
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(iii) Let   be a norm on M
P × P

 and assume that L( )t kL≤  on 
[t

0
, T]. Then we have:

ΦL
k t tt t e t t TL, [ , ]0 0

0( ) ≤ ∀ ∈−

 
(64)

Similarly, if LT ( )t k
LT≤  on [t

0
, T] we have:

Φ
L

LTT k t t
t t e t t T( , ) [ , ]0 0
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(65)

 (iv) We have

det ( , ) exp ( )ΦL

t

t

t t s ds0

0

= ∫ TrL

Proof. The properties (i) and (ii) are directly linked with the 
property of group of the fl ow of a reversible ODE. (iii) is an applica-
tion of Grunwald’s lemma. (iv) is obtained by a fi rst-order Taylor 
series expansion. 

Theorem B.2 (Solution of an inhomogeneous linear SDE). The solu-
tion of the inhomogeneous linear stochastic differential equation:

dX t X t t dt s d

X X
t s

t
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⎧
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( ) ( ) ( )) ( )L( I WF
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can be written using the resolvent:
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Proof. Pathwise (strong) uniqueness of solution directly comes 
from the results on the SDE with Lipschitz coeffi cients (see e.g., 
Karatzas and Shreve, 1991, Theorem 2.5 of Chapter 5). It is clear 
that X

t0
 = X

0
. We use Itô’s formula for the product of two stochastic 

processes to prove that the process Eq. 67 is solution of Eq. 66:
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Hence the theorem is proved. 

C. MATRIX NORMS
In this section we recall some defi nitions on matrix and vector 
norms. Let M

n × n
 be the set of n × n real matrices. It is a vector 

space of dimension n2 and the usual Lp norms 1 ≤ p ≤ ∞ can be 
defi ned. Given L ∈ M

n × n
, we note L p

v the corresponding norm. 
Given a vector norm, noted  , on �n the induced norm, noted 
 , on M

n × n
 is defi ned as

L
L= sup

,x x

x

x∈ ≤Rn 1

Since M
n×n

 is fi nite dimensional all norms are equivalent. In 
this article we use the following norms

  (i) L ∞ == ∑max | | .i j
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ijL1

 (ii) L ∞ | |v
i j ijL= max ,

(iii) L
L

2 12

2

2
=

≤
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,x x

x

xn∈�
. This so-called spectral norm is equal 

to the square root of the largest singular value of L which 
is the largest eigenvalue of the positive matrix LTL. If L is 
positive defi nite this is its largest eigenvalue which is also cal-
led its spectral radius, noted ρ(L).

D. IMPORTANT CONSTANTS
Table 1 summarizes some notations which are introduced in the 
article and used in several places.

E. PROOF OF LEMMA 2
Lemma E.1. The following upperbounds are valid for all n ≥ 1 and 
all s, t ∈ [t

0
, T].
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where μ and σ
max

 are defi ned in Lemma 1, λΓ
max is defi ned in 

Assumption 1.
Proof. The fi rst inequality follows from taking the infi nite norm 

of both sides of Eq. 41 and using Assumption (a) in 1 and Eq. 64, 
Lemma 1, and Assumption (c) in 1.

The second inequality follows from taking the infi nite norm 
of both sides of Eq. 42 and using Assumption (a) in 1 and Eqs. 64 
and 65, Lemma 1, and Assumption (b) in 1. 

F. PROOF OF LEMMA 3
Lemma F.1. For all t ∈ [t

0
, T] all α = 1,…,kP, and n ≥ 1, we have
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In the last expression the fi rst term is larger than the smallest 
eigenvalue λmin

∑Z0

 of the matrix ∑Z0  which is positive defi nite since 
we have assumed the Gaussian random variable Z

0
 nondegenerate. 

The second term is equal to the smallest singular value λmin of the 
matrix ΦL t t( , )0  which is also strictly positive since ΦL t t( , )0  is 
invertible for all t ∈ [t

0
, T], see Appendix B. 

G. PROOF OF LEMMA 4
Lemma G.1. For all α = 1,…,kP and n ≥ 1 the quantity 
C s s C t t C t sn n n

αα αα αα( , ) ( , ) ( , )− 2 is lowerbounded by the positive sym-
metric function:

θ λ( , ) ,min min mins t t s
Z

=def − 2 0λ λΣ Γ

where λmin
Γ  is the strictly positive lower bound, introduced in 3.1, 

on the singular values of the matrix F(u) for u ∈ [t
0
, T].

Proof. We use Eq. 42 which we rewrite as follows, using the group 
property of the resolvent Φ

L
:
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We now assume s < t and introduce the following notations:
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Table 1 | Some important quantities defi ned in the article.

Constant Expression Defi ned in

μ maxα β αβ β∑ ∞| |J S  Lemma 1, Eq. 39

σmax
2  maxα β αβ βσ∑ ∞

2 2S  Lemma 1

σmin min ,α β αβσ2  Lemma 1

μmax e Z I T tk T tL ( )
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∞+ + −0

0 0[ ( )( ]μ  Lemma 2
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0 0
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Σ Γ  Lemma 2
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ΣZ0

 Lemma 3

K λ λ λmin min min
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0−( ) Proof of Lemma 5

kC maxα β αβ β βσ∑ ′∞
2 S S  Proposition 3, Eq. 45

λL  Eq. 48
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Let eα, α = 1,…,kP, be the unit vector of the canonical basis 
whose coordinates are all equal to 0 except the αth one which is 
equal to 1. We note Eα(t) the vector ΦL t t e( , )0

T
α . We have, dropping 

the index n for simplicity:
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α

αα α α= + +

Note that the last expression does not depend on s, since 
A(s) + B(s, t) = A(t), which is consistent with the fi rst equality. 
The reason why we introduce s in this expression is to simplify the 
following calculations.

The expression C s s C t t C t sαα αα α( , ) ( , ) ( , )2− α  is the sum of four 
sub-expressions:
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ε α α α α

α

2( , ) ( ( ) ( , ) ( )) ( ( ) ( , ) ( ))

( ( ) ( ,

s t E s a s s E s E t a t t E t

E t a t

T T

T

=

− ss E s) ( )) ,α
2

which is also ≥0 because a(t, s) is a covariance matrix function,
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− ( )

α α
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Because a(t, s) is a covariance matrix function, we have

E t a t t E t E s a s s E s E t a t s E sT T T
α α α α α α( ) ( , ) ( ) ( ) ( , ) ( ) ( ) ( , ) ( ) ,+ − ≥2 0

and, as seen above, ε2 0( , ) .s t ≥  Because ε1 0( , ) ,s t ≥  we also have
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≤
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α α α( ) ( ) ( ) ( ),

and, as it can be readily verifi ed, this implies ε3 0( , ) .s t ≥
Therefore, we can lowerbound C s s C t t C t sαα αα αα( , ) ( , ) ( , )2−  by 

the fourth subexpression:
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since B(s, t) and a(s, s) are covariance matrixes. We next have
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by defi nition of E sα( ). Therefore
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T Z
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min min≥ ≥λ Φ Φ Σ0 0
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where λmin
C  is the smallest eigenvalue of the symmetric positive 

matrix C. Similarly we have
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Let us write Γ(u) = F(u)F(u)T. We have (Assumption 1):
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Combining these results, we have

C s s C t t C t s t s
Z

αα αα αα λ λ λ( , ) ( , ) ( , ) min min min− ≥ −2 2 0Σ Γ
 

H. PROOF OF LEMMA 5
Lemma H.1. The 2n-dimensional integral
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where the functions ρ
i
(u

i
, v

i
), i = 1,…,n are either equal to 1 or 

to 1/ θ( , )u vi i  (the function θ is defi ned in Lemma 4), is upper-
bounded by kn/(n − 1)! for some positive constant k.

Proof. First note that the integral is well-defi ned because of 
Lemma 4. Second, note that there exists a constant K such that

K

u vθ( , )
≥ 1  for all (u, v) ∈ [t

0
, t ∨ s]2,

i.e., K T t
Z

= −∑λ λ λmin min min( )
0

0
Γ . Therefore the integral is upper-

bounded by K n
0 , where K

0
 = max(1, K) times the integral obtained 

when ρi i i i iu v u v( , ) = −1/  for all i = 1,…,n. Let us then consider 
this situation. Without loss of generality we assume t

0
 = 0. The cases 

n = 1, 2, 3 allow one to understand the process.

I K
dudv

u vt s

1 0

0 2

≤
−∨

∫ .
[ , ]

Let us rotate the axes by − π
4
 by performing the change of 

variables

u
U V

v
V U

= +

= −
2

2

,

.

Using the symmetry of the integrand in s and t and the change 
of variable, the integral in the righthand side of Eq. 68 is equal to 
(see Figure 5):
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Let us now look at I
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Since in the area of integration u v v V U∨ = = −
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 we are led to the 
product of 2/5 by the one-dimensional integral
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It can be verifi ed by using a system for symbolic computation 
that 0 < α

i
 < 1 for all i ≥ 1. One also notices that
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and this fi nishes the proof.
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FIGURE 5 | The change of coordinates.
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