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A Consumption-Based Model of the Term Structure

of Interest Rates

Abstract

This paper proposes a consumption-based model that can account for many features of the

nominal term structure of interest rates. The driving force behind the model is a time-varying

price of risk generated by external habit. Nominal bonds depend on past consumption growth

through habit and on expected inflation. When calibrated to data on consumption, inflation, and

the average level of bond yields, the model produces realistic volatility of bond yields and can

explain key aspects of the expectations puzzle documented by Campbell and Shiller (1991) and

Fama and Bliss (1987). When actual consumption and inflation data are fed into the model, the

model is shown to account for many of the short and long-run fluctuations in the short-term interest

rate and the yield spread. At the same time, the model captures the high equity premium and

excess stock market volatility.



Introduction

The expectations puzzle, documented by Campbell and Shiller (1991) and Fama and Bliss (1987),

has long posed a challenge for general equilibrium models of the term structure. Backus, Gregory,

and Zin (1989) show that a model assuming power utility preferences and time-varying expected

consumption growth cannot account for this puzzle. Although Dai and Singleton (2002) show that

a statistical model of the stochastic discount factor can fit the puzzle, this only raises the question

of what economic mechanism is at work.

This paper proposes a consumption-based model that captures key aspects of the empirical

results of Campbell and Shiller (1991) and Fama and Bliss (1987). Campbell and Shiller run the

regression

y$n,t+1 − y$nt = constant + βn
1

n− 1
(y$nt − y$1t) + error,

where y$nt = − 1
n
lnP $nt, and P

$
nt is the price of a nominal bond with maturity n. According to the

expectations hypothesis, excess returns on bonds are unpredictable, and all the variation in yield

spreads is due to variation in future short-term interest rates. In terms of the regression above, this

means βn = 1 for all n. But Campbell and Shiller show, on the contrary, that βn is less than one

and decreasing in n. The model in this paper reproduces these findings. The model also generates

an upward sloping average yield curve (as found in the data) and realistic bond yield volatility.

Two ingredients enable the model to capture these findings. The first is external habit persis-

tence from Campbell and Cochrane (1999). Habit persistence generates time variation in investor

preferences. After periods of unusually low consumption growth, the volatility of investors’ marginal

utility rises, causing them to demand greater premia on risky assets. As a result, the risk premium

on the aggregate stock market varies in a countercyclical fashion.

Habit utility preferences are clearly not enough: In the model of Campbell and Cochrane (1999),

the riskfree rate is constant and the term structure is trivial. The second ingredient is thus a model

for the short-term interest rate that makes long-term bonds risky in the first place. Without this

ingredient, it is impossible for long-term bonds to have positive, countercyclical risk premia.

In this paper, the short-term real interest rate varies with surplus consumption, the ratio be-

tween current consumption minus a slow-moving weighted average of past consumption, and current

consumption. The estimated model implies that surplus consumption and the real riskfree rate are

negatively correlated; when past consumption growth is relatively low, investors borrow to give

habit a chance to catch up to consumption. However, an increase in precautionary savings miti-
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gates the effect, keeping the volatility of the interest rate low. The negative correlation between

surplus consumption and the riskfree rate leads to positive risk premia on real bonds, and an

upward sloping yield curve.

In order to speak to the empirical findings in the term structure, it is necessary to model nominal

as well as real bonds. This paper assumes an exogenous affine process for the price level. The affine

assumption allows for a tractable solution to the nominal bond pricing problem. Nominal bonds are

influenced by expected inflation as well as by surplus consumption growth. Expected inflation is

calibrated purely to match inflation data. Thus the factors driving interest rates and bond returns

in this model are based in macroeconomics, rather than on asset prices.1

Besides the empirical literature on the expectations hypothesis, this paper draws on the earlier

literature on habit formation (e.g., Abel (1990), Chapman (1998), Constantinides (1990), Dybvig

(1995), Ferson and Constantinides (1991), Heaton (1995), and Sundaresan (1989)). Constantinides

(1990) and Sundaresan (1989) show that habit formation models can be used to explain a high

equity premium with low values of risk aversion. Like these models, the model proposed here

assumes that the agent evaluates today’s consumption relative to a reference point that increases

with past consumption. Following Campbell and Cochrane (1999), this paper departs from earlier

work by assuming that habit is external to the agent, namely that the agent does not take into

account future habit when deciding on today’s consumption. Abel (1990) also assumes external

habit formation, but in his specification, agents care about the ratio of consumption to habit,

rather than the difference. As a result, risk aversion is constant and risk premia do not vary through

time. 2 Motivated by habit formation models, Li (2001) examines the ability of past consumption

growth to predict excess returns on stocks. However, Li does not look at the predictive ability of

consumption for short or long-term interest rates, nor does he consider the implications for habit

formation for the expectations hypothesis.

An intriguing feature of the model in this paper is the link it produces between asset returns and

1Ang and Piazzesi (2003) also investigate the role of macroeconomic variables in the term structure. They consider

an affine term structure model where output and inflation are among the factors. Evans and Marshall (2003) consider

the extent to which macroeconomic shocks can explain changes in yields, where the macroeconomic shocks are inferred

using restrictions from general equilibrium models.
2Lately there has been increased interest in the empirical properties of habit formation models. Dai (2000)

links the Constantinides model to a model for labor income. Brandt and Wang (2003) study habit preferences

over inflation. Bekaert, Engstrom, and Grenadier (2004) consider a model where the investor’s reference point

is imperfectly correlated with past consumption. Menzly, Santos, and Veronesi (2004) introduce a variant of the

Campbell and Cochrane model to explain returns on industry portfolios. Chen and Ludvigson (2003) evaluate habit

specifications using nonparametric methods.
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underlying macroeconomic variables. When actual consumption and inflation data is fed through

the model, the implied nominal riskfree rate has a correlation of .72 with the 3-month Treasury

yield in the data. The implied spread between the five-year and three-month yield has a correlation

of .40 with the yield spread in the data. This is in spite of the fact that the returns implied by

the model are driven only by consumption growth and inflation. When expectations-hypothesis

regressions are adjusted by implied risk premia on bonds, as proposed by Dai and Singleton (2002),

the violation of the expectations hypothesis is reduced by more than half at the long end of the

term structure. Finally, the model preserves the advantages of the original Campbell and Cochrane

(1999) framework. It successfully captures the high equity premium for the aggregate market,

excess volatility, and predictability of excess stock returns.

The outline of the paper is as follows. Section 1 describes the assumptions on the endowment,

preferences, and the price level, and how the model is solved. Section 2 describes the estimation

of the inflation process. Section 3 describes the calibration and the implications for the population

moments of asset returns, and for the time series of asset returns in the postwar data.

1 Model

This section describes the model assumed in this paper. Section 1.1 describes the assumptions

for preferences, Section 1.2 describes the assumptions on the price level. Section 1.3 describes the

solution method, and Section 1.4 discusses consequences for risk premia on real and nominal bonds.

1.1 Preferences

Assume that an investor has utility over consumption relative to a reference point Xt:

E
∞
∑

t=0

δt
(Ct −Xt)

1−γ − 1

1− γ . (1)

Habit, Xt, is defined indirectly, through surplus consumption St, where

St ≡
Ct −Xt

Ct
.

To ensure that Xt never falls below Ct, st = lnSt is modeled:

st+1 = (1− φ)s̄+ φst + λ(st)(∆ct+1 − E(∆ct+1)), (2)

The process for st is heteroscedastic, and perfectly correlated with innovations in consumption

growth. The sensitivity function λ(st) will be described below.
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The investor’s habit is external : the investor does not take into account the effect that to-

day’s consumption decisions have on Xt in the future.3 Because habit is external, the investor’s

intertemporal marginal rate of substitution is given by:

Mt+1 = δ

(

St+1
St

Ct+1
Ct

)−γ

. (3)

Following Campbell and Cochrane (1999), consumption is parametrized as a random walk:

∆ct+1 = g + vt+1 (4)

where vt+1 is a N(0, 1) shock that is independent across time. As shown in Campbell and Cochrane

(1999), this specification implies that xt is approximately a weighted average of past consumption

growth, as would be expected from an external habit formation model.

From the Euler equation, it follows that the real riskfree rate equals

rf,t+1 = ln (1/Et[Mt+1])

= − ln δ + γg + γ(1− φ)(s̄− st)−
γ2σ2v
2

(1 + λ(st))
2. (5)

This riskfree rate has some familiar terms from the power utility case and others that are new

to habit formation. As in the power utility model, positive expected consumption growth leads

investors to borrow from the future to smooth consumption. This is reflected in the term γg

(however, γ is not equal to risk aversion as it is under power utility). The second term, proportional

to s̄− st, implies that as surplus consumption falls relative to its long-term mean, investors borrow

more. This is due to the mean-reverting nature of surplus consumption: investors borrow against

future periods when habit has had time to adjust and surplus consumption is higher. The last term

reflects precautionary savings. A higher λ(st) implies that surplus consumption, and therefore

marginal utility, is more volatile. Investors increase saving, and rf falls.

The function λ(st) is chosen so that the intertemporal substitution and precautionary savings

effects offset each other, and so that the model has intuitive properties of habit formation. Campbell

and Cochrane choose the function so that these effects are completely offset and the riskfree rate

is constant. In contrast, this paper allows the data to determine the net effect of st on the riskfree

rate. For simplicity, λ(st) is restricted so that rf,t+1 is linear in st. In addition, λ(st) is chosen so

3Formally, Xt can be considered as aggregate habit and the agent as evaluating consumption relative to aggregate

habit. Because all agents are identical, individual consumption and habit and aggregate consumption and habit can

be treated interchangeably.
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that for st ≈ s̄, xt is a deterministic function of past consumption. These considerations imply that

λ(st) = (1/S̄)
√

1− 2(st − s̄)− 1 (6)

S̄ = σv

√

γ

1− φ− b/γ . (7)

In order that the quantity within the square root remain positive, λ(st) is set to be 0 when st > smax,

for

smax = s̄+
1

2

(

1− S̄2
)

. (8)

st ventures above smax sufficiently rarely that this feature does not affect the behavior of the

model. More details can be found in Appendix A.1. Substituting these equations into (5) reduces

the riskfree rate equation to

rf,t+1 =

(

− ln δ + γg − γ(1− φ)− b
2

)

+ b(s̄− st) (9)

where b is a free preference parameter that will be estimated from the data, and r̄f equals the

unconditional mean of rf,t+1.

Equations (5) and (9) indicate that the parameter b has an economic interpretation. If b > 0,

the intertemporal smoothing effect wins out, and an increase in surplus consumption st drives

down the interest rate. If b < 0, the precautionary savings effect wins out. An increase in surplus

consumption st decreases the sensitivity λ(st) and drives up the interest rate. Setting b = 0 results

in a constant real interest rate, and gives the model of Campbell and Cochrane (1999).4

While the functional form of λ(st) is chosen to match the behavior of the riskfree rate, it has

important implication for returns on risky assets. It follows from the investor’s Euler equation that

Et(Rt+1 −Rf,t+1)

σt(Rt+1)
= −ρt(Mt+1, Rt+1)

σt(Mt+1)

Et(Mt+1)
,

where Rt+1 is the return on some risky asset. As a consequence

Et(Rt+1 −Rf,t+1)

σt(Rt+1)
≈ −ρt(Mt+1, Rt+1)γσ

2
v(1 + λ(st)), (10)

which follows from the lognormality of Mt+1 conditional on time-t information. Because λ(st)

is decreasing in st, the ratio of the volatility of the stochastic discount factor to its mean varies

4Campbell and Cochrane briefly consider the case of b 6= 0 in the working paper version of their model, Campbell

and Cochrane (1995), but examine only the real term structure, and do not discuss implications for nominal bonds,

long rate regressions, or for the time series of interest rates and risk premia. These are the focus of this paper.
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countercyclically. This provides a mechanism by which Sharpe ratios, and hence risk premia, vary

countercyclically over time.5

In the model of Campbell and Cochrane (1999), the mechanism in (10) does not create time-

varying risk premia on bonds for the simple reason that bond returns are constant, and equal to

the riskfree rate at all maturities. In terms of (10), the Campbell and Cochrane model implies that

ρt(Mt+1, Rt+1) = 0, when Rt+1 is the return on a bond. However, the model in this paper generates

a time-varying riskfree rate. Therefore ρt(Mt+1, Rt+1) is nonzero, and (10) provides a mechanism

for risk premia on real bonds, as well as risk premia on stocks, to vary through time. Of course,

this observation alone does not solve the expectations puzzle. The sign of bond premia, and the

magnitude of time-variation will depend on the results of the parameter estimation.

1.2 Inflation

To model nominal bonds, it is necessary to introduce a process for inflation. For simplicity, we

follow Boudoukh (1993) and Cox, Ingersoll, and Ross (1985), and model inflation as an exogenous

process.6 Let Πt denote the exogenous price level and πt = lnΠt. It is assumed that log inflation

follows the process:

∆πt+1 = η0 + ηZt + σπεt+1. (11)

Here Zt is an m× 1 vector of state variables that follow a vector-autoregressive process:

Zt+1 = µ+ΦZt +Σεt+1, (12)

where Φ is an m×m matrix and µ is an m× 1 vector. The correlation between inflation, Zt and

consumption can be modeled in a parsimonious way by writing the consumption growth shock vt+1

as

vt+1 = σcεt+1

Here, εt+1 is an (m+2)×1 vector of independent N(0, 1), random variables, σc and σπ are 1×(m+2)

and Σ is m× (m+ 2).

This structure allows for an arbitrary number of state variables and cross-correlations. In

addition, the state variables may be correlated with consumption growth or changes in the price

level. Multiple lags may be accommodated by increasing the dimension of Zt.

5Harvey (1989) provides direct evidence that the the risk-return tradeoff varies counter-cyclically.
6Since an earlier version of this paper circulated, Buraschi and Jiltsov (2003) study a related model that puts the

money supply directly in the utility function. They focus on the dynamics of inflation and the inflation risk premium,

rather than the link between the term structure and consumption, which is the focus here.
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1.3 Model Solution

This section calculates the prices of long-term bonds and stocks. To compute prices on nominal

bonds, techniques from affine bond pricing7 are combined with numerical methods. Introducing

affine bond pricing techniques improves the efficiency of the calculation and provides insight into

the workings of the model.

Bond Prices

This paper solves for prices of both real bonds (bonds whose payment is fixed in terms of units of

the consumption good) and nominal bonds (bonds whose payoff is fixed in terms of units of the

price level). As shown below, the assumption that expected inflation follows a multivariate auto-

regressive process with Gaussian errors implies that bond yields are exponential affine in expected

inflation. Following Campbell and Viceira (2001), let Pn,t denote the real price of a real bond

maturing in n periods, and P $n,t the nominal price of a nominal bond. The real return on an

n-period real bond is given by:

Rn,t =
Pn−1,t+1
Pn,t

with rn,t = lnRn,t. The nominal return on an n-period nominal bond is:

R$n,t =
P $n−1,t+1

P $n,t

with r$n,t = lnR$n,t. Finally,

yn,t = −
1

n
lnPn,t

and

y$n,t = −
1

n
lnP $n,t

denote the real yield on the real bond and the nominal yield on the nominal bond respectively.

Bond prices are determined recursively by the investor’s Euler equation. For real bonds, this

translates into:

Pn,t = Et

[

δ

(

St+1
St

Ct+1
Ct

)−γ

Pn−1,t+1

]

. (13)

7See Backus, Foresi, and Telmer (2001) and Sun (1992) for illustrations of this approach in discrete-time and Duffie

and Kan (1996) for an illustration in continuous time. Bakshi and Chen (1996), Bekaert, Engstrom, and Grenadier

(2004) and Brennan, Wang, and Xia (2003) apply this approach to the pricing of bonds and equities.
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When n = 0, the bond is worth one unit of the consumption good. This implies the boundary

condition:

P0,t = 1.

For nominal bonds, the Euler equation implies that:8

P $n,t = Et

[

δ

(

St+1
St

Ct+1
Ct

)−γ Πt

Πt+1
P $n−1,t+1

]

(14)

with

P $0,t = 1.

Note that rf,t+1 = r1,t+1 = y1,t, and r
$
f,t+1 = r$1,t+1 = y$1,t.

Because the distribution of future consumption and surplus consumption depends only on the

state variable st, (13) implies that real bond prices are functions of st alone:

Pn,t = Fn(st)

with F0(st) = 1, and

Fn(st) = Et

[

δ

(

St+1
St

Ct+1
Ct

)−γ

Fn−1(st+1)

]

(15)

= Et [exp {ln δ − γg − γ(1− φ)(s̄− st)− γ(λ(st) + 1)σcεt+1}Fn−1(st+1)] (16)

Equation (16) can be solved using numerical integration on a grid of values for st. For this problem,

numerical integration is superior to calculating the expectation by Monte Carlo. This is because

the sensitivity of asset prices to rare events makes simulation unreliable.

Equation (14) indicates that, unlike real bond prices, nominal bond prices are functions of

the state variable Zt as well as st. This potentially complicates the solution for nominal bond

prices, because time-varying expected inflation introduces, at the least, one more state variable.

Fortunately, a simply trick can be used to reduce computation time back to what it would be for

8The equations for nominal bond prices follow from the fact that the Euler equation must hold for real prices of

nominal bonds. Therefore:
P $
n,t

Πt
= Et

[

Mt+1

P $
n−1,t+1

Πt+1

]

In real terms, the nominal bond maturing today is worth

P $
0,t

Πt
=
1

Πt
.

8



a single state variable. Using the law of iterated expectations and conditioning on realizations of

the shock vt+1 = σcεt+1, it can be shown that nominal bond prices take the form:

P $n,t = F $n(st) exp {An +BnZt} . (17)

The functions F $n can be solved by one-dimensional numerical integration:

F $n(st) = Et

[

Mt+1 exp{ξnσcεt+1}F $n−1(st+1)
]

= Et

[

exp {ln δ − γg − γ(1− φ)(s̄− st) + (ξn − γ(λ(st) + 1))σcεt+1}F $n−1(st+1)
]

while An and Bn are defined recursively by:

An = An−1 − η0 +Bn−1µ+
1

2
(Bn−1Σ− σπ)

[

I − σ′c(σcσ′c)−1σc
]

(Bn−1Σ− σπ)′ (18)

Bn = Bn−1Φ− η (19)

and

ξn = (Bn−1Σ− σπ)σ′c(σcσ′c)−1. (20)

The boundary conditions are F $0 (st) = 1, A0 = 0, B0 = 01×m. The last term in (18) follows from

Jensen’s inequality: because inflation is log-normally distributed, the volatility of inflation works

to decrease bond yields at long maturities. These formulas can also be used to gain insight into

the workings of the model, as explained in Section 1.4.

Aggregate Wealth

In this economy, the market portfolio is equivalent to aggregate wealth, and the dividend equals

aggregate consumption. The price-consumption ratio and the return on the market can be calcu-

lated using methods similar to those above, with a small but important modification. Analogously

to the previous section, let P e
n,t denote the price of an asset that pays the endowment Ct+n in n

periods. The e superscript denotes equity. Because these assets pay no coupons, they have the

same recursive pricing relation as bonds (16). Of course the prices are different, and this is because

there is a different boundary condition:

P e
0,t = Ct.

Unlike the case for bonds, P e
n,t is not simply a function of st. It is a function of consumption Ct

as well. To avoid introducing an additional variable into the problem, the equations for equity are

rewritten in terms of price-consumption ratios, rather than simply prices.

P e
n,t

Ct
= Et

[

δ

(

St+1
St

)−γ (Ct+1
Ct

)1−γ P e
n−1,t+1

Ct+1

]

. (21)

9



with boundary condition
P e0,t
Ct

= 1. Now the problem is analogous to that for bond pricing. The

ratio of the price zero-coupon equity to aggregate consumption can be written as a function F e
n of

st, where

F e
n(st) = Et

[

exp {ln δ + (1− γ)g − γ(1− φ)(s̄− st) + (1− γ(λ(st) + 1))σcεt+1}F e
n−1(st+1)

]

with boundary condition F e
n(st) = 1. This formula can be solved recursively using one-dimensional

quadrature.

Finally, the price-consumption ratio of the market equals the sum of the price-consumption

ratio on these zero-coupon securities:

Pt
Ct

=

∞
∑

n=1

P e
n,t

Ct
. (22)

This way of calculating the price-consumption ratio is equivalent to the more traditional fixed-point

method used by Campbell and Cochrane (1999). In this endowment economy, (22) also represents

the price-dividend ratio.

1.4 Implications for bond risk premia

The nominal return on the one-period nominal bond (the nominal riskfree rate) can be determined

using these equations, or directly from (14):

r$f,t+1 = − ln δ + γg − γ(1− φ)− b
2

+ b(s̄− st) + (η0 + ηZt)− σπσ′cγ(λ(st) + 1)− 1

2
σπσ

′
π

= rf,t+1 + Et[∆πt+1]−
1

2
σπσ

′
π − σπσ′cγ(λ(st) + 1) (23)

Of interest is the risk premium on the nominal riskfree asset. Subtracting the real riskfree rate

from the expected real return on the one-period nominal bond produces:

Et[r
$
f,t+1 −∆πt+1]− rf,t+1 = −σπσ′cγ(λ(st) + 1)− 1

2
σπσ

′
π

The term 1
2σπσ

′
π is an adjustment for Jensen’s inequality. If σπσc < 0, the one-period nominal

bond has a positive risk premium relative to the one-period real bond. Intuitively, this is because

σπσ
′
c < 0 implies that inflation and consumption growth are negatively correlated. Because higher

inflation lowers the return on the nominal riskfree bond, a negative correlation between inflation

and consumption implies that the nominal bond pays off when investors need the money least.

Therefore the one-period nominal bond carries a risk premium relative to the one-period real bond.
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The formulas derived in Section 1.3 can be used to show that nominal risk premia depend only

on St. It follows from (17) that

Et[r
$
n,t+1] = Et

[

lnF $n−1(st+1)− lnF $n(st) +An−1 −An +Bn−1Zt+1 −BnZt

]

= constant + Et[lnF
$
n−1(st+1)]− lnF $n(st) + (Bn−1Φ+Bn)Zt

= constant + Et[lnF
$
n−1(st+1)]− lnF $n(st) + ηZt

Moreover,

r$1,t+1 = constant + b(s̄− st) + ηZt − σπσ′cγ(λ(st) + 1)

(recall that r$1,t+1 = r$f,t+1). Therefore nominal risk premia depend only on st:

Et[r
$
n,t+1 − r$1,t+1] = constant + Et[lnF

$
n−1(st+1)]− lnF $n(st)− b(s̄− st) + σπσ

′
cγ(λ(st) + 1) (24)

In general, there is no closed form expression for nominal or real bond prices with maturity

greater than one period. These can be determined in some special cases, as described below.

Special cases

Suppose first that b = 0. Then the real riskfree rate is constant:

rf,t+1 = rf .

Moreover, it follows from (14) that

Pn,t = exp{−nrf}. (25)

(25) can be shown using induction. If Pn−1,t = exp{−(n− 1)rf}, then

Pn,t = Et [Mt+1 exp{−(n− 1)rf}] = Et[Mt+1] exp{−(n− 1)rf} = exp{−nrf}.

Moreover, risk premia are zero in this case.

Nominal bonds are a different story. As long as expected inflation varies, the nominal riskfree

rate also varies. Even if b = 0, correlation between expected and unexpected inflation creates risk

premia on nominal bonds. These risk premia vary with st, and it is again not possible to solve for

bond prices in closed form. Suppose however that Σσ′c = 0 and σπσ
′
c = 0. Then inflation risk is

not priced, and the same reasoning as above shows that

P $n,t = exp{−nrf} exp{An +BnZt}.
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Substituting in from (12), (18), and (19), it follows that

Et[r
$
n,t+1] = rf + η0 + ηZt −

1

2
(Bn−1 − σπ)(Bn−1Σ− σπ)′

= r$f,t+1 +
1

2
σπσ

′
π −

1

2
(Bn−1 − σπ)(Bn−1Σ− σπ)′

Thus risk premia on nominal bonds are zero except for a constant Jensen’s inequality term.

2 Estimation

The results of the previous section suggest that the process assumed for expected inflation will

be an important determinant of yields and returns on nominal bonds. This section focuses on

estimating this process.

A special case of the model presented in Section 1.2 is considered. I assume that expected

inflation follows an AR(1) process, namely that Zt is univariate. This is equivalent to assuming

that realized inflation follows an ARMA(1,1) process. The advantage of this approach is that

estimation via maximum likelihood is straightforward, and, as shown below, the resulting expected

inflation series appears to capture much of the variation in realized inflation.

Model calibration requires not only the parameters of the inflation process, but also mean

consumption growth, the variance of consumption growth, and the correlation between consumption

and inflation. For simplicity, aggregate consumption growth is assumed to be independent and

identically distributed across time. However, the literature has identified a number of reasons

why measured consumption may exhibit temporal dependence (e.g. Christiano, Eichenbaum, and

Marshall (1991), Ferson and Harvey (1992), Heaton (1993)). To account for this dependence in

the estimation, we assume that inflation and consumption growth each follow an ARMA(1,1) with

correlated errors. That is, I estimate

∆ct+1 = (1− ψ1)g + ψ1∆ct + θ1ν1,t + ν1,t+1 (26)

∆πt+1 = (1− ψ2)π̄ + ψ2∆πt + θ2ν2,t + ν2,t+1 (27)

where
[

ν1,t+1

ν2,t+1

]

∼ N

(

0,

[

σ21 σ1σ2ρ

σ1σ2ρ σ22

])

(28)

Here, ψ1 is the auto-regressive coefficient for mean consumption growth, while, θ1 is the moving-

average coefficient. Similarly, ψ2 is the auto-regressive coefficient of inflation, while θ2 is inflation’s

moving-average coefficient. The parameter ρ represents the correlation between innovations to
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consumption growth and innovations to inflation. Equations (26)–(28) imply an exact likelihood

function, derived in Appendix A.3. Section 3.1 describes the mapping from the parameters assumed

in this section to the parameters assumed in Section 1.2.

Equations (26)–(28) are estimated via maximum likelihood using quarterly data on inflation

and consumption from 1952 to 1998. Per-capita data on consumption of non-durables and services

comes from the Board of Governors of the Federal Reserve, and is available from Martin Lettau’s

website. This data is inflation-adjusted. See Lettau and Ludvingson (2001) for a further description

of this data. Quarterly data on the consumer price index is taken from CRSP. Table 1 shows the

results of the estimation: The left column reports the parameter estimate, the right column reports

the standard error. All parameters are in quarterly units, and means and standard deviations are

in percentages. Mean quarterly consumption growth (g) over this period is 0.51%, while mean

inflation (π̄) is 0.85%. The estimates indicate that expected inflation is highly persistent, with

an auto-regressive coefficient of 0.94. The correlation between innovations to consumption and

innovations to inflation is -0.18.

Figure 1 plots the time series of quarterly realized inflation together with the time series of

expected inflation implied by (26)-(28) and the estimates in Table 1. As described in Appendix A.3,

this series is constructed recursively using past inflation data. Figure 1 shows that the expected

inflation series captures many of the lower-frequency fluctuations in realized inflation. Indeed, the

expected inflation series implied by this process explains 54% of the variance of realized inflation.

The next section combines the estimation results of this section with the formulas of Section 1

to determine the implications of the model for the nominal term structure.

3 Implications for Asset Returns

This section describes the implications of the model for returns on bonds and stocks. Section 3.1

describes the calibration of the parameters, and the data used to calculate moments of nominal

bonds for comparison. Section 3.2 characterizes the price-dividend ratio and the yield spread on

real and nominal bonds as functions of the underlying state variables st and expected inflation.

Section 3.3 evaluates the model by simulating 100,000 quarters of returns on stocks and nominal

and real bonds and compares the simulated moments implied by the model to those on stocks and

nominal bonds in the data. Lastly, Section 3.4 shows the implications of the model for the time

series of the short-term interest rate and the yield spread, and examines the properties of implied

bond risk premia using the technique proposed by Dai and Singleton (2002).
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3.1 Calibration

The processes for consumption and inflation are calibrated using the estimation of Section 2, while

the preference parameters are calibrated using bond and stock returns.9 Clearly the parameteriza-

tion in Section 1.2 is under-identified, so certain parameters must be fixed. First, note that

[

σc

σπ

]

[σ′c σ
′
π] =

[

σ21 σ1σ2ρ

σ1σ2ρ σ22

]

(29)

In order to identify σc and σπ, assume that the matrix

[

σc

σπ

]

is lower triangular. Then σc and σπ

can be found by taking the Cholesky decomposition of the right hand side of (29).

Assume µ = 0 and η = 1. Then the remaining parameters can be identified as follows.

η0 = π̄ (30)

Φ = ψ2 (31)

Σ = (ψ2 + θ2)σΠ. (32)

The resulting process for inflation is identical to (27). This follows from solving for Zt in (11) and

substituting the resulting expression into (12). Under assumptions (30) – (32) (with µ = 0 and

η1 = 1), it follows that

∆πt+1 − π̄ − σπεt+1 = ψ (∆πt − π̄ − σπεt) + (ψ2 + θ2)σπεt.

Solving for ∆πt+1 and applying (29) produces (27).

Note that under this specification, expected inflation and realized inflation are assumed to be

perfectly positively correlated. This assumption allows expected inflation to be identified from

inflation data alone. As explained in Section 2, the ARMA parameters for consumption growth are

set equal to zero. This is in part for simplicity and in part because these parameters capture pre-

dictability due to data construction, rather than predictability in underlying consumption growth

itself.

Once consumption and inflation are determined, there remain four parameters of the investor’s

utility function that need to be identified. These are the discount rate δ, the utility curvature, γ, the

9This calibration strategy is similar to that used in Boudoukh (1993), who investigates a term structure model

where investors have power utility and consumption and inflation follow a vector-autoregression with heteroscedastic

errors. Boudoukh fits consumption and inflation parameters to consumption and inflation data, and preference

parameters to bond returns.
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persistence of habit, φ, and the loading of the interest rate on the negative of surplus consumption,

b. The latter parameter can be given an interpretation in terms of the utility function, as it

determines the trade-off between the precautionary savings and intertemporal smoothing effects of

st on the riskfree rate.

From (9) and (23), it follows that the parameter δ has a one-to-one correspondence with the level

of the riskfree rate. For this reason, δ is set so that, in population, the mean of the nominal riskfree

rate matches (approximately) that in the data. Given the other parameters, and an estimate of

the mean of the nominal riskfree rate in the data r̄$, this is accomplished by setting

δ = exp

{

−r̄$ + γg − γ(1− φ)− b
2

+ π̄ − σπσ′cγ(λ(s̄) + 1)− 1

2
σπσ

′
π

}

This implies that when the nominal riskfree rate in the model is evaluated at s̄, it equals the yield

on the three-month bond. Because λ(st) is a non-linear function of st, the mean in population will

not exactly equal that from the data. However, the simulation results in Section 3.3 show that the

difference is small.

Because the purpose of this paper is to determine the implications for bond returns of a model

that is intended to capture features of equity returns, these parameters are determined, as far as

possible, by equity return data. This is possible for γ and φ, but b has very little impact on equity

returns. Therefore, we set b so that mean yield on the nominal five-year bond in the model is equal

to its mean from the data. In order to generate an upward sloping yield curve, it is necessary that

b > 0, i.e. that the riskfree rate loads negatively on b (and that the intertemporal substitution

effect dominates the substitution effect). If b > 0, the real riskfree rate is negatively correlated

with surplus consumption. This implies bond returns will be positively correlated with surplus

consumption, and thus that bond returns, both real and nominal, will have positive risk premia.

Note also that the correlation between inflation and consumption is estimated to be negative. This

implies that the risk premium due to inflation is positive, and further increases the premium on

nominal bonds. For the numbers estimated here, however, this effect is small.

Simulation results show that the parameter φ determines the first-order autocorrelation of the

price-dividend ratio. This also is reasonable given that P/D is a function of st alone. Therefore φ

is set to equal 0.95, the first-order autocorrelation of the price-dividend ratio in the data. Finally,

γ is set so that the unconditional Sharpe ratio of equity returns is equal to the Sharpe ratio in the

data. The parameter value choices are summarized in Table 2.

Relative to Campbell and Cochrane (1999), the free parameter in this model is b, the loading of

the interest rate on the negative of surplus consumption (the inflation parameters are determined
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solely from CPI data). This parameter is fit to the average yield spread between the five-year and

the three-month nominal bond. However, b has time-series implications as well as cross-sectional

ones. A value of b > 0 implies that surplus consumption influences the real riskfree rate with a

negative sign. As a brief investigation of these time series implications, the ex-post real interest

rate is regressed on a surplus consumption proxy,
∑40

j=1 φ
j∆ct−j , which is approximately equal to

st. While st is, in theory, influenced by surplus consumption going back to infinity, in practice, it

is necessary to make a choice as to where to cut off past consumption. To capture the nature of st

as a long-run variable, ten years is chosen as the cut-off point. The regression is therefore

r$f,t+1 −∆πt+1 = a0 + a1

40
∑

j=1

φj∆ct−j + εt+1

The results of this regression lend support for the choice of b > 0. The parameter a1 is found

to be negative and statistically significant, with a point estimate of -0.13, and a standard error,

adjusted for serial correlation and heteroskedasticity, of 0.04.10 Figure 2 plots the history of average

past consumption (
∑40

j=1 φ
j∆ct−j) and r$f,t+1 − ∆πt+1. The negative relationship between past

consumption and the ex-post real riskfree rate is apparent throughout the sample period.

Calibrating the parameters as described above, and comparing returns in the model to those

in the data, requires data on nominal bond yields and on equity returns. The bond data consist

of monthly observations on annual zero coupon yields for three-month, six-month, one, two, five,

and ten year U.S. government bonds for the years 1952 to 1998. The data, constructed using the

interpolation techniques of McCulloch and Kwon (1993) and Bliss (1997), are available from the

website of Gregory Duffee. Following Campbell and Viceira (2001), I use only quarterly observations

to eliminate the high-frequency fluctuations that would seem difficult to explain based on a model

with macro-based variables. Monthly observations on returns on a value-weighted index of stocks

traded on the NYSE and AMEX are taken from CRSP. These are used to compute quarterly returns

and quarterly observations on the ratio of price to annual dividends.

3.2 Characterizing the Solution

As shown in Figure 3, the price-dividend ratio increases with surplus consumption St. As the price-

dividend ratio is often taken to be a measure of the business cycle (e.g. Lettau and Ludvingson

(2001)), this confirms the intuition that St is a procyclical variable.

10A potential concern with this regression is the relatively high degree of persistence in the surplus consumption

ratio. A Monte Carlo exercise designed to correct for this persistence yields a 5% critical value (based on a two-tailed

test) of -0.092, implying that the value of -0.13 remains significant.
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Figure 4 plots the yields on nominal and real bonds for maturities of three months and ten

years. Expected inflation is set equal to its long-run mean. Both nominal and real yields decrease

with St, but the long yields are more sensitive to St than the short yields. Thus the spread between

the long and short yields is decreasing in St for both nominal and real yields. Figure 4 also shows

that the long-term yields generally lie above the short-term yields, and that nominal yields lie

above real yields. The first of these effects follow from the fact that b > 0, i.e. that the interest

rate loads negatively on St, while the second effect follows primarily from the fact that expected

inflation growth is positive. For values of St that are very high, the ten-year yield lies slightly below

the 3-month yield. This arises because the risk premium is very low for these values of St, and is

dominated by the Jensen’s inequality term in (18)).

Figure 5 plots the yields on nominal bonds as functions of surplus consumption St and expected

inflation. Expected inflation is set equal to its long-run mean of 0.85%, and varied by plus and

minus two unconditional standard deviations (about 1.15%). Both long and short-term yields are

increasing in expected inflation. However, the effect of expected inflation on short-term yields

is greater than on long-term yields. This plot shows that two factors drive yields in the model.

Expected inflation is more important at the short end of the yield curve, while surplus consumption

dominates at the long end of the yield curve.

3.3 Simulation

To evaluate the predictions of the model for asset returns, 100,000 quarters of data are simulated.

Prices of the claim on aggregate consumption (equity), of real, and nominal bonds are calculated

numerically, using the method described in Section 1.3.

Returns on the Aggregate Market

Table 3 shows the implications of this model for equity returns. Despite the difference in the

parameter b, the implications of the present model for equity returns are nearly identical to those

of Campbell and Cochrane (1999). The model fits the mean and standard deviation of equity

returns, even though it was calibrated only to match the ratio. Thus the model can fit the equity

premium puzzle of Mehra and Prescott (1985). The persistence φ is chosen so that the model fits

the correlation of the price-dividend ratio by construction. However, the model can also reproduce

the high volatility of the price-dividend ratio, demonstrating that the model fits the volatility puzzle

described by Shiller (1981). Stock returns and price-dividend ratios are highly volatile even though
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the dividend process is calibrated to the extremely smooth postwar consumption data. In addition,

results available from the author show that price-dividend ratios have the ability to predict excess

returns on equities, just as in the data (Campbell and Shiller (1988), Fama and French (1989)),

and that declines in the price-dividend ratio predict higher volatility (Black (1976), Schwert (1989),

Nelson (1991)). Given that the consequences for equity returns are so similar to those of Campbell

and Cochrane (1999), the sections that follow focus on the properties of bond returns. These

sections demonstrate the model’s ability to explain features of the bond data.

Bond Returns

Table 4 shows the implications of the model for means and standard deviations of real and nominal

bond yields. Data moments for bond yields are provided for comparison. As shown in the first row,

the model-implied nominal one period yield and its standard deviation are well matched to the

moments in the data. The low mean and volatility of the short-term interest rate follows from the

fact that the γ required to fit the Sharpe ratio is very low, unlike in the traditional power utility

model.

Table 4 also demonstrates that the average yield curve on real and nominal bonds is upward

sloping. By construction, the average yield on the five-year nominal bond in the model is equal to

6.5%, the same as its mean from the data. The average yield of the 3-month bond is 5.4%, close

to its data mean of 5.5%.11 Note that the calibration procedure implies that these will be close

but not exact. As explained above, b is set so that the mean of the five-year bond is matched

exactly, given the mean of the 3-month yield. As shown in Table 2, this implies a value of b that is

greater than zero (precisely, it is 0.0045). In the language of Section 1, a positive b implies that the

intertemporal smoothing effect dominates the precautionary savings effect. An implication of this

model is that bond term premia are increasing in maturity, a finding which Boudoukh, Richardson,

Smith, and Whitelaw (1999) show has support in the data.

The link between b and the slope of the yield curve can be understood in terms of the covariance

form of the investor’s Euler equation. For example, for real bonds:

E(Rn,t −R1,t) = −Cov(Rn,t −R1,t,Mt)
σ(Mt)

E(Mt)
, (33)

where Rn,t is the return on a real bond maturing in n periods andMt is the intertemporal marginal

rate of substitution. A positive b implies that the short-term interest rate covaries negatively with

11Longstaff (2000) notes however that the upward slope of the yield curve in the data may be overstated because

of a liquidity premium in Treasury Bill rates.
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st. Because bond returns move in the opposite direction as the short-term interest rate, a positive

b implies that bonds have a positive covariance with st. This means that bonds have high returns

in good times and poor returns in bad. Investors demand a risk premium to hold them. Because

long-term bonds have higher expected returns than if there were no risk premia, they must have

higher yields.

Table 4 also shows that the model generates higher yields for nominal bonds than for real bonds

at all maturities. This is mostly due to the impact of expected inflation (3.4% per annum) on

nominal yields. However, nominal yields also incorporate a positive risk premium due to inflation.

For example, from (23), it follows that for the 3-month yield, the premium from inflation is equal

to

−σπσ′cγE[λ(st) + 1] = 0.085%

in annual terms. Note that the premium due to inflation is positive because, as Table 1 implies,

innovations to inflation and innovations to consumption growth are negatively correlated. Because

bond prices are negatively correlated with inflation, nominal bonds pay off when consumption

growth (and hence surplus consumption growth) is high. This contributes to the risk premium,

and hence the yield, on nominal bonds. The model produces average nominal yields that are very

similar to those in the data for bonds between maturities of 3 months and 5 years. The model does

imply a yield for the ten-year nominal bond that is a percentage point higher than that in the data.

This is in part a consequence of the two-factor nature of this model; it is possible that expanding

the model to allow for multiple factors in expected inflation would alleviate this problem.12

Finally, Table 4 shows that the model produces reasonable values for the standard deviation of

bond yields. For example, the model implies that the standard deviation for the 3-month nominal

yield is 2.7%. In the data, it is 2.9%. For the 5-year yield, the standard deviation implied by the

model is 2.2%, while in the data it is 2.8%. It is important to note that the model does not match

the standard deviations by construction. The parameter values were constructed to fit inflation

data, the mean of the yield spread between the five and one-year bond, and equity data, not the

standard deviations of bond yields.

The previous discussion shows that interest rate risk leads both real and nominal bonds to have

positive risk premia. Because of these positive risk premia, there is a feedback effect that further

raises the risk, and therefore, the premium on bonds. As shown below, risk premia on bonds vary.

12Alternatively, it would be possible to calibrate b to match the ten-year yield rather than the five-year yield. The

results in the paper are qualitatively unchanged.
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Variation in the risk premium itself induces price fluctuations, much like “excess volatility” in the

stock market. This excess volatility makes expected returns on bonds larger than they otherwise

would be.

This feedback effect helps in understanding why bonds command risk premia at all. After all,

these bonds pay off a fixed amount. Why is it that investors simply do not wait until maturity

to sell the bond, when the return is fixed? The power utility model of Backus, Gregory, and Zin

(1989) implies that bonds have negative excess returns that are very small in magnitude.13 In the

present model, by contrast, bonds are risky because their prices fall during periods of low surplus

consumption, namely during recessions. These are the times when investor’s marginal utility is the

highest, and when, as a result, they most want to increase their consumption. Long-term bonds

thus command a premium not only because of their dependence on the time-varying riskfree rate,

but because they do badly in recessions.

Time-varying bond risk premia

The previous section pointed to time-variation in risk premia as a source of variation in long-term

bond prices. This section shows that risk premia are indeed time-varying, and explains why.14

Figure 6 shows the outcome of regressions

y$n−1,t+1 − y$nt = constant + βn
1

n− 1
(y$nt − y$1t) + error (34)

in the data and in the model. These “long-rate” regressions were performed by Campbell and

Shiller (1991), to test the hypothesis of constant risk premia on bonds, also known as the generalized

expectations hypothesis. If risk premia are constant, βn should be equal to one. Instead, Campbell

and Shiller find a coefficient that is negative at all maturities, and significantly different from one.

Moreover, the higher the maturity, the lower βn.

Figure 6 plots the coefficients βn when the regression (34) is run on the sample described in

Section 3.1 and on simulated data from the model, as a function of maturity n.15 The lines with plus

13Bansal and Coleman (1996) develop a model where agents have power utility, but demand for liquidity generates

an upward sloping yield curve. Boudoukh (1993) explains the upward sloping yield curve in a model where agents

have power utility and inflation and consumption growth are heteroscedastic.
14Independently and concurrently with this paper, Seppala (2003) shows that a model where risk sharing is limited

because of risk of default also can exhibit an upward sloping yield curve and time-varying risk premia on inflation-

indexed bonds.
15The literature has identified several problems with this regression that could bias the coefficients upward or

downward. Bekaert, Hodrick, and Marshall (1997) show that the bias noted in Stambaugh (1999) implies that these

regressions may understating the failure of the expectations hypothesis. Bekaert and Hodrick (2001) argue that
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signs indicate the coefficients from the data; as in previous studies these coefficients are negative

and downward sloping as a function of maturity. The lines with circles indicate coefficients when

the regression (34) is run on simulated data from the model. The resulting coefficients are below

one at all maturities, showing that the expectations hypothesis does not hold in this model. The

slope of the line through the coefficients is approximately equal to the slope implied by the data.

Thus the model fits the pattern of the violation of the expectations hypothesis in the data.

What drives the model’s ability to produce slope coefficients βn 6= 1? The condition βn 6= 1 is

equivalent to the statement that excess returns on long-term bonds are predictable.16 It follows

from the definition of yields and returns that

r$n,t+1 = y$nt − (n− 1)
(

y$n−1,t+1 − y$nt
)

Re-arranging, and taking expectations:

Et

[

y$n−1,t+1 − y$nt
]

=
1

n− 1

(

y$nt − y$1t
)

− 1

n− 1
Et

[

r$n,t+1 − y$1t
]

(35)

Thus the coefficient of a regression of changes in yields on the scaled yield spread produces a

coefficient of one only if risk premia on bonds are constant. In this model, risk premia are not

constant. During recessions, the volatility of investor’s marginal utility rises, as shown in (10).

In Campbell and Cochrane (1999), this mechanism produces a time-varying risk premium on the

aggregate market. Here, the same mechanism produces time-varying risk premia on bonds.17

While the model succeeds in fitting the pattern of the coefficients in the data, the magnitude

of the difference between the slope coefficients and one is smaller in the model than in the data.

For example, on the ten-year bond, the slope coefficient is -3 in the data, but -1.25 in the model.

Despite the fact that the model does not capture the magnitude of the predictability in the data,

the fact that it captures the pattern separates it from other models with time-varying risk premia.

Fisher (1998) estimates a two-factor model affine model with a univariate time-varying price of risk.

Because the price of risk is univariate, the results of the Fisher model are comparable to the results

here. Fisher finds that while the model produces slope coefficients that are smaller than one, they

standard tests tend to reject the expectations hypothesis even when it is true. They find, however, that the data

remain inconsistent with the expectations hypothesis, even after adjusting for small-sample properties.
16Cochrane and Piazzesi (2002) provide direct evidence that bond returns are predictable. Moreover, they show

excess returns move together; a single linear combination of forward-rates predicts excess returns on bonds at all

maturities. This finding supports a feature of the habit model, namely that one variable, st, drives most of the

time-variation in bond premia.
17Brandt and Wang (2003) show that a model where risk aversion is driven by inflation uncertainty also implies

that bond risk premia are positive and time-varying.
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are increasing with maturity, rather than decreasing as is found in the data. It is noteworthy that

the Fisher model finds this result, even though, unlike the model explored in this paper, it is fit to

term structure data alone.

It is also instructive to compare the performance of this model to a larger class of affine term

structure models. Dai and Singleton (2002) study three-factor term structure models in the essen-

tially affine class of Duffee (2002). Each model has potentially three latent variables influencing risk

premia. The models are distinguished by the number of factors that exhibit time-varying volatility

as in Cox, Ingersoll, and Ross (1985). Dai and Singleton find that only the completely homoscedas-

tic model can match the downward slope of the coefficients found in the data. The model with one

factor influencing volatility produces coefficient that are smaller in magnitude and upward sloping,

while the models with two or three factors influencing volatility produce coefficients very close to

one.18 The studies of Fisher (1998) and Dai and Singleton (2002) therefore show that time-varying

risk premia are not sufficient to match the pattern and magnitude of the failure of the expectations

hypothesis. This holds even in models that are fit to the term structure of interest rates and where

the factors are linear combinations of bond yields, rather than driven by macro-variables as in the

model in this paper.

To summarize, this section has shown that the population moments of the model are close to

those in the data, both for the aggregate market, and for bond yields. In addition, when changes

in yields are projected onto the scaled yield spread, the resulting coefficient is less than one at

all maturities, and decreasing in the maturity. This same pattern, indicating a failure of the

expectations hypothesis, is found in the data.

3.4 Implications for the Time Series

The previous section shows the implications of the model for the population values of aggregate

market moments, bond yields, and Campbell and Shiller (1991) regression coefficients. This section

discusses the implications of the model for the post-war time series of the interest rate, the yield

spread, and risk premia on bonds.

Figure 7 plots the time series of the nominal yield on the three-month bond implied by the model

18However, using the generalized method of moments approach employed by Gibbons and Ramaswamy (1993),

Brandt and Chapman (2002) show that when the parameters of the models with stochastic volatility are chosen so

that the model fits the expectations hypothesis regressions, the models come closer to matching the patterns found in

the data. This also occurs with the quadratic models of Ahn, Dittmar, and Gallant (2002). Bansal and Zhou (2002)

study a model with regime switches, and conclude that this type of model can also explain the expectations puzzle.
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(dashed lines), and the nominal 3-month yield in the data (solid lines). To construct the nominal

yield implied by the model, first a time series of the state variables st and Zt are constructed.

st is constructed using (2) and data on quarterly consumption growth. Zt, expected inflation

growth, is constructed using the maximum likelihood procedure described in Appendix A.3. Note

that expected inflation growth technically cannot be observed in the data. The procedure in

Appendix A.3 constructs expected inflation growth given past inflation, a series that converges

to Zt as the number of data points grows.19 Note that this series is identical to that plotted in

Figure 1.

Given a series st, and a series (proxying for) Zt, it is possible to calculate the model’s implications

for nominal yields. Equation (17) shows that bond yields are an affine function of Zt multiplied

by a function F $n(st) that is not available in closed form.20 Values for F $n(st) corresponding to the

time series are interpolated on a grid of values for st. Because st is highly persistent, and because

the parameters of the model are chosen so that the population moments of the model match the

sample moments in the data, it is not the case that the sample mean of the riskfree rate implied by

the model equals that found in the data. To better compare the series implied by the model and

the series implied by the data, both series are de-meaned.

The resulting series for the three-month yield is plotted in Figure 7, along with the de-meaned

series from the data. Figure 7 shows that the model captures many of the short-run and long-run

fluctuations in the nominal riskfree rate. The close relation between the two series holds throughout

the sample period, though it does break down somewhat in the mid-to-late 80s and the 90s. The

correlation between the series implied by the model and the series in the data is .72, even though

the series implied by the model is constructed using inflation and consumption data alone.

Figure 8 repeats the procedure. this time plotting the de-meaned yield spread on the five-year

nominal bond over the 3-month bond implied by the model, and the same series from the data.

Again, the model matches many of the short and long-run fluctuations in the nominal yield spread

from the data. While this relation continues to be strong in the latter half of the sample, the model

predicts a lower yield spread in the 70s than actually occurred. This is because the yield spread

is highly dependent on the state variable st (see Figure 5), which, due to the long period of low

consumption growth, is unusually low in the 70s. Nonetheless, the model is able to account for

19To establish that this series in fact converges to Zt, note that recursion (44) is satisfied by σ
2
2 . Therefore, the

expected value of πt+1 given data on inflation up to t converges to ψ2∆πt+θ2ν2t. The argument in Section 3.1 shows

that this series is equal to Zt.
20For the 3-month nominal yield, (23) is an approximate closed-form expression.
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the higher frequency movements in the 70s, and overall, the correlation between the yield spread

implied by the model and that in the data is .40.

Dai and Singleton (2002) propose another metric by which to judge the time series implications

of the model, that, at the same time, tests the ability of the model to account for the failure of the

expectations hypothesis. Re-arranging (35) produces

Et

[

y$n−1,t+1 − y$nt
]

+
1

n− 1
Et

[

r$n,t+1 − y$1t
]

=
1

n− 1

(

y$nt − y$1t
)

.

This relation is a consequence of the present-value identity for yields, and thus holds in any term

structure model. Based on this equation, Dai and Singleton propose running the following regression

on actual data:

y$n−1,t+1 − y$nt +
1

n− 1
Êt

[

r$n,t+1 − y$1t
]

= constant + βRn
1

n− 1
(y$nt − y$1t) + error, (36)

where Êt

[

r$n,t+1 − y$1t
]

is the risk premium on nominal bond yields implied by the model. If adding

implied risk premia to the left hand side leads brings βn closer to one, then the model helps to

resolve the expectations puzzle.

This model diagnostic differs from the one performed in the previous section (summarized in

Equation 34) in a number of respects. The regression (34) is run using simulated data and the

results are compared to the results when (36) is run using actual data. In contrast, it does not

make sense to run (36) on simulated data, because by definition, βn = 1 in population. Instead,

(36) is run using the actual time series of data for bond yields y$n−1,t+1, y
$
nt and y

$
1t. For the models

considered by Dai and Singleton (2002) and the model in this paper, conditional risk premium

Êt

[

r$n,t+1 − y$1t
]

on the n-period nominal bond is a function of the state variables at time t. This

function of the state variables is scaled by 1/(n − 1) and added to the change in yield on the left

hand side. Thus the diagnostic demonstrates the degree to which variation in the implied risk

premium matches variation in the actual risk premium in the time series.

For the model in this paper, risk premia are not available in closed form. Nonetheless, they

can be easily computed using (24), derived in Section 1.4. This computation is simplified by the

fact that, for (36), it is only necessary to know risk premia up to a (maturity-dependent) constant.

Moreover, as shown in Section 1.4, risk premia are only functions of surplus consumption, not of

expected inflation. To obtain the time series of risk premia for use in (36), a series for surplus

consumption using actual consumption data is produced from (2), and then values for (24) are

interpolated.
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Figure 9 plots the coefficients βRn from the regression (36), along with the coefficients βn from

(34) found in the data. As described above, the coefficients from the data are negative and de-

creasing with maturity. However, the risk-adjusted coefficients, βRn are increasing with maturity,

and always higher than βn. Therefore, Êt

[

r$n,t+1 − y$1t
]

computed based on surplus consumption,

helps to capture some of the time variation in risk premia. Not surprisingly the model cannot

capture all of the time-variation, as Êt

[

r$n,t+1 − y$1t
]

is calculated based on a single factor, derived

from aggregate consumption rather than from prices. However, for long-term yields, the model can

explain a substantial fraction of the deviation from the expectations hypothesis. For the 5-year

bond, the difference between the adjusted coefficient and 1 is 60% of the difference between the

unadjusted coefficient and 1. For the 10-year bond, it is 35% of the difference.

To summarize, this section has shown that the model captures features of the time series of

short and long-term interest rates. This was shown in two ways. First, the series of the implied

3-month nominal yield in the model, and the series of the implied spread on the 5-year yield over

the 3-month yield were compared to those in the data. The correlation between the data and the

model was .72 in the case of the short-term yield, and .40 in the case of the yield spread. Time

series plots show that the model captures many of the short and long-term fluctuations in the data.

Second, when regressions of yield changes on the yield spread are adjusted by the time series of

bond risk premia implied by the model, as proposed by Dai and Singleton (2002), the projection

coefficients come substantially closer to what would be found if the expectations hypothesis were

to hold.

4 Conclusion

This paper offers a theory of the nominal term structure based on the preferences of a representative

agent. By generalizing a model already known to fit stylized facts about the aggregate stock market,

that of Campbell and Cochrane (1999), this paper is able to parsimoniously model both bond

and stock returns. This paper departs from the model of Campbell and Cochrane by exploring

the implications of allowing surplus consumption to affect the riskfree rate, and by introducing a

process for inflation. The first extension is accomplished by introducing a preference parameter that

represents a tradeoff between the intertemporal substitution effect and the precautionary savings

effect.

In this model, the new preference parameter is set to match the average yield on the nominal five-

year bond. As argued in the paper, positive risk premia on real bonds (and risk premia on nominal
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bonds that are large enough to match those in the data) imply that the intertemporal substitution

effect dominates the precautionary savings effect. The remaining preference parameters are set

exactly as in Campbell and Cochrane (1999), to match the average riskfree rate, the Sharpe ratio

on equity returns, and the autocorrelation of the price-dividend ratio. Nominal bonds are also

strongly influenced by the process for expected inflation. Here, expected inflation is calibrated

using inflation data alone. Thus term structure data is used to pin down only the average 3-

month bond return and the average 5-year bond return in the model. The other parameters of the

model are pinned down using equity returns and macro data. While the mean yield curve is partly

determined by construction, the volatility of yields is not. Nevertheless, the implied volatility of

yields is close to the sample estimates of nominal yield volatility in the data.

A second question is whether the model offers a realistic account of changes in yields in the

post-war data. In general this is not a challenge for term structure models as the latent variables

in these models are linear combinations of prices. However, in this model, the latent factors are

based on consumption and inflation. Nonetheless, the implied three-month and five-year nominal

yields in the model are shown to capture many of the short and long-term fluctuations of their

counterparts in the data. In particular, the implied short-term interest rate has a correlation of

.72 with the nominal short-term interest rate in the data. This suggests that surplus consumption,

which, along with expected inflation drives changes in yields in the model, is a determinant of yields

in the data.

In addition, the model offers a partial explanation for the failure of the expectations hypothesis.

Dai and Singleton (2002) suggest two metrics for judging whether a dynamic term structure model

is able to replicate the expectations puzzle. The first test is whether, in population, the regression

coefficient from Campbell and Shiller (1991) long-rate regressions matches that from the data. The

expectations hypothesis implies that these regression coefficients should be unity; in the data they

are negative and decreasing in maturity. The model reproduces these findings. The second test is

whether, when the Campbell-Shiller regressions are adjusted by risk premia on bonds implied by the

model, the slope coefficients are closer to unity. If the model correctly captures all the time variation

in bond risk premia, the risk-adjusted slope coefficients should be one. When the coefficients are

adjusted by the risk premia implied by the model in the paper, they move substantially closer to

one.

In summary, the model is able to capture many of the properties of moments of bond returns

in the data, and explain much of the time series variation in short and long-term bond yields.
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Thus the model has the potential to unify stock and bond pricing, and to connect them both to

underlying macroeconomic behavior.
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Appendix A

A.1 Deriving the sensitivity function λ(st)

The sensitivity function λ(st) is specified to produce a real riskfree rate that is linear in st. Setting

the equation for the real riskfree rate (5) equal to the linear expression (9) produces the following

general form for λ:

λ(st) =

√
2

γσv
(− ln δ + γg + γ(1− φ)(s̄− st)− b(st − s̄)− r̄f )

1
2 − 1. (37)

Campbell and Cochrane (1999) further impose the conditions

λ(s̄) =
1

S̄
− 1 (38)

λ′(s̄) = − 1

S̄
(39)

They show that these conditions are equivalent to requiring that for st ≈ s̄, xt is approximately

a deterministic function of past consumption. Equations (37) - (39) lead to the expressions for r̄f

and S̄ that are given in the text.

A.2 Nominal Bond Pricing

The equations for nominal bond prices are derived using induction. Assume that (17) holds for the

bond with n− 1 periods to maturity. From the Euler equation, it follows that

P $n,t = Et

[

Mt+1
Πt

Πt+1
exp {An−1 +Bn−1Zt+1}F $n−1(st+1)

]

= exp {An−1 − η0 +Bn−1µ+ (Bn−1Φ− η)Zt} ×

Et

[

Mt+1F
$
n−1(st+1)E[e(Bn−1Σ−σπ)εt+1 |σcεt+1 ].

]

The second equality follows from the law of iterated expectations. By the properties of the multi-

variate normal distribution,

(Bn−1Σ− σπ)εt+1|σcεt+1 ∼ N
(

ξnσcεt+1, (Bn−1Σ− σπ)(I − σc(σcσ′c)−1σc)(Bn−1Σ− σπ)′
)

.

where ξn is defined as in (20). Therefore

P $n,t = exp {An−1 − η0 +Bn−1µ+ (Bn−1Φ− η)Zt}Et

[

Mt+1e
ξnσcεt+1F $n−1(st+1)

]
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Therefore (17) is satisfied with

An = An−1 − η0 +Bn−1µ+
1

2
(Bn−1Σ− σπ)

[

I − σ′c(σcσ′c)−1σc
]

(Bn−1Σ− σπ)′

Bn = Bn−1Φ− η

F $n(st) = Et

[

Mt+1e
ξnσcεt+1F $n−1(st+1)

]

.

A.3 Likelihood Function

This section derives the likelihood function estimated in Section 2. Let ht = [∆ct ∆πt]
′ and

Ψ =

[

ψ1 0

0 ψ2

]

Θ =

[

θ1 0

0 θ2

]

.

Then

ht+1 = (I −Ψ)h̄+Ψht +Θνt + νt+1 (40)

where

νt =

[

ν1t

ν2t

]

∼ N(0,Σν)

and νt is independent of νt−1, . . . , ν0 and ht−1, . . . , h0. The following proposition describes the

likelihood function for the process in (40), conditional on observables:

Proposition A.1

ht+1|ht, . . . h0 ∼ N(ĥt, Σ̂t) (41)

where

ĥt = (I −Ψ)h̄+Ψht +ΘΣνΣ̂
−1
t−1(ht − ĥt−1) (42)

ĥ0 = h̄ (43)

and

Σ̂t = Σν +ΘΣνΘ
′ −ΘΣνΣ̂

−1
t−1Σ

′
νΘ

′ (44)

(Σ̂0)i,j =
(θiθj + ψiθj + ψjθi + 1)(Σν)i.j

1− ψiψj
(45)

Proof: The proof is by induction. Equation (43) follows from taking unconditional expectations

of (40):

ĥ0 = (I −Ψ)h̄+Ψĥ0.
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Subtracting Ψĥ0 from both sides and inverting I −Ψ shows that ĥ0 = h̄. Note that

Cov(ht, νt) = E(yt νt) = EEt−1(ht νt) = EEt−1(νtνt) = E[Σν ] = Σν . (46)

Taking the unconditional variance of (40) produces

Σ̂0 = ΨΣ̂0Ψ
′ +ΘΣνΘ

′ +ΨΣνΘ
′ +ΘΣνΨ

′ +Σν

In the case of diagonal Ψ, this can be inverted element-by-element to produce (45).

Now assume by induction that

ht|ht−1, . . . h0 ∼ N(ĥt−1, Σ̂t−1) (47)

It follows from (46) that

[

ht

εt

]

|ht−1, . . . , y0 ∼ N

([

ĥt−1

0

]

,

[

Σ̂t−1 Σν

Σε Σν

])

By the properties of the normal distribution

νt|yt, yt−1, . . . , y0 ∼ N
(

ΣνΣ̂
−1
t−1(yt − ĥt−1),Σν − ΣνΣ̂

−1
t−1Σ

′
ν

)

It follows, therefore, from (40) that ht+1 is conditionally normally distributed, and that

E [ht+1 | ht, . . . , h0] = (I −Ψ)g +Ψht +ΘΣνΣ̂
−1
t−1(ht − ĥt−1)

Var [ht+1 | ht, . . . , h0] = ΘΣνΘ
′ −ΘΣνΣ̂

−1
t−1Σ

′
νΘ

′ +Σν

2
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Table 1: Parameter Estimates

Estimates of the model:

∆ct+1 = (1− ψ1)g + ψ1∆ct + θ1ν1,t + ν1,t+1

∆πt+1 = (1− ψ2)π̄ + ψ2∆πt + θ2ν2,t + ν2,t+1

using maximum likelihood and quarterly data on log consumption growth (∆c), and log

inflation (∆π). Estimates are in natural units, except where otherwise indicated.

Parameter Estimate Standard Error

Mean cons. growth g, % 0.507 0.065

Mean infl. π̄, % 0.854 0.271

AR term for cons. ψ1 0.693 0.120

AR term for infl. ψ2 0.945 0.022

MA term for cons. θ1 -0.390 0.151

MA term for infl. θ2 -0.608 0.059

Stand. dev. for cons. σ1, % 0.453 0.025

Stand. dev. for infl. σ2, % 0.564 0.031

Correlation ρ -0.175 0.075
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Table 2: Utility Parameters

Assumptions on the parameters of the investor’s utility function. The first panel gives

the independent parameters. The second panel gives the derived parameters. In par-

ticular, δ is determined so that, at s = s̄, the nominal riskfree rate equals the riskfree

rate in the data. s̄ = log(S̄) is determined by (7) and smax by (8).

Parameters Value

Utility Curvature γ 1.48

Coefficient on −st in the riskfree rate b 0.0045

Habit persistence φ 0.95

Derived Parameters

Discount rate δ 0.95

Long-run mean of log surplus consumption s̄ -3.62

Maximum value of log surplus consumption smax -3.12
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Table 3: Statistics for the Aggregate Market

Statistics for the aggregate market and the riskfree rate from actual and simulated quar-

terly data. The mean and standard deviation of returns are in annualized percentages.

The Sharpe ratio is the first row divided by the second. The mean and standard devia-

tion of the equity premium are annualized (i.e. multiplied by four and two respectively).

∗ denotes a moment matched by construction.

Statistic Model Data

E(rm − rf ),% 6.52 6.22

σ(rm − rf ),% 16.60 15.79

Sharpe* 0.39 0.39

E(P/D) 16.48 30.21

σ(p− d) 0.26 0.26

Corr(p− d)* 0.95 0.95
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Table 4: Moments of Bond Yields

Means and standard deviations of continuously compounded nominal bond yields in the

model and in the data. Yields are in annual percentages. Maturity is in quarters.

Parameters are set so that the mean of the five-year nominal bond matches that in the

data, and that, at st = s̄, the yield on the three-month nominal bond equals its average

from the data.

Maturity Mean Stand. Dev.

Real Nominal Data Real Nominal Data

1 1.94 5.38 5.47 0.98 2.69 2.91

2 1.98 5.43 5.71 1.00 2.64 2.96

4 2.06 5.54 5.92 1.04 2.56 2.95

8 2.22 5.76 6.15 1.12 2.43 2.90

20 2.81 6.49 6.46 1.41 2.28 2.82

40 4.15 7.98 6.66 2.00 2.53 2.77
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Figure 1: Expected and Realized Inflation. The dotted line plots quarterly changes in log CPI. The

solid line plots expected inflation, conditional on past realized inflation, implied by the estimation

of Section 2 and the maximum likelihood estimates given in Table 1.
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Figure 2: Past Consumption Growth and Interest Rate. This figure plots the history of average past

(inflation-adjusted) consumption growth
∑40

j=0 φ
j∆ct−j and the continuously compounded rate of

return on the 90-day Treasury bill, adjusted for inflation. The parameter φ = 0.95. Variables are

de-meaned and standardized.
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Figure 3: The Price-Dividend Ratio as a Function of Surplus Consumption St. The price-dividend

ratio is the ratio of aggregate wealth to aggregate consumption (divided by four to annualize).

42



0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
0

0.1

0.2

0.3

S
t

yi
el

d 
to

 m
at

ur
ity

nom. 10−yr
real 10−yr
nom 3−m
real 3−m

Figure 4: Continuously compounded yields on real and nominal bonds as a function of surplus

consumption. Dotted lines denote yields on ten-year nominal and real bonds; solid lines denote

yields on three-month nominal and real bonds. Open circles denote nominal bonds; closed circles

denote real bonds. For the nominal yields, expected inflation is set equal to its unconditional mean

of 1% per quarter. Yields are in annual terms.
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Figure 5: Nominal continuously compounded bond yields as a function of surplus consumption

and expected inflation. Solid lines denote the 3-month yield, dotted lines the 10-year yield. Yields

are plotted for expected inflation at its unconditional mean, at two unconditional standard devi-

ations below the unconditional mean (upside-down triangles), and at two unconditional standard

deviations above the unconditional mean (upright triangles). Yields are in annual terms. The

unconditional standard deviation is calculated as ΣΣ′/(1− Φ2).

44



1 2 3 4 5 6 7 8 9 10

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

P
ro

je
ct

io
n 

co
ef

fic
ie

nt
s 

β n

Maturity (years)

Sample β
nT

Model
Expectations Hypothesis

Figure 6: Long-Rate Regressions. Coefficients βn from the regression

y$n−1,t+1 − y$tn = αn + βn
1

n− 1
(y$nt − y$1t) + error

using simulated (circles) and actual data on bond yields. The solid line denotes the coefficients

were the expectations hypothesis to hold.
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Figure 7: Time series of the 3-month yield in the data and predicted by the model. The solid

line plots the time series of the nominal 3-month yield in quarterly data. The dashed line plots

the implied time series when quarterly data on consumption and the price level is fed into the

model. Expected inflation is taken to be its mean conditional on past inflation data, given the

maximum likelihood estimates in Table 1. Using (2), surplus consumption is generated from actual

consumption. Both series are de-meaned.
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Figure 8: Time series of the yield spread on the five-year bond in the data and predicted by the

model. The yield spread is the difference in yields on the five-year nominal bond and the three-

month bond. The solid line plots the time series of the yield spread on between bonds in the

data. The dashed line plots the implied time series when quarterly data on consumption and the

price level is fed into the model. Expected inflation is taken to be its mean conditional on past

inflation data, given the maximum likelihood estimates in Table 1. Using (2), surplus consumption

is generated from actual consumption. Both series are de-meaned.
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Figure 9: Adjusted long-Rate Regressions. Lines with plus signs represent coefficients β from the

regression

y$n−1,t+1 − y$nt = αn + βn
1

n− 1
(y$nt − y$1,t) + error

using quarterly data on nominal bond yields. Lines with squares represent coefficients from the

regression

y$n−1,t+1 − y$nt +
1

n− 1
Êt

[

r$n,t+1 − y$1t
]

= αRn + βRn
1

n− 1
(y$nt − y$1t) + error

where Êt

[

r$n,t+1 − y$1t
]

is the premium on the bond with maturity n implied by the model, given

the level of surplus consumption and expected inflation.
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