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A contact algorithm for frictional crack propagation
with the extended finite element method
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SUMMARY

We present an incremental quasi-static contact algorithm for path-dependent frictional crack propagation in
the framework of the extended finite element (FE) method. The discrete formulation allows for the modeling
of frictional contact independent of the FE mesh. Standard Coulomb plasticity model is introduced to
model the frictional contact on the surface of discontinuity. The contact constraint is borrowed from non-
linear contact mechanics and embedded within a localized element by penalty method. Newton–Raphson
iteration with consistent linearization is used to advance the solution. We show the superior convergence
performance of the proposed iterative method compared with a previously published algorithm called
‘LATIN’ for frictional crack propagation. Numerical examples include simulation of crack initiation and
propagation in 2D plane strain with and without bulk plasticity. In the presence of bulk plasticity, the
problem is also solved using an augmented Lagrangian procedure to demonstrate the efficacy and adequacy
of the standard penalty solution. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Discontinuous deformation fields are encountered in a variety of engineering problems and manifest
themselves in different forms [1–13]. Deformation bands are jumps in displacement gradients
encountered in many natural and engineered materials. In metals they occur in the form of Lüders
bands; in rocks they manifest themselves in the form of either compaction or dilation in combination
with shearing. Cracks differ from deformation bands in that they create either a pair of free surfaces
or a pair of contacting surfaces that slide past each other. Mode I cracking, for example, separates
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1490 F. LIU AND R. I. BORJA

two parts of an initially continuous body into two regions and exposes a pair of traction-free
surfaces. Modes II and III cracking, on the other hand, involve shearing on contacting surfaces.
Tractions on the shear surfaces must be continuous to satisfy the equilibrium condition. In addition,
some constitutive law must be satisfied relating the traction acting on the surface to the relative
movement of the surfaces.

A challenging aspect of finite element (FE) modeling of crack nucleation and propagation lies
in resolving the discontinuous displacement field within an element. A discontinuous displacement
field defines the Dirac delta distribution function in the strain field, which in turn requires that the
strain interpolation capability of a standard FE must be enhanced. Two types of techniques for
enhancing the strain interpolation capability of a FE may be mentioned in this regard: local and
global. In the local technique, a strong discontinuity, or displacement jump, is embedded inside
the element along the direction of the crack. The enhancement is local in that the slip degree of
freedom is eliminated on the element level, and so the enhancement has no effect on the global
system of equations, see [14–21]. In the global approach, the slip degree of freedom is interpolated
through the introduction of additional global degrees of freedom to existing nodes surrounding the
crack. The latter class of methods are often called the extended FE methods [22–39]. A third class
of approach, based on non-linear contact mechanics, applies to the case where the crack geometry
is known a priori so that the element sides can be aligned to the crack [40–42]. Non-linear contact
mechanics entails no enhancement to the element domain; rather, the enhancement is introduced
to the element sides through some node-to-segment constitutive constraints.

This paper focuses on the extended FE method for modeling the problem of frictional crack
propagation through elastic and elastoplastic bodies. A noteworthy feature of the approach is the
variational formulation in terms of the relative displacement of contacting surfaces. The variational
formulation gives rise to two independent equations: a standard variational equation without a
discontinuity and a variational equation representing the enrichment needed to capture the disconti-
nuity. The latter equation contains a surface integral that allows for the standard algorithm borrowed
from non-linear contact mechanics to be embedded directly into the enriched FEs. We call our
proposed algorithm ‘self-contact’ since the representation now consists of slave and master sides
satisfying unilateral contact constraints, rather than the traditional slave node–master segment
constraints of classical non-linear contact mechanics. Non-linear contact mechanics defines an
evolution of state and deformation variables on a crack; hence, the extended FE approach pursued
in this paper accommodates for path-dependent incremental loading, including forward and reverse
loading.

We emphasize that although the variational equations for the global and local enrichment proce-
dures look very similar, there are two key differences (apart from the degree of interpolation of
slip). In the extended FE method, the weighting function for the auxiliary (enrichment) variational
equation has the same form as that used for the trial function (standard Galerkin formulation),
whereas in the local enrichment procedure, the weighting and trial functions are generally different
(Petrov–Galerkin formulation). Furthermore, in the proposed extended FE framework the formu-
lation accommodates for non-linear contact mechanics algorithm to be enforced on the crack,
whereas in the local enrichment procedure the constitutive law on the crack is represented by the
weighting function constructed for the auxiliary variational equation.

In the present formulation, non-linear contact mechanics algorithm is embedded into the varia-
tional equation by the penalty method. We realize that the penalty method may not be optimal for
some problems since it could lead to poor conditioning of the system of equations in some cases. To
address this concern, we also consider an augmented Lagrangian technique [43–45] and monitor
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FRICTIONAL CRACK PROPAGATION 1491

the efficacy and adequacy of the standard penalty approach. For both the standard penalty and
augmented Lagrangian procedures the FE equations allow the balance of linear momentum to be
written in a standard residual form and linearized consistently for a full Newton–Raphson iteration.
Linearization of the contact constraint is done simultaneously with linearization of the constraints
imposed by bulk plasticity. The result is an iterative algorithm that preserves the asymptotic rate
of quadratic convergence of Newton’s method. We present numerical examples to demonstrate the
performance of the proposed technique in a variety of 2D plane strain problems.

2. VARIATIONAL FORMULATION

Consider a body � with a surface of discontinuityS as shown in Figure 1. The surfaceS separates
the body into subdomains �+ and �−. The displacement field u is discontinuous on S according
to the equation

u=u+MS(x)̃u (1)

where u and MS(x)̃u are the continuous and discontinuous parts of u, respectively. The scalar
function MS(x) generates the discontinuity on the surface S and is given by the equation

MS(x)=HS(x)− f h(x) (2)

where HS(x) is a Heaviside function defined by

HS(x)=
{
1, x∈�+
0, x∈�−

(3)

and f h(x) is any arbitrary smooth function that satisfies the requirements f h =0 in �−\�h−, and
f =1 in �+\�h+. The jump of MS on S is �MS�=1, and MS=0 on the surface Sh± so that
�h =�h+∪�h− serves as its compact support. The parameterization (1) is exactly as adapted in
[14–17, 19–21].

We restrict the discussion to infinitesimal deformation and write the small strain tensor as

e=∇su=∇su+HS(x)∇s̃u−∇s( f h(x)̃u)+�S(̃u⊗n)s (4)

Figure 1. Definition of problem domain and boundaries. Domain � is cut by a surface of discontinuity
S into �− and �+. Compact support of MS(x) is �h =�h−∪�h+ and bounded by surfaces Sh±. Unit

normal vector to S is n, pointing in the direction of �+.
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1492 F. LIU AND R. I. BORJA

where ∇s is the symmetric spatial gradient operator, ( ·)s denotes the symmetric part of the tensor,
�S is the Dirac delta distribution function, and n is the unit normal vector to S and pointing
toward �+. We remark that the above expression for the infinitesimal strain tensor has additional
terms associated with ∇s̃u arising from the gradient of the discontinuous part of u, which has been
ignored in the formulation of [14–17, 19–21].

Without loss of generality, we assume quasi-static loading and write the governing equations as
follows:

div(r)+f= 0 in �\S (5)

m ·r= t on �t (6)

where r is the Cauchy stress tensor, f is the body force vector, t is the traction vector acting on
the external surface boundary �t, and m is the unit normal vector to �t. We augment the above
equations with the following conditions on the surface of discontinuity:

n·r= tS− on S− (7)

−n·r= tS+ on S+ (8)

Consistent with the displacement field (1), we assume a family of weighting functions of the
form

g=g+MS(x)̃g (9)

The standard variational formulation leads to an expression of the form∫
�

∇sg :rd�=
∫

�
g ·fd�+

∫
�
g·td� (10)

Substituting the weighting function (9) into (10) and using the definition of Dirac delta distribution
function yield ∫

�
[∇sg+HS(x)∇s̃g−∇s( f h(x)̃g)] :rd�+

∫
S
g̃ ·tS− d�

=
∫

�
(g+MS(x)̃g) ·fd�+

∫
�
(g+MS(x)̃g) ·td� (11)

Since g and g̃ are two independent weighting functions, we obtain independent variational equations∫
�

∇sg :rd�=
∫

�
g ·fd�+

∫
�
g·td� (12)

and ∫
�
[HS(x)∇s̃g−∇s( f h(x)̃g)] :rd�+Gc(̃g, tS−)

=
∫

�
MS(x)̃g·fd�+

∫
�
MS(x)̃g·td� (13)
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FRICTIONAL CRACK PROPAGATION 1493

where

Gc(̃g, tS−)=
∫
S
g̃·tS− d� (14)

is a surface integral arising from slip on the surface of discontinuity. Equation (12) is the standard
variational equation without a discontinuity, whereas Equation (13) is the variational equation
associated with the constraint on the discontinuity. Note that the region of integration for (13) is
limited to the support of MS(x), as can be seen from the fact that

HS(x)∇s̃g−∇s( f h(x)̃g)=MS(x)∇s̃g− (̃g⊗∇ f h(x))s (15)

Since f h(x)=0,1 outside of the support �h , the above expression vanishes in �\�h . Furthermore,
Equation (14) requires a contact constitutive law governing slip on the surface of discontinuity,
which we present in the following section.

3. SELF-CONTACT CONSTITUTIVE LAW

Since the surface of discontinuity S could cut through the interior of the FEs, the classical FE
contact mechanics should be reformulated to reflect the so-called ‘self-contact’ kinematics. By
self-contact we mean that the constitutive law on S should now be formulated in the interior
of the element rather than at the nodes and sides of the FEs. The notion of ‘slave’ and ‘master’
nodes/segments of classical contact mechanics applies equally well to the present case, except
that they now pertain to each side of S. For the sake of definition, we assign �+ as the slave side
and �− as the master side. The gap function on S∈� is given by

gN(x)=[u+(x)−u−(x)]·n(x)= ũ(x) ·n(x), x∈S (16)

where u+(x) and u−(x) are the displacements at x interpreted to lie on the slave and master sides
of S, respectively. The relative tangential displacement vector is given by

gT(x) =
2∑

�=1
[u+(x)−u−(x)]·[m�(x)⊗m�(x)]

=
2∑

�=1
[̃u(x) ·m�(x)]m�(x), x∈S (17)

where (m1,m2,n) form three mutually orthogonal unit vectors. In 2D, the relative tangential
movement simplifies to the scalar form

gT(x)= ũ(x) ·m(x), x∈S (18)

Contact condition on S is imposed in the normal direction through the standard Kuhn–Tucker
relations

gN�0, tN�0, gNtN=0, tN= tS− ·n (19)

The component of traction, −tN, represents the contact pressure. We satisfy the gap condition if
gN>0 and tN=0, and the contact condition if gN=0 and tN<0.
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1494 F. LIU AND R. I. BORJA

In the tangential direction, we distinguish between stick and slip conditions, which are governed
by a frictional constitutive law. Let the resolved tangential traction on S be given by

tT=‖tT(x)‖, tT(x)=
2∑

�=1
[m�(x)⊗m�(x)]·tS− (20)

In 2D, the expression simplifies to the scalar form

tT=|m(x) ·tS−| (21)

The criteria for stick and slip may be cast in the framework of classical plasticity theory using the
yield function

f = tT+�tN�0 (22)

where � is the coefficient of friction. Employing the associative flow rule defines the tangential
relative sliding,

ġT= �̇
� f

�tT
= �̇

tT
‖tT‖ (23)

Note that �̇ has the physical meaning of being the magnitude of the sliding velocity, i.e. �̇=
‖ġT‖. Finally, imposing the Kuhn–Tucker conditions once again defines the criteria for tangential
stick/slip

�̇�0, f �0, �̇ f =0 (24)

Stick condition pertains to the case �̇=0 and f <0, whereas slip condition pertains to the case
�̇>0 and f =0.

The contact constitutive law enters into the variational equation through the surface integral Gc
see (14), which we rewrite below in terms of normal and tangential components of the weighting
function g,

Gc=
∫
S

(̃�NtN+ �̃TtT)d� (25)

In this paper we impose a contact condition through the penalty method. For the normal component,
we replace tN by the constitutive expression

tN=�NgN (26)

where �N is a normal penalty parameter analogous to a normal spring that allows the contacting
surfaces to slightly overlap (i.e. gN<0). For the tangential component, the appropriate constitutive
expression that allows for both stick and slip modes is

ṫT=�T

(
ġT− �̇

tT
‖tT‖

)
(27)

where �T is a tangential penalty parameter resembling a tangential spring constant. For very
large �T, we recover the flow rule (23) under slip condition, which in turn readily degenerates to
ġT=0 under stick condition when �̇=0. For a finite �T, the above evolution equation mimics the
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predictor–corrector scheme of classical plasticity theory for which a return mapping algorithm can
be readily implemented.

The return mapping algorithm follows that used in standard computational plasticity. We assume
that (tT)n , �gT, and gN<0 are given (allowing the surfaces to overlap slightly due to a finite value
of �N), and we want to determine (tT)n+1≡ tT. As a starting point, we evaluate a traction predictor

ttrT=(tT)n+�T�gT (28)

and check whether ‖ttrT‖+��NgN�0. If so, we accept the predictor as the final value (stick
condition); otherwise, we use the backward implicit algorithm to correct for plastic sliding (slip
condition),

tT= ttrT−�T��
ttrT

‖ttrT‖ (29)

The incremental slip �� is obtained by imposing the consistency condition f =0 and it takes the
form

��= ‖ttrT‖+��NgN
�T

(30)

Substituting back into (29) and simplifying give the final expression for tangential traction,

tT=−��NgN
ttrT

‖ttrT‖ , gN<0 (31)

As in the classical return mapping algorithm of computational plasticity, the direction of the final
traction vector coincides with that of the elastic predictor.

4. MATRIX EQUATION AND LINEARIZATION

The continuous part of the displacement field is approximated by standard C0 shape functions
NI(x),

u(x)= ∑
I∈Nnodes

NI(x)dI=Nd (32)

where Nnodes is the set of total nodes and dI is the regular displacement vector at node I . The
discontinuous part of the displacement field is limited to the compact support of MS(x), which
we also assume to be discretized with FEs. Because all the FEs belonging in the support of MS

are intersected by the crack, they must be enhanced, and here we use the extended FE technique
to enhance these elements.

The displacement field ũ(x) is approximated by the same standard shape functions NI(x),

ũ(x)= ∑
I∈Nenr

NI(x)aI (33)

where aI is the vector of nodal enhancements and Nenr is the number of enriched nodes surrounding
the crack. The displacement field f h(x)̃u(x) is interpolated according to the expression

f h(x)̃u(x)= ∑
I∈Nenr

NI(x)HS(xI)aI (34)
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1496 F. LIU AND R. I. BORJA

Thus, the discontinuous part of the displacement field, MS(x)̃u(x), takes the form

MS(x)̃u(x)= ∑
I∈Nenr

ÑI(x)aI= Ña (35)

where

ÑI(x)=NI(x)[HS(x)−HS(xI)] (36)

Although it is generally not possible to extract a closed-form expression for f h(x) from the
interpolation given in (34), some essential features of the discontinuous displacement field are
recovered from the above interpolations, as summarized below.

It can be seen from (35) that (a) the support of MS(x)̃u(x) is the same as the support of MS(x);
(b) MS(x)̃u(x) vanishes at all nodes I ∈Nenr; and (c) the displacement jump on S is

�MS(x)̃u(x)�= ũ(x)= ∑
I∈Nenr

NI(x)aI, x∈S (37)

The above equation holds, provided the crack does not pass through any of the enriched nodes. Thus,
although the additional degrees of freedom a are global, their effect on the element enrichment is
purely local since they only serve to interpolate the displacement jump on S. The fact that the
discontinuous displacement field vanishes at the enriched nodes adds elegance to the formulation
since the globally calculated displacements at the enriched nodes are the total final displacements.
In other words, no ‘blending’ of the nodal displacements with the additional global degrees of
freedom is required by the formulation [25, 39].

Crack tip elements require a special treatment since the crack is expected to terminate somewhere
inside these elements. Following the approach in [24, 39], we show a typical crack tip constant
strain triangular (CST) element in Figure 2. The crack passes through edge 13 and stops at point
O inside this element. The direction of the crack is such that it will intersect edge 23; hence, we
want no enrichments on edges 12 and 23. In other words, we enrich only side 13 along with the
region �e∗

enr⊂�e
enr denoted by the shaded region in Figure 2. The displacement approximation in

this case is given by

u(x)=
3∑

A=1
NA(x)ueA+N∗

1 (x)[HS(x)−HS(x1)]ae1 (38)

1

3

21

2

3

crack

B

B

O

O

Figure 2. Enhancement of a crack tip CST element: shaded region is enriched (left) and representation of
the jump function MS on edge 13 (right).
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where N1(x) is the regular CST shape function for node 1 evaluated in �e∗
enr, with the properties

that N∗
1 (x1)=1 and N∗

1 (x3)=N∗
1 (xB)=0, see Figure 2 for point B.

The FE matrix equation consistent with variational equation (12) is

FINT(d,a)=FEXT (39)

where

FINT(d,a) =
∫

�
BTr(d,a)d�

FEXT =
∫

�
NTfd�+

∫
�
NTtd�

(40)

The strain–displacement matrix operator B is defined from the regular shape function matrix N
via the relation B=∇sN. We made a slight abuse in the notation by denoting the Cauchy stresses
in the vector form by the same symbol r. These stresses could depend on the vectors d and a in
a non-linear way.

The FE matrix equation consistent with (13) is

FINT(d,a)+GINT(a)=FEXT (41)

where

FINT(d,a) =
∫

�h\S
B̃Tr(d,a)d�

GINT(a) =
∫
S
NTtS− dS (42)

FEXT =
∫

�h
ÑTfd�+

∫
�h

ÑTtd�

The strain–displacement matrix operator B̃ is defined from the enhanced shape function matrix
Ñ via the relation B̃=∇sÑ. Note that FEXT and FINT use the enhanced shape function matrix,
whereas GINT uses the regular one. In addition, because of the adopted frictional constitutive law,
tS− depends only on the displacement jump ũ on S. Therefore, GINT is a function only of the
enrichment nodal vector a and not of the regular nodal displacement vector d. Finally, note that
all integrals in Equation (41) are evaluated over the elements crossed by the crack only.

To solve the non-linear problem, we write the coupled equations (39) and (41) in a standard
residual form and iterate by Newton’s method. The vector of unknowns and residual equation takes
the form

D=
{
d

a

}
, r(D)=

{
FEXT−FINT

FEXT−FINT−GINT

}
(43)

Solving with Newton’s method requires an evaluation of the algorithmic tangent operator

−r′(D)=
[
A11 A12

A21 A22

]
(44)
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1498 F. LIU AND R. I. BORJA

where

A11 =
∫

�
BTDBd�, A12=

∫
�
BTDB̃d�

A21 =
∫

�h
B̃TDBd�, A22=A22+A22

A22 =
∫

�h
B̃TDB̃d�, A22=

∫
S
NTENdS

(45)

In general, the surface integral in A22 makes the matrix formulation unsymmetric since E is
unsymmetric as demonstrated below.

In the geometrically linear regime, two sources of material non-linearities may arise. The
first non-linearity may arise from the bulk response that renders the stress–strain matrix D non-
constant throughout the iteration. Bulk plasticity is a typical source of this type of non-linearity,
and D represents the algorithmic tangential matrix. The second non-linearity may emanate from
tangential frictional sliding, represented in the above expression by the algorithmic tangent matrix
E=�tS−/�̃u (appearing in A22 as a surface integral). The matrix E has a closed-form expression
given below.

Let the traction vector on S be expressed in the following form:

tS− = tNn+tT (46)

The gap function gN and relative tangential movement gT depend only on the displacement jump
on S and are given by the expressions

gN=n· ũ, gT=m·ũ (for 2D) (47)

Hence, from (26) we obtain the derivative

�(tNn)

�̃u
=�Nn⊗n (48)

The 2D tangential sliding restricts the kinematics to directions ±m, and if we rule out reverse
sliding then ttrT/‖ttrT‖=m. From (31) we obtain the derivative

�tT
�̃u

=−��Nm⊗n (49)

Thus, a closed-form expression for matrix E is

E=�N(nnT−�mnT) (50)

Note that matrix E is constant in this case due to a severe restriction in the kinematics of 2D
frictional sliding. Sliding on a 3D surface entails less kinematical restrictions and produces a
non-constant E, which is also available in closed form.

Remark
Matrix E defined in (50) is unsymmetric due to the coupling of the normal and tangential tractions.
In contrast, the equivalent matrix reported in [30] is symmetric since they ignored the coupling
between the normal and tangential frictional forces.
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5. NUMERICAL EXAMPLES

We consider three numerical examples to investigate the performance of the proposed self-contact
algorithm. The examples involve plane strain loading at infinitesimal deformation. In order to
provide more meaningful discussions of the numerical results, we compare the solutions obtained
from the penalty method with those obtained from the formulation of Dolbow et al. [26]. Dolbow
et al. employed an iterative strategy called LATIN, LArge Time INcrement, a method proposed
by Ladevèze [46] for solving non-linear evolution problems, see also [47]. Briefly, the LATIN
procedure consists of partitioning equations into a (possibly) non-linear group I that is local in
space and time, and a linear group A that is global in the spatial variables. A two-step approach,
shown schematically in Figure 3, is employed by the LATIN method. The algorithm begins with an
initial solution sA0 in A. Non-linear update is determined by the solution sI0 in I, which is then used
to build the next approximate solution sA1 . The process is repeated sequentially until convergence
is achieved.

Apart from the solutions provided by the penalty method and the Dolbow et al. approach, the
comparison also focuses on the rates of convergence of the iterative schemes. Two convergence
indicators were investigated: the L2 norm of the residual force vector, ‖r‖, and the energy norm,
rT�D, where �D is the search direction. For Newton’s method, �Dk is the search direction
associated with residual vector rk . For the LATIN method, rk is the residual force vector obtained
by substituting the local solutions sIk into the kth global equations in the linear group A. For
example, with reference to Figure 3, the initial residual force vector r0 would be the out-of-balance
force created when the local traction vectors determined from the solution sI0 are substituted into the
global momentum balance equations originally used to solve for the global solution vector sA0 , and
so on. Furthermore, for the LATIN method the search direction is calculated as �Dk =DA

k+1−DA
k ,

where the quantities on the right-hand side are determined from the global linear equation solve.
Note that in Newton’s method adopted in our proposed algorithm, the search directions �Dk ,
�Dk+1, etc. are calculated directly from the residual force vectors rk , rk+1, etc., whereas in the
LATIN method adopted by Dolbow et al., the iterations provide the cumulative solution vectors
themselves, i.e. Dk , Dk+1, etc.

5.1. Square elastic domain with a crack

The FE mesh consists of 20 000 cross-diagonal CST elements defined by 10 201 nodes, as shown
in Figure 4. The domain has in-plane dimensions of 1×1 m (square) and contains a 0.566m center

Figure 3. Schematic representation of LATIN iterative procedure (reproduced from [26]).
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Figure 4. Finite element mesh with cross-diagonal CST elements. The mesh is 1×1m (square) with a
0.566m crack oriented at �=�/4 relative to the horizontal.

crack oriented at �=�/4 relative to the horizontal. In order for the crack to not intersect the nodes,
the tips were specified at coordinates (0.29999,0.29998) and (0.70002,0.70001)m. The standard
procedure of introducing more Gauss points in the vicinity of the crack was employed. The material
is linearly elastic with Young’s modulus E=10000MPa and the Poisson ratio 	=0.30. The crack
is fully frictional with a coefficient of friction �=0.10. We used the following regularization
parameters for the crack: �N=�T=107MN/m3 for the penalty method and k=10000MN/m3 for
the LATIN method (note that k0=kI). These regularization parameters generally influence the
convergence rate of the iteration. For the penalty method, the higher the penalty parameter, the
more accurate the contact condition, but a very high value of the penalty parameter could retard
the convergence of the iteration; hence, some balance must be achieved. A similar statement may
be made for the LATIN method, i.e. the regularization parameter k affects the rate of convergence
of the iteration.

The body was deformed by applying a uniform vertical displacement at the top nodes while
constraining the top and bottom surfaces from moving horizontally. For this example, we assumed
that the crack could undergo frictional sliding but the crack tips could not advance. Figures 5
and 6 show the vertical and horizontal displacements predicted by the penalty and Dolbow et al.
formulations after applying a uniform vertical displacement of −0.10m at the top surface. For the
penalty method with full Newton iteration, we used an error tolerance of ‖rk‖/‖r0‖<10−10 based
on the L2 norm of the residual, and convergence to machine precision was achieved after only
three iterations. This very stringent error tolerance could not be satisfied by the LATIN method;
hence, we allowed up to 100 iterations. Because the LATIN iteration did not fully converge, the
displacement profiles calculated by the two methods and shown in Figures 5 and 6 are only similar
but not identical.

A more quantitative comparison of the penalty and Dolbow et al. solution is shown in Figure 7,
which plots the total vertical reaction as a function of the imposed uniform vertical compression.
The two solutions are nearly the same, but not identical. Given that the LATIN iterations have not
completely dissipated the residual, the penalty solutions may be considered as ‘more exact.’ We
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Figure 5. Contours of vertical displacement on deformed elastic solid with a crack: penalty method solution
(left) and Dolbow et al. solution (right). Color bar in meters.

Figure 6. Contours of horizontal displacement on deformed elastic solid with a crack: penalty method
solution (left) and Dolbow et al. solution (right). Color bar in meters.

should note that Figure 7 shows one-step solutions, not multi-step incremental solutions, to allow
a direct comparison with the Dolbow et al. solutions. In other words, the solution at a vertical
compression of 0.05m corresponds to that generated in one time step from the starting value of
zero, and not a continuation of the solution generated at a vertical compression of 0.03m.

Tables I and II show convergence profiles based on the residual and energy norms of the Newton
and LATIN iterations adopted by the penalty and Dolbow et al. formulations, respectively. As noted
earlier, the LATIN method does not require a re-factor of the tangent operator, a computational
advantage; however, the resulting rate of convergence exhibited by this method is much slower
than that exhibited by the full Newton iteration. Table I suggests that after 100 iterations the
LATIN method still has a convergence error of about 1% relative to the residual at iteration #1
(the residual dissipated between iteration #0 and #1 was dominated by the effects of the penalty
parameters). In contrast, the Newton iteration has converged to machine precision after only three
iterations. Note that the energy norm from the LATIN iteration switches in sign during the initial
stage of iteration, and its absolute value decreases in a non-monotonic manner. Given that the solid
was assumed to be a simple, linearly elastic material, it can be expected that the convergence rate
of the LATIN iteration will only get worse in the presence of bulk plasticity.
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Figure 7. Comparison of solutions from penalty and Dolbow et al. formulations: total vertical reaction as
a function of uniform vertical compression.

Table I. Convergence profiles of the Newton and LATIN iterations
for elastic solid with a crack: residual norm ‖r‖.

Iteration Newton LATIN

0 1.791e+4 2.096e+2
1 7.838e+1 5.688e+1
2 6.529e−1 3.100e+1
3 2.168e−11 2.050e+1
4 — 1.589e+1
...

...
98 5.564e−1
99 5.558e−1
100 5.461e−1

Table II. Convergence profiles of the Newton and LATIN iterations
for elastic solid with a crack: energy norm rT�D.

Iteration Newton LATIN

0 1.779e+4 6.473e+1∗
1 1.538e+1 1.011e+1
2 3.183e−8 2.503e−4∗
3 — 5.964e−2∗
4 6.140e−2∗
...

...
98 1.195e−5
99 1.165e−5
100 1.137e−5

∗Negative value.
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5.2. Convergence studies

We conducted a series of numerical simulations to assess the convergence of the formulation as a
function of mesh refinement. We emphasize that the studies reported in this section focused only
on the convergence of the Heaviside enrichment component of the formulation, and not on the
crack tip kinematics. The latter is characterized by an infinite strain field, and therefore either an
enhanced crack-tip interpolation [22] or a special FE [48] must be employed for such a case.

The problem is defined by a 1m×1m square elastic domain with a horizontal crack and
deforming in plane strain. We considered four FE discretizations consisting of 200, 1250, 5000,
and 20 000 CST elements (meshes 1–4, respectively), as shown in Figure 8. The bottom nodes
were fixed, while the top nodes were given imposed non-uniform translations �y =0.09x−0.10m
(vertical) and �x =0.05m (horizontal), where 0�x�1.0m. All of the material parameters were
the same as in Example 1 except that the penalty parameter was selected to vary linearly with
element size, �N=�T=Ch, where C=109 is a constant of proportionality and h=0.10, 0.04,
0.02, and 0.01m, for meshes 1–4, respectively. Note that since the penalty parameter has the
physical equivalence of a spring constant, it had to be adjusted to reflect the length scale of the
FE discretization.

The convergence studies focused on the normal contact stress and slip distributions on the
crack (the contact shear stress is simply the normal contact stress multiplied by the coefficient of

Figure 8. Convergence studies for a square elastic domain with a horizontal crack: meshes
1 (upper left), 2 (upper right), 3 (lower left), and 4 (lower right), defined by 200, 1250,

5000, and 20 000 CST elements, respectively.
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Figure 9. Convergence of normal stresses for a square elastic domain with a horizontal crack:
penalty/Newton method (left) and LATIN method (right).
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Figure 10. Convergence of slip for a square elastic domain with a horizontal crack: penalty method/Newton
method (left) and LATIN method (right).

friction). To evaluate the contact stress from a given contact force, we performed simple projections
of the contact forces onto the enriched degrees of freedom, collected the forces on the enriched
nodes, and then projected them back to the contact surfaces. Note that this simple operation is a
post-processing scheme and does not affect the global system of equations. The above procedure
is essentially equivalent to the domain integral technique described in [49].

Figure 9 shows the distribution of normal contact stresses along the crack calculated by the
penalty/Newton and LATIN iterative solutions. The maximum contact stresses occurred at x=0
where the imposed vertical compression was maximum. The normal contact stresses are nearly
insensitive to mesh refinement. The LATIN iteration did not converge sufficiently after 100 iterations
for the coarse mesh, and this might have been responsible for the slight oscillations observed in
the normal stresses.

Figure 10 shows the slip distributions predicted by the two methods for the same convergence
studies. The rates of convergence appear to be the same, although the LATIN solution for the
coarse mesh exhibited larger errors. Table III summarizes the calculated vertical component of
resultant force (i.e. reaction) on top of the mesh. We recall that we conducted one-step simulations,
which did not permit a detailed load–displacement curve. Nevertheless, the results presented in
Table III suggest a monotonic mesh convergence.
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Table III. Mesh convergence studies: total vertical reaction
(MN) at the top of the square elastic domain.

Penalty LATIN

Mesh 1 636.6678 617.6726
Mesh 2 601.6237 596.0894
Mesh 3 590.0530 588.3292
Mesh 4 584.0989 583.3224

Figure 11. Contours of vertical displacement on deformed elastic solid with advancing crack tips: penalty
method solution (left) and Dolbow et al. solution (right). Color bar in meters.

5.3. Square elastic domain with advancing crack tips

The example involves a re-analysis of Example 1, assuming this time that the tips of the crack
were free to advance. We employed linear elastic fracture mechanics (LEFM) and compared the
equivalent stress intensity factor K eq

I with the critical stress intensity factor Kc (also called the
fracture toughness), as well as activated crack growth when K eq

I �Kc. For convenience, we assumed
an unstable crack growth and propagated the crack according to a predefined length of 0.04m at
each step. We propagated the crack in the direction of the maximum hoop, or circumferential, stress,
which is determined by using the stress intensity factors KI and KII in LEFM. The propagation
direction in terms of the stress intensity factors is given by

�c=2arctan
1

4

(
KI

KII
±
√

KI

KII
+8

)
(51)

For purposes of calculating the mixed-mode stress intensity factors, we assumed a radius of rd =
0.025m for the interaction integral. In addition, we set Kc=30 so that the crack stops growing at
the end of step #6. We allowed up to 200 LATIN iterations per step to achieve proper convergence.

Figures 11 and 12 show contours of displacements predicted by the penalty and Dolbow et al.
solutions after applying a uniform vertical displacement of −0.05m on top of the mesh (horizontal
displacements at the top and bottom nodes were zero). The displacements are indistinguishable
for plotting purposes, which can be attributed to the fact that we allowed the LATIN iterations to
converge properly. However, that LATIN did not converge to machine precision still created some
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Figure 12. Contours of horizontal displacement on deformed elastic solid with advancing crack tips:
penalty method solution (left) and Dolbow et al. solution (right). Color bar in meters.

Table IV. Stress intensity factors for modes I and II
fracture calculated by the penalty method.

Mode I Mode II

Step 1
LCT −42.82 −265.36
RCT −48.99 −249.79

Step 2
LCT 170.72 −3.94
RCT 171.40 −0.65

Step 3
LCT 119.58 23.59
RCT 122.56 21.97

Step 4
LCT 84.67 −6.01
RCT 85.46 −6.04

Step 5
LCT 51.01 15.29
RCT 50.54 15.71

Step 6
LCT 20.08 −14.59
RCT 21.02 −15.05

LCT, left crack tip; RCT, right crack tip.

numerical discrepancies as can be observed from the calculated stress intensity factors shown in
Tables IV and V.

Tables VI and VII show the convergence profiles of the Newton and LATIN iterations. For
the penalty method, the number of iterations increased slightly as the crack propagated because
the more complicated geometry of the crack made the initial guess quite far from the solution.
Nevertheless, Newton’s method still converged to machine precision in less than 10 iterations.

5.4. Square elastoplastic domain with a crack

The final example demonstrates the performance of the penalty method for frictional crack prop-
agation in the presence of bulk plasticity. The problem investigated is the same as in Example 1
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Table V. Stress intensity factors for modes I and II fracture
calculated by the Dolbow et al. method.

Mode I Mode II

Step 1
LCT −51.44 −251.49
RCT −55.04 −251.74

Step 2
LCT 171.54 1.93
RCT 171.21 1.93

Step 3
LCT 119.72 20.20
RCT 122.46 19.72

Step 4
LCT 84.60 −5.51
RCT 85.54 −4.61

Step 5
LCT 50.92 15.28
RCT 51.17 13.90

Step 6
LCT 20.02 −14.62
RCT 21.51 −13.17

LCT, left crack tip; RCT, right crack tip.

Table VI. Convergence profiles of the Newton and
LATIN iterations for elastic solid with advancing

crack tips: residual norm ‖r‖.
Iteration Newton LATIN

0 8.956e+3 1.848e+2
1 4.929e+1 6.054e+1
2 5.784e+1 4.013e+1
3 5.346e+1 2.845e+1
...

...
8 2.759e−1 1.357e+1
9 1.124e−12 1.214e+1
10 — 1.102e+1
...

...
198 8.000e−1
199 7.959e−1
200 7.900e−1

except that we assumed the solid to be an elastic–perfectly plastic material yielding according to
a non-associated Drucker–Prager yield criterion. The yield criterion is√

2
3q−(�−
p)=0 (52)

where q=√
3/2‖s‖ is the Mises stress, s is the deviatoric component of r, and p= tr(r)/3 is the

mean normal stress (negative for compression). The material parameters are �=17 and 
=1.0.
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Table VII. Convergence profiles of the Newton and
LATIN iterations for elastic solid with advancing

crack tips: energy norm rT�D.

Iteration Newton LATIN

0 4.449e+3 3.089e+1
1 4.113e+0 2.646e−1
2 6.458e−1 1.738e−1∗
3 7.473e−1 1.409e−2∗
...

...
7 2.344e−4 2.918e−2
8 7.979e−6 2.365e−2
9 — 1.924e−2
...

...
198 2.454e−5
199 2.420e−5
200 2.387e−5

∗Negative value.

Figure 13. Displacement contours on deformed elastoplastic solid with a crack solved by the
standard penalty formulation. Contours generated by the augmented Lagrangian technique are

nearly identical. Color bar in meters.

The plastic potential has a similar form to the yield function except that we replaced the continuum
frictional parameter 
 with the continuum dilatancy parameter b=0.8.

We did not implement the Dolbow et al. formulation for the elastoplastic problem. However, we
have also implemented the augmented Lagrangian technique [45] to assess the impact of the penalty
parameters on the accuracy of our solution. Figures 13 and 14 show, respectively, the contours of
displacement and deviatoric plastic strain after applying a vertical compression of 0.10m. Results
generated by the standard penalty formulation and the augmented Lagrangian technique (with three
augmentations per load step) are indistinguishable but not identical. For brevity, we show only
the displacement contours generated by the standard penalty formulation in Figure 13. Figure 14
presents two seemingly identical results generated by the two approaches, indicating the efficacy
and adequacy of the standard penalty formulation for this particular example. Figure 14 also shows
that bulk plasticity is localized around the crack tips. A possible criterion to propagate the crack
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Figure 14. Cumulative deviatoric plastic strain on deformed elastoplastic solid with a crack at a vertical
compression of 0.10m: standard penalty formulation (left) and augmented Lagrangian formulation with

three augmentations per time step (right). Note: Blue is the elastic region.
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Figure 15. Convergence profiles based on the residual norm of Newton’s iterations for non-associated
Drucker–Prager elastoplastic solid with a frictional crack solved by the standard penalty formulation.
Numbers inside boxes are step numbers. The number of iterations increased with increasing plastic
deformation, but in all cases Newton’s method converged to machine precision in seven iterations or less.

in the yielded zone would be to use classical bifurcation theory [50, 51]; we defer this aspect for
further research. Finally, Figures 15 and 16 demonstrate the performance of Newton’s method for
the standard penalty and augmented Lagrangian approaches, respectively. Despite the presence of
bulk plasticity, all steps converged to machine precision in seven iterations or less.

6. CONCLUSION

We have presented an incremental quasi-static contact algorithm for path-dependent frictional crack
propagation in the framework of the extended FE method. The variational formulation differs from
the existing framework for frictional crack propagation in that the enhancements are expressed in
terms of the relative slip, and not in terms of the total displacements on each side of the crack.
Furthermore, the weak form automatically satisfies traction continuity. The proposed variational
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Figure 16. Convergence profiles based on the residual norm of Newton’s iterations for non-associated
Drucker–Prager elastoplastic solid with a frictional crack solved by the augmented Lagrangian approach.

Profiles pertain to three augmentations at step 100 of the elastoplastic solution.

formulation mimics that commonly utilized for strong discontinuity kinematics, suggesting that
local and global enrichments are members of similar families of embedded discontinuity methods.

The variational formulation embeds the algorithm of non-linear contact mechanics directly into
the enhancement equations. The algorithm defines master and slave sides that satisfy unilateral
constraints imposed by frictional contact. The contributions of frictional contact are expressed in
terms of internal nodal forces, which, along with the bulk non-linear responses, are linearized
consistently for iteration with full Newton’s method. The iterative approach delivers optimal
quadratic convergence rate and allows the solution to achieve accuracy to machine precision.

Crack propagation is an instability problem requiring high-fidelity calculations. For incremental
path-dependent loading, residuals from insufficient convergence of the iterations are known to
propagate and ‘contaminate’ the subsequent solutions. Stability problems such as frictional crack
propagation are very sensitive to these errors. The method proposed in this study provides a means
for conducting high-fidelity simulations at reasonable computing costs.
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