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Abstract: Deep learning models have been widely used in various applications, such as image
and speech recognition, natural language processing, and recently, in the field of drought forecast-
ing/prediction. These models have proven to be effective in handling large and complex datasets,
and in automatically extracting relevant features for forecasting. The use of deep learning models
in drought forecasting can provide more accurate and timely predictions, which are crucial for the
mitigation of drought-related impacts such as crop failure, water shortages, and economic losses. This
review provides information on the type of droughts and their information systems. A comparative
analysis of deep learning models, related technology, and research tabulation is provided. The review
has identified algorithms that are more pertinent than others in the current scenario, such as the
Deep Neural Network, Multi-Layer Perceptron, Convolutional Neural Networks, and combination
of hybrid models. The paper also discusses the common issues for deep learning models for drought
forecasting and the current open challenges. In conclusion, deep learning models offer a powerful
tool for drought forecasting, which can significantly improve our understanding of drought dynamics
and our ability to predict and mitigate its impacts. However, it is important to note that the success
of these models is highly dependent on the availability and quality of data, as well as the specific
characteristics of the drought event.

Keywords: deep learning; drought prediction; environmental sustainability; Big Data; artificial intelligence

1. Introduction

Drought is one of the most pressing environmental challenges facing the world today.
Drought is a major global concern due to its unpredictable nature, the damage it causes,
and its impact on agricultural activities, various water sources, and the environment in
general. Some regions are more vulnerable to drought than others. According to the Global
Drought Risk Index 2020, Somalia was the country most at risk from drought in 2020,
followed by Zimbabwe, Djibouti, and South Africa. Many of the most at-risk countries
were in Africa. Ukraine and Moldova have the highest risk of drought globally, according
to data from the Aqueduct project at the World Resources Institute.

Accurate and timely drought prediction is crucial for mitigating the impacts of
droughts, yet it remains a complex and difficult task. One major reason for the unpre-
dictability of a drought is the lack of a direct method to pinpoint its exact start and span.
Hence, an efficient and effective monitoring system is required to reduce the negative
implication of drought. Deep learning models have emerged as a promising solution for
drought prediction, leveraging the power of neural networks to extract complex patterns
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from large and diverse datasets. In this contemporary review, we provide a comprehen-
sive overview of the latest deep learning models for drought prediction, exploring their
strengths, weaknesses, and potential applications. Through this review, we hope to provide
a better understanding of the current state of deep learning models for drought prediction,
and identify future research directions that can further improve their effectiveness.

A drought has nonlinear, multivariate, and stochastic characteristics. Existing drought
predicting models include the Support Vector Machine (SVM), Adaptive neuro fuzzy infer-
ence system (ANFIS), Random Forest (RF), Decision Trees (DT), and Multivariate Adaptive
Regression Spline (MARS). Their combinations have incorporated various drought indices,
such as the SPI, SPEI, SSI, PMDI, and PDSI [1]. However, the irregularities in climate
change are a major concern that none of the machine learning models have addressed.
Droughts can be broadly classified into four major categories based on their impacts: Me-
teorological Drought, Agricultural Drought, Hydrological Drought, and Socioeconomic
Drought. Multiple indices have been used to determine the seriousness of droughts:

• Z-index [1].
• Rainfall Anomaly Index (RAI) [1].
• Quartiles and Deciles [1].
• Bhalme and Mooly Drought Index [1].
• Keetch–Byram Drought Index (KBDI) [1,2].
• Standardized Precipitation Index (SPI).
• Percent of normal [1,3].
• Effective Drought Index (EDI) [1].
• Drought Frequency Index (DFI) [1].
• Reconnaissance Drought Index (RDI) [1].
• Resiliency-Reliability-Vulnerability (RRV) [1].
• Drought Index [1,4].
• Standardized Precipitation Evapotranspiration Index (SPEI) [1,3,5].
• Palmer modified draught systems (PMDI) [1].
• Vegetation Temperature Condition Index (VTCI) [1,6].

Abbreviations presents the list of abbreviations used in this article and their expansions.
Figure 1 provides an insight into the global drought mortality risks. The figure is based

on the Gridded Population of the World, Model 3 (GPWv3) data that provide a basic idea
of potential mortality rates based on population per grid cell, where the regional estimation
method is based on the hazard [7]. The mortality records are drought hazard-specific,
ranging from 1981 to 2000 from the Emergency Events Database (EM-DAT) [8].

Figure 2 shows the drought hazard losses for each grid proportional to the Gross Domestic
Product (GDP) per unit, with the risks measured according to the EM-DAT records. The
loss rates for any given region are calculated by the frequency and distribution within the
area [7,8]. Figures 1 and 2 inferred the need to understand and simplify such data using deep
learning models, self-learning algorithms, and various models in real scenarios.

1.1. Rationale of This Work

There has been a significant increase in the frequency and severity of drought, at-
tributed to a multitude of factors. Consequently, drought forecasting systems are essential
in enabling researchers to anticipate and provide lead time for drought threat responses,
which can help mitigate the negative impacts caused by drought. Moreover, deep learning
will play a substantial role by helping to solve the random and non-linear type of data
used to identify drought and build action plans to mitigate the adversities caused by
drought. Hence, this study has been conducted to consolidate and compile all the recent
deep learning models used for drought prediction to tackle drought. There is currently no
comprehensive review on deep learning models, making this study even more crucial.
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Figure 1. Global drought mortality risks and distribution.

1.2. Key Contributions of This Work

• This is the first attempt at a systematic review of deep learning-based drought predic-
tion models to the authors’ knowledge.

• This review presents information for all deep learning model case studies implemented
in various regions globally for drought forecasting.

• The review accumulates the indices used in drought monitoring and lists the drought
categories.

• A brief discussion of the latest developments and the various deep learning algorithms
used in hybrid drought forecasting models are included.

• The common disadvantages of deep learning algorithms are discussed.
• Based on the available literature, various parameters for effective drought predictions

are discussed for accurate drought forecasting.
• The open challenges and the future directions for drought forecasting are also discussed.

1.3. Intended Audience

This study is intended for researchers looking for existing methods and algorithms
used for drought prediction using deep learning and their drawbacks, and the possible
course of future research possible. This study also provides parameters on which drought
can be predicted along with the types of droughts which occur, and their indices have been
used to determine the seriousness of droughts.
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1.4. Survey Methodology

This review provides an in-depth understanding of the deep learning algorithms im-
plemented for drought forecasting. The review cites various research works from esteemed
journals directly relevant to drought forecasting and deep learning implementations. The
guidelines of Preferred Reporting Items for Systematic reviews and Meta-Analyses extension
for Scoping Reviews (PRISMA-ScR) is followed in this work for the article selection process.

1.4.1. Search Strategy, Keyword Selection and Databases

The keywords used for paper selection were deep learning, drought forecasting,
Drought Information Systems, and drought indices, and regional keywords like Africa,
Asia, Americas, etc. Databases such as IEEE, ACM Digital Library, ScienceDirect, and
various other databases were searched for the papers relevant to the topic.

1.4.2. Inclusion Criteria

The papers included are from January 2010 to January 2023, but most of the litera-
ture used is from 2017 onwards. The abstracts of the shortlisted papers are analyzed and
searched for drought forecasting and deep learning. Papers focusing on deep learning
applications are included after the initial abstract evaluation. This paper contains a detailed
review of the research articles, recent review papers, and technical notes arranged system-
atically with relevance to recent advances in the deep learning algorithms implemented for
drought forecasting (regional or continental).
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1.4.3. Exclusion Criteria

Articles were excluded after the abstracts failed to meet the language, relevance, and
topic domains criteria. Additionally, case reports, case studies, commentaries, editorials,
and letters to the editor were not considered for the review.

1.4.4. Results

After title and abstract screening over 1452 non-duplicate articles in the initial stage using
the steps mentioned above, we reduced the number of articles to 554. Then, 320 articles were
eliminated after screening the entire contents and 111 articles were excluded after analyzing
their relevancy. Finally, a total of 123 articles were selected for this review [1–123]. The
selection process is shown in Figure 3.
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1.5. Survey Structure

Section 1 gives a brief introduction and discusses the selection criteria. Section 2
discusses the current gaps in the studies. Section 3 classifies droughts into various cat-
egories and compares regional and global drought monitoring and prediction systems.
Section 4 provides a brief overview of the types of pre-processing performed before model
implementation. Section 5 provides a comparative analysis of deep learning models and
the related technologies and advancements in research. Section 6 discusses the common
disadvantages of various algorithms. Section 7 discusses the open challenges in prediction
using deep learning models. Section 8 presents the future research directions for drought
prediction. Finally, Section 9 provides the conclusions and discusses the ideal parameters
for drought forecasting algorithms. The lists of abbreviations and references are given at
the end of this work.

2. Current Gaps in the Studies

The gap in current studies on drought prediction using deep learning includes a lack of
long-term forecasting capabilities and limited spatial resolution. Additionally, current models
often require a large amount of data and may not be able to handle missing or incomplete
data. To fulfill this gap, one approach is to incorporate more data sources and utilize advanced
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deep learning techniques, such as convolutional neural networks (CNNs) and recurrent
neural networks (RNNs), to improve the accuracy and long-term forecasting capabilities of
the models. Another approach is to incorporate traditional methods, such as statistical and
physics-based models, to enhance the performance of the deep learning models.

To fulfill the gap in current studies on drought prediction using deep learning, there
are several approaches that can be taken:

• Incorporating more data sources: By using a combination of meteorological, hydro-
logical, and remotely sensed data, models can be trained to better understand the
complex relationships between precipitation, evapotranspiration, and soil moisture.
This can improve the accuracy of drought predictions.

• Utilizing advanced deep learning techniques: Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs) are powerful deep learning techniques that
can be used to analyze large amounts of data and extract important features. These
techniques can be used to improve the long-term forecasting capabilities of drought
prediction models.

• Incorporating traditional methods: Combining traditional methods such as statistical
and physics-based models with deep learning techniques can enhance the performance
of drought prediction models. By combining the strengths of both methods, models
can become more robust and accurate.

• Developing a consistent evaluation framework: It is important to develop a consistent
evaluation framework to accurately evaluate the performance of drought prediction
models. This will allow for a more accurate comparison of different models and help
to identify the strengths and weaknesses of each approach.

• Exploring the use of transfer learning and domain adaptation techniques: Transfer
learning and domain adaptation techniques can be used to improve the generalization
ability of drought prediction models. These techniques can help models adapt to new
regions or climates, making them more useful in a wider range of applications.

• Utilizing alternative data sources: Alternative data sources such as remote sensing can
be used to address the data scarcity issue. This can help to improve the performance of
drought prediction models in regions where ground-based measurements are limited.

The limitations of current studies include the lack of a robust and consistent evaluation
framework, and the dependence on large amounts of data which may not be available
in many regions. Additionally, the generalization ability of the models is often limited,
making it difficult to apply the models to different regions or climates. To overcome these
limitations, it is important to develop a consistent evaluation framework, and to explore the
use of transfer learning and domain adaptation techniques to improve the generalization
ability of the models. Also, using alternative data sources such as remote sensing can be
helpful in addressing the data scarcity issue.

3. Drought Categories and Drought Information Systems
3.1. Drought Categories
3.1.1. Meteorological Drought

Meteorological droughts are typically described in terms of the extent and duration
of a precipitation shortage. They happen when dry weather patterns dominate an area
and can begin and end rapidly. They usually precede all other kinds of droughts [9,10].
Meteorological droughts contain stochastic, nonlinear, and non-stationary data, making it
difficult for models to build, learn, and give precise predictions for drought forecasting [11].

3.1.2. Agricultural Drought

Agricultural droughts are triggered by below-regular precipitation and above-regular
temperatures/wind that evaporate moisture from soils and plants. They combine with
diverse meteorological (or hydrological) droughts and lead to agricultural consequences.
Factors such as precipitation deficits, variations in the actual evapotranspiration capacity
(evaporation from the soil and different surfaces and transpiration from plants), soil water
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deficits, and decreased water availability facilitate the detection and tracking of agricultural
droughts [12–14].

3.1.3. Hydrological Drought

Hydrological droughts arise due to water scarcity, particularly in streams, reservoirs,
and groundwater levels, and regularly follow an extended length of meteorological drought.
Hydrological droughts are commonly out of sync with or follow the meteorological and
agricultural droughts. Hence, they are directly associated with the duration of precipitation
shortfall on the floor and the subsurface water supply [15–17].

3.1.4. Socioeconomic Drought

Socioeconomic droughts occur when droughts (meteorological, agricultural, or hydro-
logical droughts) affect the demand for economic items such as fruits, vegetables, grains,
and meat. Socioeconomic droughts occur when the demand for goods exceeds the supplies
due weather-associated deficits in water delivery. Even if a socioeconomic drought resolves,
the preceding water shortfall might cause long-term consequences and affect the local
water sources system’s resilience [18–20].

3.2. Drought Information Systems
3.2.1. Regional Drought Information Systems

A drought information system is a linked information system that communicates and
indicates drought conditions to its preparation. It contains a risk assessment, communica-
tion, and decision support system where an early warning is crucial.

3.2.2. Global Drought Information Systems

The Global Drought Information Systems (GDIS) [21] is an international plan that pools
together the best non-prescriptive drought information from local to national providers
and compares global drought conditions and resources. Its goal is to provide sustainable
global water delivery and track water sources worldwide to avoid drought and water
scarcity. The continental drought video display units monitor the drought conditions on
every continent. The records are provided to NCEI and included within the Global Drought
Monitor product, which maps worldwide droughts in-depth. Drought was a triggering
parameter in determining food scarcity in various regions.

Additionally, the system assesses the accuracy and reliability of the European Centre
for Medium-Range Weather Forecasts (ECMWF), SEAS seasonal forecasts, and North Amer-
ican Multi-Model Ensemble forecasts (in addition to those of different centers). Figure 4
shows the different types of drought indices. Figure 5 illustrates the regional and global
drought monitoring and prediction systems worldwide. Table 1 presents a list of regional
and global drought monitoring and prediction systems worldwide.
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Table 1. List of regional and global drought monitoring and prediction systems worldwide.

S.No Drought Monitoring System Reference/Website Regional/Global Indicator Time Scale

1. Global Integrated Drought Monitoring
and Prediction System [22–30] Global SPI, SSI, MSDI -

2. GADMFS [31] Global - -
3. US Drought Monitor [31–34] Regional Category Weekly

4. NOAA STAR vegetation health index [3,31] Global VCI, TCI, VHI,
NDVI Weekly

5. North American
Drought Monitor [35,36] Regional Category Monthly

6. SPEI Global Drought Monitor [3] Global SPEI Monthly

7 Global terrestrial drought severity
Index [39] Global DSI 8-days

8 NLDAS Drought
Monitor [37–44] Regional SWE, Percentile of P

1. Daily
2. Monthly
3. Yearly

9. U.S. Monthly (Seasonal)
Drought Outlook [4] Regional Drought

tendency
1. Monthly,
2. Seasonal

10. Global Drought Monitoring Portal [45–48] Global SPI Monthly
11. GDIS [21,49–54] Global SWR Monthly

12. Global Seasonal Hydrologic
Forecast System [3,55,56] Global Percentile of R and S Monthly

13. GPCC [57–62] Global GPCC-DI Monthly
14. Experimental Drought Monitor for India [5,63] Regional SPI, SPIE, SRI, Monthly
15. Drought Monitoring System for China [17,25,64,65] Regional SPI, SPIE, Daily

16. African Drought Monitoring and
Forecasting System [66–68] Regional SPI, Drought category Daily

17. European Drought Observatory [69–72] Regional Drought category Daily
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4. Types of Preprocessing

Preprocessing is an important step in using deep learning algorithms for drought
forecasting. It involves preparing the data so that it can be fed into the model and ensuring
that it is in a format that the model can understand. There are several types of preprocessing
that are particularly relevant to drought forecasting:
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• Data cleaning: In data cleaning, all data inconsistencies, such as the empty or extreme
values in various features, are replaced with the average values of the same variables
or the null value, respectively. It also involves checking for outliers and inconsistencies
in the data. This step is crucial to ensuring the quality of the data used for forecasting.

• Data normalization: This process involves adjusting the values of the data to a com-
mon scale. It can include rescaling the data so that it has a specific range, such as
between 0 and 1, or standardizing the data so that it has a mean of zero and standard
deviation of one. This step is important in drought forecasting as it allows the model
to effectively process data from different variables and sources, such as precipitation,
evapotranspiration, and soil moisture.

• Time series data preparation: For time series data, it is necessary to decompose time
series data into its seasonality, trend, and residual to be able to feed it into deep
learning algorithms. This step is crucial to extract meaningful information from the
time series data.

• Data splitting: This involves dividing the data into training, validation, and test sets.
The training set is used to train the model, the validation set is used to tune the model
parameters, and the test set is used to evaluate the performance of the model.

• Reshaping the data: This involves reshaping the data into the appropriate format for
the deep learning algorithm. This may include reshaping the data into a 2D or 3D
array, depending on the type of algorithm being used. This step is crucial to ensuring
that the data is compatible with the model being used.

Most papers used information on the various environmental and meteorological
events ranging from humidity to temperature. The data is further normalized over a longer
period for prediction [1].

For real-time meteorological factor data such as temperature, pressure, humidity, etc.,
preprocessing methods include correlation analysis, encoding, missing value imputation,
scaling, and normalization. For time series data, interpolation is carried out for filling in any
of the missing values observed. Missing value imputation (mean) and normalization is used
in [78]. Bicubic interpolation is carried out in [93,100], along with different normalization
schemes based on variables. Ref. [11] used min-max scaling followed by k-fold cross
validation with k = 7.

Data augmentation, annotation, resizing, denoising, and segmentation are techniques
used for preprocessing image data, particularly satellite image data. Ref. [89] resizes the
images to a size appropriate for the CNN model. Data augmentation involving resiz-
ing, normalization, and rotation is applied on training data in [92] for increasing and
diversifying the image data.

Cyberinfrastructure has a large scope to acquire data from various sources such as
monitoring networks, professionals, or research. There are four parts to the Cyberinfras-
tructure design: a standardized web service, data source, client interface, and application
service. The implementation in [22] involves a cloud-based global agricultural drought
monitoring and forecasting system. This system can be expanded to increase the drought
indicators to predict droughts with the help of satellite imagery and continuous datasets
from the past, which are preprocessed before application.

In summary, preprocessing is a critical step in drought forecasting with deep learn-
ing, and it involves cleaning, normalizing, and preparing the data so that it can be used
effectively by the model. This includes normalizing the data, preparing time series data,
splitting the data, and reshaping the data to fit the format required by the model.

5. Deep Learning Models for Drought Prediction

Deep learning is a subset of machine learning that makes use of neural networks that
are established with the purpose of mimicking the human brain in function in learning
via complex computation and high interconnectivity. It consists of many types of neural
networks specializing in modeling various kinds of data. Figure 6 portrays the deep
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learning models used for drought forecasting. Table 2 compares the deep learning models
used in drought forecasting.
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5.1. Drought Forecasting Using ANNs

ANNs are the digital equivalent of a human brain which consist of layers of neurons,
all interconnected to the preceding and next layer neurons, with each link possessing a
numerical value known as a weight in addition to an activation function. The activation
functions help to remove any scope of linearity from being formed in the network as a
result of training, whereas the weights are randomly initiated at first and outputs are
calculated based on them and with each iteration, using the backpropagation algorithm,
the corresponding weight values are updated such that the generated output closely
corresponds to the actual output.

Ref. [85] uses an ANN model, namely the Multi-Layer Perceptron (MLP), for the
purpose of predicting drought indicator values. It makes use of the Levenberg-Marquardt
backpropagation algorithm along with the Gauss-Newton iteration method and the gen-
eralization loss as the early stopping method to prevent overfitting the model to the data.
A Support Vector Regressor (SVR) is also used in [85] with an ‘rbf’ kernel for assistance
and three other parameter decisions, including gamma, to reduce model complexity and
space, cost reflecting capacity control, and epsilon representing the loss function, the values
of which were selected based on a trial-and-error basis. The metrics used for comparison
include the Coefficient of Determination (R2), Root Mean Squared Error (RMSE), and Mean
Absolute Error (MAE). It is concluded that the ANN outperforms the SVR in all scenarios
and that both the models serve well for long-term forecasting, giving lower loss metric
values for a higher duration.

A feed-forward Multilayer Perceptron (MLP) is used in [82] for calculating the values
of SPI for the purpose of drought forecasting. The performance metrics used are the
correlation coefficient®, Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE).
SPI-3, SPI-6, and SPI-9 values are forecasted with the help of the model. SPI-9 values seemed
to be more accurate as compared to their SP-3 and SP-6 values.



Sustainability 2023, 15, 6160 12 of 31

Table 2. Summary of works on deep learning models in drought prediction.

Ref. Deep Learning Model Dataset Study Area Indices Used Pros Cons Performance Evaluation Metrics

[73] RNN Data from stations around Iraq from 1950
to 2016 Iraq SPI6, SPI24 Very low MSE and RMSE. The paper uses an RNN whose performance can be

improved by pre-training it with hybrid algorithms.

R2 = 1,
MSE = 9.24 × 10−15,
RMSE = 9.61 × 10−8

[4] Dynamic Models (Hybrid Model) North China Plain, East Asian summer
Monsoon, EI Niño-Southern Oscillation China SPI6

The hybrid model slightly balances
the statistical and dynamic models

with a POD of 20% and a POF of 50%.

It is important to have an in-depth understanding of drought
mechanisms, and it provides global and local modeling

given the low PODs and high POFs in drought prediction.

RMSE = 0.7214
MAE = 0.6104

[74] Deep Belief Network consisting of
two Restricted Boltzmann Machines

The Southwestern United States, with a
total drainage area of 5400 km2 Gunnison River Basin Standardized Streamflow Index

Considering that the SVR model is
implemented in addition to the DBN

model, we might also use the DBN for
pre-schooling and the SVR for the

very last prediction in our
destiny work.

However, its performance over the SVR was not as
impressive. The DBN’s deep architecture cannot be fully

utilized due to the lack of large sample sizes.

Feed Forward
Back Propagation = −07367

Cascade = 71.65

Multi-Layer Perception = 85.61

Time Delay = 88.21

Recurrent = 92.77

Radial Basis Function = 91.25

Quantization = 75.95

Elman = 94.72

Probabilistic = 90.35

Regression = 65.27

[75] LSTM
NCAR Community Earth System Model,
from NASA’s Shuttle Radar Topography

Mission (SRTM)

We recognize the significance of
images transforming into applicable

intensity, duration, and frequency
curves for policymakers, stakeholders,

and model planners.

We use the outputs from reanalysis records for auxiliary
variables. Reanalysis datasets may not be used for the

diverse consultant attention pathways (changed in CMIP6
using Shared Socioeconomic Pathways). Therefore, the ESM

outputs from CMIP records have to be evaluated for
downscaling. Decision day-by-day information is used

because of the goal variable.

RMSE values

DJF = 2.38

JJA = 12.78

MAM = 4.03

SON = 8.32

[76] DNN using MO-OLS Corn-yield data U.S.A.
Found to give more practical

predictions when fared against DNNs
without MO-OLS estimator.

When evaluating future yields under climate change, there is
room to improve accuracy.

Out-of-pattern forecasting overall performance
with 2006–2015 holdout: DNN-MSE = 0.103

DNN with MO-OLS-MSE = 0.065

[77] MLP using Genetic Algorithm Daily atmosphere temperature data Kermanshah and Tabriz, Iran

This model outperformed three other
NN models in comparison,

demonstrating the influence of the
GA algorithm.

The Wrapper method is employed for feature selection in the
data preprocessing step, which, although efficient, is

computationally expensive.

Tabriz—
R2 = 0.946 RMSE—1.722 MAE = 1.391

Kermanshah—R2 = 0.971
RMSE = 1.77
MAE = 1.223

[2] LSTM, Gaussian Process Regression,
Hybrid (GPLSTM-S1 and S2 model)

China Meteorological Science Data
Sharing Service Network

Three-river headwater
region, China SPI

The two models were used for
drought forecasting across eight
stations of the THR region and

successfully forecasted the SPI. They
are useful for large regions.

The PLSTM-S1 has a good performance statistically, but is
not stable. Hence, it is unsuitable for correcting predicted
targets via postprocessing, and more input factors should

be included.

GPLSTM-S2 scores for
RMSE-0.76, MAE-0.62 RSE-0.70

[79] ANN, SVR, WNN
National Meteorological Services Agency

is the data provider Awash River Basin of Ethiopia SPI-3
SPI-12

ANN- manages non-linearity.
Wavelet NN- handles non-stationary

data well.

ANN- has limited capability in handling non-stationary data.
WNN- has a constant change in the coefficient if the initial

value is changed.

ANN-
R2 = 0.9451, RMSE = 0.0610 and MAE = 0.0603

WNN-
R2 = 0.9534, RMSE = 0.0600 and MAE = 0.0536
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Table 2. Cont.

Ref. Deep Learning Model Dataset Study Area Indices Used Pros Cons Performance Evaluation Metrics

[80] Classification and Regression
Trees (CART) Tegal, Central Java Indonesia KBDI Focuses on temperature, humidity,

and evaporation. The accuracy could be further improved.
Accuracy = 0.913, Temperature data = 0.15,

Humidity Data = 3.85,
Rainfall Data = 8.61

[81]
CV

D-CNN RNN DNN
D-GAN

Various Image datasets NA NA D-CNN is more efficient and less
computationally expensive.

Deep learning causes overfitting and the learning of
unnecessary information. NA

[82] MLP NN Selangor basin dataset Selangor river basin, Malaysia
SPI-3
SPI-6
SPI-9

Better for higher SPI. Not suitable for Lower SPI.

SPI-3
R2 = 0.856, MAE = 0.46 RMSE = 0.56

SPI-6
R2 = 0.92

MAE = 0.31 RMSE = 0.39

SPI-9
R2 = 0.94,

MAE = 0.28, RMSE = 0.34

[6] DBNPF Dataset of Zunyi area of
Guizhou Province China Environmental factors

Removes the local minima issue in
NN, relatively more efficient than

traditional methods.

Layer selection consumes more time. It has only been tested
in a selected location, and the area has random data.

RMSE = 0.817
MAE = 0.494

[22] ANFIS Tuban’s BPBD Java, Indonesia

ANFIS performs better than ANN
because ANFIS selects appropriate

strong rules from past data, and
ANFIS predicts the result faster than
ANN. Hybrid ANN—Evolutionary

Algorithm helps improve the quality
of research or adds a hidden layer

to ANN.

ANN from the learned knowledge cannot
represent knowledge.

FIS is not capable of inferring from a pattern.

ANN
RMSE (Soko) = 0.09145
RMSE (Senori) = 0.1288
RMSE (Kerek) = 0.1194

ANFIS
RMSE (Soko) = 0.01733

RMSE (Senori) = 0.01645
RMSE (Kerek) = 0.01714

[83] WNN NOAA/AVHRR data from 2000 to 2009 Guanzhong Plain, Shaanxi, China

PDI
LST

NDVI
VTCI

None
Wavelet neural network prediction results are not up to the

mark. There is a lack of clarity in texture, and it has
low precision.

Errors reached the highest at 0.4

[84] GADMFS The monitoring component gives global
historical drought severity data USA NA

It is essential in acquiring, managing,
and circulating draught information

related to agricultural activities.
It can only be used by developed nations presently. NA

[9] ANN with GAO, SSA, BBO
Iran’s Water Resources
Management Company Dez Dam, Iran

SPI-1
SPI-3
SPI-6

SHDI-1
SHDI-3

The hybridized model performed
better than the ANN model, and

among the optimization algorithms,
PSO has the best performance in the

optimization algorithms.

Black-box model, training is time-consuming.

Best Model
SHDI1

R2 = 0.68
RMSE = 0.58

SHDI3
R2 = 0.81

RMSE = 0.45

SHDI6
R2 = 0.82

RMSE = 0.40

[11] MLP and SVR India Meteorological Department 12 cities in Maharashtra, India 9 meteorological factors

The Multi-Layer Perceptron and
one-dimensional Convolutional

Neural Network, which forecasts
rainfall 1–5 days prior for

better evaluation.

The performance begins to fall slowly as the number of days
for lead time increases. Varying in various cities



Sustainability 2023, 15, 6160 14 of 31

The neural networks used In [96] are the Adaptive Neuro Fuzzy Inference System
(ANFIS) model and the Radial Basis Function (RBF) model. The fuzzy system makes use of
conditional-result logic to design rules using fuzzy decision-making processes. The ANFIS
consists of four inputs, one output, and two laws. It takes in input for drought index values
and produces as output a new index value known as the T.I.B.I index. This T.I.B.I fuzzy
index outperformed the SPEI fuzzy index, and hence, was concluded to be more reliable
based on which certain areas were declared to possess more chance for an intense drought.

Ref. [79] makes use of three data-driven models: Artificial Neural Networks (ANNs)
along with two other models for comparison, which are Wavelet Neural Networks (WNN),
a type of neural network, and Support Vector Regression (SVR) for the estimation of the
Standard Precipitation Index (SPI) over a time scale of three and 12 months (SPI-3 and
SPI-12) to help with drought forecasting. SPI is a drought index based on the probability of
precipitation in any time scale. Wavelet Neural Networks make use of wavelet transforms
that are used for analyzing time series data. The transforms are typically used for figuring
out data trends, discontinuities, and breakdown points. During the wavelet analysis, the
number of decomposition levels was determined based on signal length. The ANN used the
hyperbolic tangent sigmoid activation function for hidden layers and linear function for the
output layer. The Levenberg-Marquardt backpropagation algorithm was used. The WNN
consisted of an input layer of 4–8 neurons and hidden layers of 4–6 neurons and an output
layer of one neuron. The three parameters for the SVR, i.e., gamma, cost, and epsilon, were
estimated on a trial-and-error basis. The performance metrics used were the coefficient of
determination (R2), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE). The
Wavelet Neural Network was seen to perform the best in predicting both SPI-3 and SPI-12
over a lead time of one and six months in all three regions of the basin.

5.2. Drought Forecasting Using CNNs

Convolutional Neural Networks (CNNs) are neural networks renowned for image
processing tasks such as image segmentation, object detection, and image classification.
These networks consist of convolutional layers, pooling layers, and dense layers. The
convolutional layers use the convolution function on the images that involves the element-
by-element multiplication of a filter with corresponding submatrices of the input. The
pooling layer aims to reduce image size to ease further computation without the loss of
core features, which can be done in a number of ways, such as maxpooling (selecting the
maximum value from a submatrix) and averagepooling (selecting the average value from a
submatrix). The dense layers come into play after the image is flattened into a 1D tensor
where they are further processed upon by weights that yield a single value as output.

Ref. [119] carries out the performance analysis of CNN models for the purpose of
drought prediction using satellite images. The CNN models include VGGNet, AlexNet,
and a custom designed CNN architecture model. The CNN consists of three layers, each of
3 × 3 convolutional filters and 2 × 2 maxpool filters, followed by a fully connected layer
and a dropout layer to avoid overfitting. The classification output is then merged with
drought indices and passed across two dense layers after which the final output is obtained.
The CNN is found to outperform both models, with the VGGNet model coming up second
when using the NDVI index, and gives better accuracies for other indices as well.

A Time Distributed Convolutional Neural Network (TD-CNN) trained on the NDVI,
SMI, and SPEI data of a region is used in [120] to help with drought prediction. A TD-CNN
is used to take sequential images as input and generate subsequent sequential outputs.
It basically has multiple parallel CNNs working independently with different weights.
The class of the next image was found by figuring out the relationship between sequential
inputs and feeding the extracted characteristics into an LSTM. The model performed really
well with a really high accuracy.
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5.3. Drought Forecasting Using RNNs

RNNs are models typically used for working with time series data as they keep track
of historical data to make current predictions. They possess the ability to contain previous
inputs, analogous to a memory, to detect subsequent outputs. This is done by passing the
output of the previous step as input to the current step. Unlike other neural networks,
the parameter values stay the same during each phase, minimizing the overall complexity.
Therefore, an RNN consists of the same weights and biases in all the hidden layers with
only the inputs being different, corresponding to the previous layer’s output, thus yielding
a different output for each step. This ability of RNNs is the reason for their usage in tasks
requiring the storage of previous inputs, such as language modelling, speech recognition,
and time series forecasting.

Recurrent Neural Networks (RNNs) are used in [90] with k-fold cross validation serv-
ing as the performance evaluation technique. A Convolutional Long Short-Term Memory
Neural Network is used in [93] to capture both spatial as well as temporal variabilities
in climate by projection. The model consists of three temporal inputs and a time delay
of two months producing a 3D tensor output. The recurrent component in the network
keeps track of temporal variabilities while the convolutional component preserves the
spatial correlation. To increase the resolution of data obtained by the ConvLSTM layers, a
super-resolution block is used. The baseline models used for comparison with the proposed
models involved a Stacked Super-Resolution Convolutional Neural Network (SRCNN)
using stacks of super-resolution CNNs for the generation of high-resolution projections
and the Multi-Scale Laplacian Pyramid Super-Resolution Network (MS-LapSRN) being
a super-resolution mapping low resolution images to high resolution with the help of
the Laplacian Pyramid framework. The ConvLSTM model is optimized using the Adam
optimizer, and the evaluation metrics used include the Root Mean Squared Error (RMSE),
R-squared (R2), and Relative Bias (RB). The ConvLSTM model is seen to excel in all three
metrics, producing the least RMSE and RB values and greatest R2 value.

The Estimation of Standardized Precipitation Evapotranspiration Index (SPEI) is
carried out in [12] for the analysis of drought using machine learning models including
the Random Forest (RF), Extreme Gradient Boost (XGB), Convolutional Neural Network
(CNN), and Long Short-Term Memory (LSTM). Relevant climatic variables are selected and
seven scenarios are formed by forming combinations of these variables. LSTMs are a special
type of RNN that are able to retain historical data for longer durations. The LSTM used
consisted of 100 hidden units followed by a fully connected layer of size 30 with the first
layer containing tanh activation function and the last layer containing sigmoid activation
function along with adam optimizer. The CNN used consisted of convolutional layers with
32 1D filters of size 16 and ReLU activation function and max pooling layers with a pool size
of three and dropout of 0.3. The performance statistics used for evaluating and comparing
the models were the Mean Absolute Error (MAE), Mean Bias Error (MBE), Mean Square
Error (MSE), Nash–Sutcliffe model efficiency coefficient (NSE), and correlation coefficient
(R). Two timescales were used for the estimation, i.e., three months (SPEI-3) and six months
(SPEI-6). The models were seen to excel in different scenarios in different timescales.

The use of a Long Short-Term Memory (LSTM) model is seen in [98] for carrying out
the prediction of the Standardized Precipitation Evapotranspiration Index (SPEI) values
based on previous SPEI values and a combination of other relevant variables such as
temperature, rainfall, cloud cover, and climatic index values. The LSTM consists of five
layers with the input layer consisting of 14 nodes, two LSTM layers with 50 and 25 cells,
respectively, and two dense layers consisting of 12 and one node, respectively. A dropout
of 0.25 was set to avoid overfitting, and RMSE and R2 were used as evaluation metrics for
the model. The analysis was carried out for four lead times, i.e., one month, three months,
six months, and 12 months. Another metric known as the threat score, ranging between
0 and 1 (1 being the perfect score and 0 indicating no skill), was used to understand the
forecasted results with respect to the observed values. The threat score value was 0.93 in
the lead time of one month, 0.91 in the lead time of three months, 0.86 in the lead time of
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six months, and 0.78 in the lead time of 12 months, thus indicating the accurate forecasting
potential of the model.

In [100], a Recurrent Convolutional LSTM SR (ConvLSTM-SR) model is used that com-
bines convolutional LSTMs with Super Resolution blocks consisting of three ConvLSTM
blocks and a super resolution block. The super resolution block enhances the resolution
of the output of the ConvLSTM blocks. The super resolution block consists of six deep
convolutional layers stacked on top of each other with skip connections between them
having ReLU activation. The aim of the paper was to generate precipitation projections
using the previous five days’ climatic data. Dropout was used to prevent overfitting and
the Adam optimizer was used for RMSE loss optimization. The model was compared
with three baseline models: ResLap, DeepSD, and the Quantile Mapping Approach. The
models were evaluated using the RMSE and mean of the absolute difference (bias) metrics
on monsoon as well as non-monsoon seasons. The Recurrent ConvLSTM-SR is shown to
outperform all three models in all seasons.

5.4. Drought Forecasting Using Deep Belief Neural Networks

A Deep Belief Network is a type of Deep Neural Network made up of layers that
are layered Restricted Boltzmann Machines (RBMs). It is a generative model that may be
applied to supervised learning tasks to create classification or regression models as well as
unsupervised learning activities to reduce the dimensionality of features. RBMs are basically
two-layered backward and forward fully connected networks. The gradient update that
occurs with training in them is carried out for both forward as well as backward connections,
done via a method known as contrastive digestion. In the DBN, the output of an RBM is fed
to the next RBM, thus forming a sequence of RBMs that construct the network. They are less
expensive computationally and also are less vulnerable to the vanishing gradient problem.

They are used for the purpose of precipitation forecasting in [6]. The data operated
upon is in the form of a multivariate time series having high dimensions and dense fre-
quency. To avoid redundant and correlated factors/features, factor analysis is carried out
to select independent or almost completely uncorrelated features, thus avoiding unneces-
sary computations. Then, the Deep Belief Network is used for the purpose of performing
unsupervised learning on the data consisting of two parts, the multi-layer Restricted Boltz-
mann Machine (RBM) and the top layer of the network that tunes the subsequent layers
of the RBM. The Boltzmann Machine makes use of probabilities to describe the relation
between independent variables. The number of layers in the model is decided based on
the magnitude of the input data. The deep belief neural network is first used to extract
features via unsupervised learning, after which supervised learning is carried out to predict
the precipitation values which give an overall idea about the likelihood of the occurrence
of a drought in the near future. The model is compared with other traditional machine
learning approaches, namely the SVM, RBF, ARIMA, and ELM models based on the Mean
Absolute Error and Root Mean Squared Error metrics, and the Deep Belief Neural Network
is concluded to perform most optimally.

Ref. [97] proposed a Deep Belief Network (DBN) consisting of two Restricted Boltz-
mann Machines (RBM) for forecasting droughts in the longer term. It used the values of
Standardized Streamflow Index (SSI) as inputs with two stacked RBMs, and forecasts the
SSI values for the next timescale. The timescales considered were 12 and 24 months. It was
compared with a Multilayer Perceptron (MLP) and Support Vector Regression (SVR) model
with the help of R2, MSE, RMSE, and MAE, respectively. The DBN was found to perform
better than both models in all scenarios; however, the margin of difference of the DBN with
the SVR was quite small.

Ref. [101] uses an Empirical Mode Decomposition (EMD) based Deep Belief Network
(DBN) for drought forecasting by prediction of drought indices with the help of the Standard-
ized Streamflow Index (SSI). The EMD first decomposes the data into several Intrinsic Mode
Functions (IMFs), out of which only relevant IMFs are selected for the reconstruction of data.
The criterion for reliable denoising performance was established for each IMF using detrended
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fluctuation analysis (DFA). The DBN consisted of an input layer, two hidden layers, and an
output layer for fine tuning the entire network (two RBMs). The forecast was carried out for
predicting SSI-12 with a lead time of one and two months on six models: MLP, SVR, DBN,
EMD-MLP, EMD-SVR, and EMD-DBN. The evaluation metrics included RMSE, MAE, and
NSE. The accuracies of the DBN and SVR models were at par for all stations in the one-step
ahead prediction, however the EMD-DBN outperformed all the other models in all stations
when it came to the two-step ahead prediction.

5.5. Drought Forecasting Using GANs

Generative Adversarial Networks (GANs) are used to generate artificial data from
scratch using the concept of a generator and a discriminator. The generator tries to create
real images from scratch based on certain parameters; these images are then evaluated
by the discriminator and classified as real looking or fake; the feedback is then passed
on to the generator which modifies its weights accordingly using backpropagation. So, a
GAN is basically a combination of a generator, which tries to optimize itself into producing
more realistic images with training and a discriminator, which tries to enhance its ability
to distinguish between a real image and a generator image with training. Both the units
keep getting better and challenging each other better with training until a model generated
image is good enough to match the characteristics of a real image.

Modified GANs have been used in [117] for the generation of post-flood satellite
images which are harder to obtain directly via satellites due to clouds masking the terrain.
These images can be used for assisting emergency managers for mission planning. The
GAN used in this paper is obtained by modifying the input dimensions of the existing
implementation of the GAN pix2pixHD to 1024 × 1024 × 4 to incorporate the flood
map in images. A linear pipeline has been created with the model at its center. The
evaluation metrics used in this paper include the Learned Perceptual Image Patch Similarity
(LPIPS) metric for photorealism and intersection over union (IoU) between water in the
generated imagery and water in the flood extent map for physical consistency. Both these
metrics are combined into a single metric known as the Flood Visualization Plausibility
Score (FVPS) to avoid the joint hyperparameter optimization problem. The GAN was
fed pre-flooding images along with a physical flood map, which is why it is said to be
a physics-informed GAN. An ordinary GAN without the physics information generated
images that lacked in physical consistency, while a handcrafted baseline model lacked
photorealism. The physics-informed GAN seemed to bridge the gap by generating images
that were physically consistent and photorealistic and due to the linear pipeline laid in the
paper, future modifications are compatible for expanding its application to other disasters,
including droughts.

GANs also serve as the innovative component in [118] for the purpose of soil temperature
estimation based on environmental factors which could serve as an active indicator of a
drought. The GAN is merged with an LSTM network for this purpose. The LSTM comes
under the generator while the discriminator consists of a single neuron and a sigmoid function.
Initially, the LSTM network makes a prediction based on environmental factors, which is then
passed along with the actual observed temperature value to the discriminator which provides
feedback to the generator for updating the weights accordingly, using backpropagation.

5.6. Drought Forecasting Using Hyrbid Models

A Broad Learning (BL) model based on improved complete ensemble empirical mode
decomposition adaptive noise (CEEMDAN) is proposed in [74]. The extreme delay method
was applied on CEEMDAN to improve its end effect. The improved CEEMDAN method
was used for the decomposition of signals into components. The orthogonal trigonome-
try (QR) based BL model was then used for the prediction of these components, which
were reorganized to generate a high-precision drought sequence. The model was seen to
outperform both SVR and the traditional BL model.
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Ref. [88] also uses a hybrid Empirical Mode Decomposition-Deep Belief Network
(EMD-DBN). Empirical Mode Decomposition serves as an adaptive preprocessing method
for time series data. The DBN is constructed using two Restricted Boltzmann Machines
(RBMs) and consists of an input layer, two hidden layers, and an output layer. EMD results
in the formation of several Intrinsic Mode Functions (IMFs) that represent data of time
series in different frequencies. These IMFs are applied to the DBN and the final output is
obtained by the aggregation of corresponding individual predictions. The corresponding
EMD-DBN model was compared with an MLP, DBN, and EMD-MLP model with the
metrics being the Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean
Absolute Error (MAE), and outperformed all three models.

Ref. [80] sees the usage of a hybrid of a decision tree model and a Season AutoRe-
gressive Integrated Moving Average (SARIMA) model, which is basically the addition
of a seasonal component to an ARIMA model which is again basically an integration of
AutoRegressive (AR) and Moving Average (MA) models. The decision tree helps to classify
the data into two classes, i.e., rainfall or drought, and is evaluated with the help of a
confusion matrix while the SARIMA is used to predict the Keetch-Byram Drought Index
and is evaluated using the Root Mean Squared Error (RMSE) metric. The Keetch-Byram
Drought Index describes the likelihood of a drought ranging from 0–2000, representing the
amount of rainfall required to saturate the soil. Based on the application of the decision tree
for classification and the SARIMA model for the time series prediction of the Keetch-Byram
Drought Index values, conclusions involving dependent variables, such as humidity and
temperature, are drawn.

6. Common Disadvantages

1. Artificial Neural Networks—It is an algorithm that imitates the brain’s neural structure.
The most sought-after algorithm in ANN is the MLP and the backpropagation learning
methods. The fundamental issue with Artificial Neural Networks is that they have a
very high potential to learn the data from the given dataset, but they take up a substan-
tial amount of time for processing, and there is no supervision in the internal hidden
layers of the Neural Network; moreover, ANN cannot represent knowledge [82]. ANN
requires processors with identical making ready strength, keeping with their design.
Thus, the acknowledgment of the hardware is reliant [86,103].

2. Fuzzy Interface System (FIS)—Output is determined by the classification of input
with the help of fuzzy theory. Although FIS can represent the knowledge, it has a
major drawback: its inability to manifest results from the pattern and alter as per the
parameter or environmental needs and changes [82].

3. WNN—It was noted from the results that Wavelet neural network prediction results
are not up to the mark. There is a lack of clarity in texture, and it has low precision.

4. RBM: Huge preparation information required, does not encode the position and
direction of the item. Preparing is more troublesome as it is hard to work out the
Energy angle work. Disc calculation utilized in RBMs is not just as natural as the
backpropagation calculation. Weight Adjustment is complex. The scanty grid is
effectively compressible by not removing the zero/invalid components, requiring
less memory space. Additionally, just the non-zero components must be processed.
Henceforth, computational speed increases. One of the hindrances of autoencoders
lies in how they could become incapable in case mistakes are available in the primary
layers [3,11,17,22–24].

5. DT—It cannot efficiently accommodate outliers or any missing values in the dataset.
When the quantity of non-correlated values is substantial, then the accuracy of DT
decreases [114].

6. DBN: Moreover, a critical drawback of DBNs is that they do not represent the two-
dimensional construction of an info picture, which may influence their exhibition and
pertinence in PC vision and media examination issues [4,5,10,17].
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7. LSTM: LSTMs (Long Short-Term Memory) are inclined to overfitting, and it is hard
to apply the dropout calculation to control this issue. Random Forest necessitates
computational power and assets as it constructs various trees and joins their yields. It
also takes a long time to prepare because it joins many choice trees to determine the
class [9,12–14,16,25,26].

8. MLPS: MLPS includes such a large number of boundaries since it is completely
associated. Boundary number = width × profundity × stature. Every hub is associated
with one more in an extremely thick web—bringing about repetition and failure [10,29].

9. CNN: Firstly, CNNs require a large amount of data for training, which can be chal-
lenging to obtain for drought forecasting due to the limited availability of data in
certain regions. Additionally, CNNs may not be suitable for capturing long-term de-
pendencies in time-series data, which is crucial for drought forecasting as the impact
of drought can be felt for extended periods. Finally, CNNs may struggle with handling
missing or incomplete data, which is common in drought monitoring.

7. Open Challenges—Deep Learning-Based Drought Prediction

The open challenges for deep learning-based drought prediction are illustrated in Figure 7.
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Figure 7. Open challenges—Deep learning-based drought prediction.

1. Integrating existing patterns from regional drought patterns in different areas and
developing a universal system for drought prediction.

2. Procuring a significant amount of high-quality historical data from high resolution
monitoring systems to conduct a study and develop a deep learning model and test it.
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3. Enhancing the data selection process from the various environmental and meteorolog-
ical factors and selecting the most suitable indices for forecasting.

4. Inconsistency and ambiguity in data that need real-time processing are major chal-
lenges. Most models are built on pre-existing data, but have not been tested in
real-time conditions, which is a major concern.

5. Infrastructure challenges, and the storage and management of a heavy volume of
data are not cost-effective, and it further needs to be transmitted, which incurs a
combined hefty amount. It also has major security concerns, as data is usually taken
from government-based data centers set up in drought-prone regions.

6. Multi-objective optimization and optimization algorithms used are important chal-
lenges that should be worked upon in future works.

7. Dealing with imbalanced data: Drought datasets are often imbalanced, meaning that
the majority of the data points represent non-drought conditions. Deep learning models
trained on imbalanced datasets can result in poor performance on drought prediction.

8. Adversarial attacks: Deep learning models are vulnerable to adversarial noise, where
small, intentional perturbations to the input data can cause the model to misclassify
or make incorrect predictions.

9. Overfitting: Overfitting occurs when the deep learning model becomes too complex and
starts to memorize the training data rather than learn the underlying patterns. This can
result in poor generalization to new data and reduced performance on drought forecasting.

10. Incorporating domain knowledge: Drought forecasting is a complex problem that
requires domain knowledge of the physical processes involved. Deep learning models
may struggle to incorporate such knowledge into their predictions.

11. Data scarcity: Drought datasets are often limited in size, which can make it challenging
to train deep learning models effectively. Developing techniques to address this
challenge is an ongoing area of research.

8. Future Research Directions
8.1. Explainable AI

Explainable AI plays a major role in enhancing the drawbacks of Machine Learning
as it helps provide a physical understanding of the statistical models [104]. While deep
learning models have shown great potential for drought forecasting, they can be difficult
to interpret and explain, leading to a lack of trust and acceptance from end-users. By
incorporating explainable AI techniques, such as attention mechanisms or visualization
tools, the inner workings of the model can be better understood, leading to improved
trust and adoption. Additionally, by providing insights into the key features and variables
that contribute to drought predictions, these models can help inform decision-making and
support more effective drought management strategies. The future of works in Explainable
AI lies in applying the SHAP in drought forecasting and helping to manage the datasets that
require spatial variables’ processing [105]. SHAP or SHAPley Additive Explanations serve
as visualization tools for model predictions by visualizing output, thus giving them the
status of a diagnostic of the models employed. Future works should target the incorporation
of physical models with consecutive events [106].

8.2. Internet of Everything (IoE)

The Internet of everything is an extension of the Internet of Things (IoT), which also
integrates the process and the people. In the future, the integration of deep learning-based
drought forecasting with the Internet of Everything (IoE) has the potential to revolutionize
the way we predict and mitigate drought impacts. By leveraging the vast amounts of data
generated by interconnected devices, such as weather stations, soil moisture sensors, and
satellite imagery, deep learning models can be trained to generate highly accurate and
timely drought predictions. Additionally, the integration of IoE technologies can provide
real-time information on the state of drought-affected areas, enabling a more efficient
deployment of resources and faster response times to mitigate the impacts of drought.
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However, to fully realize the potential of this approach, significant challenges need to be
addressed, including data privacy concerns, interoperability issues, and the development
of efficient data management and analysis frameworks. There is considerable scope in
future directions for IoE; currently, 99.4% of the physical objects are lying dormant, which
will eventually be connected to the IoE in the future. Most environmental factors associated
with drought forecasting are collected using sensor data and hence IoE would make the
process easier. However, there is very high uncertainty and ambiguity in the vast data
collected by the IoT devices to be used in the IoE systems, and it makes it tougher to utilize
the entire dataset efficiently [107]. Future research should be conducted to reduce the
ambiguity in data and find algorithms that consider all the uncertainty in data or methods
to remove the same in order to aid with the acquisition of a more detailed dataset consisting
of more factors related to drought.

8.3. Big Data and Augmented Analytics

Big Data defines data that is large in volume, can be structured or unstructured, and is
very demanding to manage it. In the context of Big Data and Augmented Analytics, the
future directions of drought forecasting using deep learning will likely focus on leveraging
large amounts of data to improve the accuracy and speed of predictions. One approach is to
combine remote sensing data, weather data, and other relevant data sources to build more
comprehensive and accurate models. Another approach is to develop more sophisticated
deep learning algorithms that can process and analyze these large datasets in real-time.
Additionally, the use of augmented analytics, which involves using machine learning and
natural language processing to automate data preparation and analysis, could streamline
the process of generating insights from these large datasets. This could help researchers
and decision-makers to quickly identify areas at risk of drought and develop effective
mitigation strategies. Drought forecasting takes into account correlated environment factor
and there are a vast number of environmental factors to be considered during this process.
The values or satellite images considered for the dataset are usually taken in the form of a
time series, hence indicating a continuous stream of data being captured over a long period
of time to prepare a dataset that is of adequate size in which process the data comes under
Big Data. Therefore, there is a need for techniques like Augmented Analytics to manage
Big Data and accomplish business-related tasks with high computational efficiency. Future
work should be done to ensure the process becomes cost-effective, too, because currently,
the costs due to infrastructure, managing, and storing are very high [108].

8.4. Cloud, Edge, and Fog Computing

The future directions of drought forecasting using deep learning in the context of
Cloud, Edge, and Fog computing lie in the development of more efficient and robust
deep learning models that can handle the massive amounts of data generated by these
technologies. This includes the use of distributed deep learning frameworks that can
effectively utilize cloud resources, as well as edge and fog computing technologies that
can process data closer to the source. Additionally, research efforts are needed to develop
more energy-efficient deep learning algorithms that can operate on resource-constrained
devices. Cloud computing makes computing services more convenient by offering them
over the internet. This includes storage and databases, software, networking, etc. The
advantages of cloud computing include the low cost because of the lack of hardware, high
speed because of lesser traffic, better security, and better reliability because of efficient data
backup and recovery. Edge Computing is an information technology architecture in which
the client data is processed close to the originating source, in particular, the periphery of
the network. Thus, storage and computing resources are moved from the central data
center to the data source. The primary advantage it offers is the reduction of latency and
increasing of network performance. Fog Computing is also an information technology
architecture, similar to Edge Computing, but with the difference of placing compute and
storage resources within the data, but not necessarily at the same location. Fog Computing
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operates a series of fog node deployments that handle data collection, processing, and
analysis. The fog nodes have higher processing and storage capabilities than edge IoT
devices. Its main advantage also lies in the reduction of latency. Edge and Fog computing
are an enhancement to Cloud computing and are designed to prevent time-sensitive data
from being sent back to the cloud rather than being processed locally. The implementation
of these technologies would involve working on a huge amount of data and with the
increasing network performance and reduction in the latency of transmission of all the
data, a huge boost in time complexity would be observed. Thus, future works for the same
could be combined to assist IoT-based solutions for drought forecasting.

8.5. Drones and Unmanned Aerial Vehicles

The Unmanned Aerial Vehicles or UAVS are commonly known as drones, and the
name itself indicates that neither a person nor pilot pilots the aircraft. They were originally
designed for military applications, but the utilization has changed over time to include
more areas. One such area is weather and rainfall. Drones are deployed to produce and
analyze data in real time. It can also be utilized for remote sensing various weather patterns
and can predict certain aspects, such as droughts and cropping patterns. A device could
be embedded into the drone with the application of remote control through any wireless
mode of transmission with different sensors to identify the usage of soil moisture. The
drone could fly over vast areas while being controlled remotely for landing on the ground
to collect information including soil temperature moisture content, which can be analyzed
using data processing tools for drought forecasting [109].

8.6. Cyber-Physical Systems

It is an intelligent system that is mostly automated with algorithms. A Cyber Physical
System combines cybernetics, mechatronics, design, and process science theories. It also
encompasses major properties and features of the Internet of Things, but has a higher
level of process flow between its elements [111–114]. When wireless networks combined
with sensors attached to embedded systems with data-processing platforms, are combined
with visualizations outputs, predictions can be utilized to give the desired results in
drought forecasting. They could be used to make data input autonomous so that there is
less interaction and corruption of data with Human Input. Figure 8 portrays the future
directions for drought forecasting.
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9. Conclusions

With the rise in popularity of machine learning and deep learning models for the
automation of various processes, drought forecasting is seen to join the areas of application
to employ the same [120]. Various ML-primarily based trends have been used for drought
forecasting due to their relative ease of operation and aid in the reduction of computation
costs and time expenditure. The most common models in the process are seen to be Artificial
Neural Networks (ANN), Support Vector Machines (SVM), Deep Neural Networks (DNN),
Adaptive neuro fuzzy inference system (ANFIS), Random Forest (RF), and Deep Belief
Networks (DBN), and their combinations have been formed to predict various drought
indices. Deep learning techniques have gained significant attention in recent years due to
their ability to model complex nonlinear relationships in large datasets. Researchers have
explored the potential of these techniques in various fields of geotechnical engineering,
including drought forecasting. In their state-of-the-art review of artificial intelligence appli-
cations in geotechnical engineering, ref. [122] highlighted the promising results achieved by
deep learning algorithms. Similarly, ref. [123] provided a comprehensive review of machine
learning in geotechnical reliability analysis and identified various deep learning algorithms,
such as convolutional neural networks (CNNs) and recurrent neural networks (RNNs), for
prediction and classification tasks. They further demonstrated the effectiveness of these
algorithms in improving the accuracy and reliability of geotechnical models. These studies
suggest that deep learning algorithms have the potential to improve drought forecasting
by accurately modeling the complex interactions between various climate and hydrological
variables, and provide valuable insights for future research in this field.

According to the papers reviewed, wavelet neural network models performed the
best among other models for forecasting SPI values over various lead times. Support
Vector Machines are more accurate in predicting the water levels than ANN models. ANNs
produce an accurate result, but are restricted while handling non-stationary data which is
where wavelet analysis comes in. Among Linear Regression (LR), Ridge Regression, and
Ordinary Least Squares (OLS), OLS models proved to be the most inferior as they failed
to produce a good accuracy, in contrast to LR, which proved to be the optimum choice.
Random Forest (RF) models’ performance is seen to be at par with different supervised
studying trends, together with assist vector systems or boosted regression trees. GANs
have been used for the production of image data for the deep learning models to work
upon them for making predictions. CNNs perform moderately well with image data but
their performance is limited to the quality of the image, particularly the amount of noise
present. RNNs and LSTMs excel in making long- as well as short-term drought predictions
as they are able to successfully adapt to the time series data provided to them. DBNs are
primarily used to predict drought index values, and by themselves, they do not excel from
other traditional machine learning models, such as SVM, by a huge margin. To enhance
its performance, certain modifications, such as Empirical Mode Decomposition (EVD), are
applied, which improves the performance of the DBN significantly.

Precipitation variability was seen to be a factor that hindered the performance of all
models while forecasting drought because of its unpredictable nature. The inclusion of
more drought factors in the learning process of the algorithms is a proposed solution.

After scrutinizing various research works, we concluded that certain parameters, if
focused upon, increase the usefulness of the algorithms.

• The Bayesian inference and Gradient descent are used to optimize the GPR and LSTM,
but in [2] GPLSTM-S1, which has these optimizations and statistically has superior
performance, it is not stable and hence is not suitable to correct the predicted target
via the post-processing technique. Hence, GPLSTM-S2 is more suitable as it is stable
and obtains an effective drought warning at its semi-stochastic alternating gradient
descent optimization.

• The most optimum method of finding features for focusing a model for drought
prediction using the environmental features is by picking and implementing with the
help of the Akaike Information Criterion, whichever value is relatively the smallest.
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• Over and under-sampling can handle data imbalance handling, which facilitates loss
computation. Another method could be the penalizing algorithms [79].

• The ARIMA model from [80] can be chosen by combining the autocorrelation coeffi-
cient and partial autocorrelation coefficient.

• MO-OLS is a hybrid algorithm on the existing OLS algorithm introduced in [76] that
improved the performance of models using the standard OLS or even LR algorithms.

• Depth as a parameter of Deep Neural Network has been explored in depth in [76],
which resulted in the finding that a DNN with two hidden layers, with seven neurons
each, gave the best results in terms of MSE, precision, F-measure, etc., along with a
reasonable execution time [114–116].
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Abbreviations
List of abbreviations used in this manuscript along with their full form.

Abbreviations Full Form
ANN Artificial Neural Network
CNN Convolution Neural Network
RNN Recurrent Neural Network
GDFS Global Drought Information System
MLP Multi-Layer Perceptron
SVR Support Vector Regression
SVM Support Vector Machines
DT Decision Trees
MARS Multivariate Adaptive Regression Spline
GPCC Global Precipitation Climatology Centre
NOAA STAR National Oceanic and Atmospheric Administration

Satellite Applications and Research
SPEI Standardized Precipitation Evapotranspiration Index
NLDAS multi-institution North American Land Data Assimilation System
LSTM Long Short-Term Memory
DNN Deep Neural Network
CV Computer Vision
DCNN Deep Convolution Neural Network
DGAN Deep Generative Adversarial Network
ANFIS Adaptive Neuro-Fuzzy Inference System or Adaptive Network-Based

Fuzzy Inference System
WNN Wavelet Neural Network
SSO Spherical Self-Organizing Neural Network
BBO Biogeography Based Optimization Neural Network
RF Random Forest
ARIMA Autoregressive Integrated Moving Average
NFIS-WPM Neural Fuzzy Inference System-Based Weather Prediction Model
WANN Weightless Artificial Neural Network
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BNN Binarized Neural Network
TOPSIS Technique for Order Performance by Similarity to Ideal Solution
YOLO You Only Look Once
CART Classification and Regression Trees
PDSI Palmer Drought Severity Index
MO-OLS Mean Order Ordinary Least Squares
DBN Deep Belief Network
NMME North American Multi-Model Ensemble
SPI Standardized Precipitation Index
SSI Showalter Stability Index
PDI Perpendicular Dryness Index
MDPI Modified Perpendicular Dryness Index
LST Land Surface Temperature
NVDI Normalized Difference Vegetation Index
VTCI Vegetation Temperature Condition Index
CART Classification and Regression Trees
NLDAS Land Data Assimilation System
RAI Rainfall Anomaly Index
KDBI Keetch–Byram Drought Index
EDI Effective Drought Index
DFI Drought Frequency Index
RDI Reconnaissance Drought Index
RRV Resiliency-Reliability-Vulnerability
PMDI Palmer modified draught systems
VTCI Vegetation Temperature Condition Index
GPWv3 Gridded Population of the World, Model 3
EM-DAT Emergency Events Database
GDP Gross Domestic Product
GDIS Global Drought Information Systems
ECMWF European Centre for Medium-Range Weather Forecasts
R2 Coefficient of Determination
RMSE Root Mean Squared Error
MAE Mean Absolute Error
RBF Radial Basis Function
WNN Wavelet Neural Networks
TD-CNN Time Distributed Convolutional Neural Network
SSRCNN Stacked Super-Resolution Convolutional Neural Network
MS-LapSRN Multi-Scale Laplacian Pyramid Super-Resolution Network
RB Relative Bias
XGB Extreme Gradient Boost
LSTM Long Short-Term Memory
MBE Mean Bias Error
NSE Nash–Sutcliffe model efficiency coefficient
ConvLSTM-SR Convolutional LSTM SR
RBM Restricted Boltzmann Machines
EMD Empirical Mode Decomposition
IMFs Intrinsic Mode Functions
DFA detrended fluctuation analysis
GAN Generative Adversarial Networks
LPIPS Learned Perceptual Image Patch Similarity
IoU Intersection over Union
FVPS Flood Visualization Plausibility Score
BL Broad Learning
CEEDMAN Complete ensemble empirical mode decomposition adaptive noise
EMDDBN Empirical Mode Decomposition-Deep Belief Network
SARIMA Season AutoRegressive Integrated Moving Average
AR AutoRegressive
MA Moving Average
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SRTM Shuttle Radar Topography Mission
GPLSTM Gaussian Process Regression, Hybrid
FIS Fuzzy Interface System
IoE Internet of Everything
IoT Internet of Things
OLS Ordinary Least Squares
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