
24 August 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Context and User Aware Smart Notification System / Corno, Fulvio; DE RUSSIS, Luigi; Montanaro, Teodoro. -
STAMPA. - (2015), pp. 645-651. ((Intervento presentato al convegno IEEE 2nd World Forum on Internet of Things (WF-
IoT) tenutosi a Milan, Italy nel 14-16 December 2015 [10.1109/WF-IoT.2015.7389130].

Original

A Context and User Aware Smart Notification System

Publisher:

Published
DOI:10.1109/WF-IoT.2015.7389130

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2627751 since: 2016-01-27T20:30:34Z

IEEE

A Context and User Aware Smart Notification
System

Fulvio Corno∗, Luigi De Russis∗, and Teodoro Montanaro∗
∗Politecnico di Torino Corso Duca degli Abruzzi, 24 Torino, Italy 10129

{fulvio.corno, luigi.derussis, teodoro.montanaro}@polito.it

Abstract—Nowadays, notifications are increasingly gaining
momentum in our society. New smart devices and appliances are
developed everyday with the ability to generate, send and show
messages about their status, acquired data and/or information
received from other devices and users. Consequently, the number
of notifications received by a user is growing and the tolerance to
them could decrease in a short time. This paper presents a smart
notification system that uses machine learning algorithms to
adequately manage incoming notifications. According to context
awareness and user habits, the system decides: a) who should
receive an incoming notification; b) what is the best moment to
show the notification to the chosen user(s); c) on which device(s)
the chosen user(s) should receive the notification; d) which is the
best way to notify the incoming notification. After the design of
a general architecture, as a first step in building such a system,
three different machine learning algorithms were compared in
the task of establishing the best device on which the incoming
notification should be delivered. The algorithms were applied to
a dataset derived from real data provided by the MIT Media
Laboratory Reality Mining project, enriched with additional
synthetic information.

Keywords—Notifications; Machine Learning; Internet of
Things;

I. INTRODUCTION

During the last five years, we were faced by a rapid spread
of smart “things,” physical objects that are always connected to
the Internet and are able to accomplish new tasks, like tracking
fitness-related metrics (e.g., distance walked or run, calories
used up, heartbeat and quality of sleep). New devices and
appliances are developed and released every day: wearable
fitness bracelets, smart washing machines, smart ovens, and
smart thermostats are only a few of the existing Internet of
Things (IoT) devices.

One of the features provided by all smart devices is the
possibility to generate notifications and, in some cases, to
receive and show notifications sent by other services/devices.
For instance, if the smart washing machine has just finished
the washing cycle and a smart TV is registered as a receiver of
messages generated by it, a notification will be shown on both
the smart TV and the washing machine itself. Moreover, online
social services like Facebook can generate a great number of
notifications on all connected devices, e.g., they can notify the
user about an incoming message or a friend’s new post.

Thus, the number of incoming notifications is growing
and the benefit of displaying the same notification on all
available devices could put user patience to a hard test. To
better understand the problem, we can look at a simple scenario
in which a user is in her house and owns a smartphone, a

smartwatch, a tablet, a smart thermostat and some other IoT
devices. Let’s assume that the thermostat app is installed on
all the 3 available devices and that in a specific moment
of the day the thermostat recognizes a low battery status.
Consequently, it sends a message to inform the user. As a
result, the user receives 3 different notifications, one on each
connected device, for a single message: this replication can
be reasonably boring or maybe distracting. Moreover, this
trouble becomes more problematic in more complex situations
in which, instead of having one single user and one single
IoT device, we have multiple users and several IoT devices.
The problem of overwhelming notifications is supported by
the study conducted by Church et al. [1] on the reasons
and perceptions of WhatsApp, a popular mobile messaging
application, in which some interviewees declared they were
annoyed with the amount of notifications received by mobile
messaging applications in general. Moreover, the large-scale
assessment of mobile notifications made by Sahami et al. [2]
demonstrates that, even though not all the notifications are
equally valued by users, they are becoming pervasive and
sometimes they reduce users overall performance distracting
them from other tasks. Furthermore, they observed that the
users’ reaction to notifications changes according to what
she was doing before it (e.g., during a voice chatting the
notification is temporarily ignored), the context in which the
user was involved (e.g., if the user was at work, she used
notifications to keep in contact with everything she did) and
obviously on her habits.

This paper presents the architecture of a smart notification
system that uses machine learning algorithms to manage in-
coming notifications according to context awareness and users
habits. Such a system is composed by different modules that
monitor environment and users to provide updated information
to the core component, a central Decision maker module,
that makes decisions about who should receive the incoming
notification, on which device(s), in which moment and with
which mode(s) (e.g., vibration, sound, light signal).

As a first step in building the described system, three
different supervised machine learning algorithms were applied
on a reduced dataset to establish the best device on which
each incoming notification should be delivered. The dataset
was made by a mixture of synthetic and real data taken from
the MIT Media Laboratory Reality Mining project [3].

The remainder of the paper is organized as follows: Section
2 analyses existing related works, Section 3 describes the
proposed architecture, Section 4 analyses the first developed
prototype and reports the preliminary results obtained by using
three different machine learning algorithms (Support Vector

Fulvio
Text Box
Author's preprint. Paper accepted for presentation atThe 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT) 14-16 December 2015, Milan, Italy

Machine, Gaussian Naive Bayes, and Decision Trees) and
Section 5 concludes the paper with some considerations and
future works.

II. BACKGROUND AND RELATED WORKS

The problems related to intrusive, annoying and repetitive
notifications have been treated in several existing works and
projects and several specific solutions can be found in litera-
ture. However, only a few of them uses machine learning to
approach the problem.

Machine learning is based on algorithms able to learn
from and make predictions on data: they use sample inputs,
called training sets, to build a model that is then exploited to
make predictions [4]. Two different main machine learning
algorithm categories can be identified: supervised learning
and unsupervised learning algorithms. The difference between
them is in the used dataset: supervised learning algorithms use
data that have already been classified and to which labels have
already been assigned. This kind of data are called labeled data
and helps the algorithm to make the same prediction in similar
situations. Unsupervised learning algorithms, instead, try to
find hidden structure in unlabeled data by creating groups of
data with similar properties.

One of the work that addresses the overwhelming notifi-
cation problem is the one proposed by Bohmer et al. [5] that
explains how a smartphone abrupt full-screen notification used
to alert user(s) about incoming calls forcibly interrupting what-
ever activity the user was already engaged in. They propose a
smaller partial-screen notification as a solution to the problem.
Moreover, Ardissono et al. [6] propose a notification model to
reduce the disruptive effect of notifications on user attention.
Their model predicts user activities using information received
by different heterogeneous Web applications and uses these
predictions to decide whether to show, postpone or delete
received notifications. Even though these works address only
specific problems connected to notifications, they are strictly
related to our system and their notification modalities could
be integrated in our future works.

In addition, some other projects have already developed
works that could inspire or may be integrated in the next
versions of our system. Roecker et al. [7], for instance, explore
alternative approaches and strategies for email filtering and
notification with the rationale of developing an unobtrusive
notification interface that can be adapted to the users context.
Leonidis et al. [8] present a semantics-based, context-aware
notification system that provides personalized university alerts
(e.g., reminders about timetable) to graduate students based
on their preferences. Banerjee et al. [9] describe a universal
notification system that considers connected solutions, context
awareness, and user preferences to generate and distribute
smart city notifications. Etter et al. [10] propose the Awareness
and Notification Service (ANS) that makes applications aware
of context changes by notifying them with appropriate render-
ing of intensity. Furthermore, some commercial products have
already been developed: one of them is Google Inbox [11] that
scans user email accounts to identify important and similar
information aiming at presenting what it considers the most
important parts of the email first and group similar emails.

Moreover, Poppinga et al. [12] conducted a large-scale,
longitudinal study, collecting 6,581 notifications from 79 dif-
ferent users over a 76-day time period, aiming at developing a
model for predicting suitable moments for issuing notifications.
Unfortunately, this collected notifications dataset is not useful
for our purposes: it contains only information about users
reaction to a notification (immediately answer or not) without
any information about the type of received notification and/or
the user that received it.

Finally, a notification framework architecture was proposed
by Arlein et al. [13]: it is similar to our system, in fact it
allows notifications to be efficiently and effectively distributed
and displayed in diverse new environments. However, it is
different from our work due to a different approach to the
problem. The first assumption that they do is related to the
replication of the system: they assume that the system should
be replicated for each user considering only devices in the
decision process instead of the combination of both users and
devices. Moreover, even though both the architectures accept
notifications over multiple protocols, the architecture proposed
by Arlein uses a deterministic approach to make decisions: a
sequence of conditions are evaluated and, consequently, the
system does not learn behaviors from previous detections (like
we do using machine learning algorithm). In addition, they
do not consider context aware and user habits: contexts are
only handled in the adaptation process in which the system
chooses to adapt the notification as a summary or a complete
notification.

III. ARCHITECTURE

The designed smart notification system is a modular system
able to manage notifications using machine learning algo-
rithms.

A typical intended usage of the system is described in the
following scenario, that will be used as a running example: a
user (let’s call her Maria) is in her house and it is 10 o’clock
in the morning. She owns a smartphone, a smart washing
machine, a smart fridge and a smart TV. While Maria is having
a shower, the washing machine ends its washing cycle and
sends a notification to Maria. Considering that she is involved
in an activity that does not let her use any available device,
the system decides to postpone the notification of the message
by 15 minutes, the predicted moment in which she will exit
the bathroom and take her smartphone. Furthermore, due to
the current time and the available notification modes, a sound
and a message on the phone are chosen as methods to deliver
the notification. Therefore, the smartphone is chosen as the
receiver of the notification and the end of the shower is chosen
as the right moment to notify it with a sound and a message
on the phone.

Figure 1 shows the architecture of the proposed system: it
accepts notifications from different external sources through its
Collector module. Notifications are then sent to the Decision
maker that is aware of environment status (e.g., weather
information, current date and time), user context (e.g., location,
status, current activity), and user habits and uses them to
choose the best devices and the best ways (e.g., vibration,
sound, or a light signal) to present the received notifications.
Finally, the Dispatcher adapts the notifications to the chosen
target devices and actually sends them.

Fig. 1: Architecture design

Three main different sources are responsible for providing
information about context:

• user personal sensors, devices, and services provide in-
formation related only to people (called “user context”);

• environment sensors, devices, and services provide infor-
mation related only to the ambient (called “environment
context”);

• general IoT sensors, devices, and services that provide
information related to both users and environment (called
“IoT devices”).

The following description depicts the details of the most
important architectural elements.

The Environment Context Analysis and User Context
Analysis modules support the Decision maker for retrieving
information shown in Table I about environment and user
context. These data are acquired from external blocks such
as sensors, cloud services (e.g., calendar), and IoT devices.

The Decision maker is the core of the system being
responsible for all the decisions: every time it receives a
notification, it takes the information from the two context
analysis components and from the habits module, and decides:

• who should receive the incoming notification (one or more
users);

• what is the best moment to show the notification to the
chosen user(s) (i.e., a notification can be postponed or
ignored if it does not contain important information);

• on which device(s) the chosen user(s) will receive the
notification;

• which is the best way to notify the incoming notification.

The most important characteristic of this module is the way
used to make decisions: a supervised learning classification
algorithm is responsible for all the described choices.

User context

Current activity

Current location

User preferences

Personal user information

Environment context
Current timestamp

Other static information (e.g., building information)

Available IoT devices
information

Owner

Current location

Current status (e.g., on, off, standby)

Available modes

TABLE I: Context information

Information about incoming notification

Sender

Receiver

Type of notification

Timestamp of receipt

Contained message/information

Assigned labels to outgoing notifications

Target devices

Chosen mode

Delivery timestamp

TABLE II: Notification information

As already explained, supervised machine learning algo-
rithms are trained through labeled datasets, so we defined the
essential characteristics and information that the system should
manage to make the right decision.

Table I shows the list of context information needed by the

algorithm to make decisions: information related to available
IoT devices (such as device owner, device current location and
device current status), user context and environment context
(e.g., user current position or current timestamp). Table II,
instead, lists the information related to both incoming and
outgoing notifications. Every time a notification arrives, the
Decision maker collects available context data and, using the
trained algorithm, considers incoming information to make a
decision.

Looking at the scenario presented at the beginning of the
section and to better understand the behavior of the Decision
maker a reduced dataset (i.e., showing key information only)
is presented:

• User context information
◦ user: Maria
◦ current activity: having a shower
◦ current location: house - bathroom

• Environment context information
◦ current timestamp: 2015-06-11T10:00:30

• Available IoT devices information
◦ Smartphone

current location: bedroom (home)
current status: on

◦ Smart TV
current location: kitchen (home)
current status: off

• Information about incoming notification
◦ Sender: washing machine
◦ Receiver: every family member
◦ Type of notification: service message
◦ Timestamp of receipt: 2015-06-11T10:00:15
◦ Message: washing cycle ended.

The Decision maker will use this dataset to make the fol-
lowing decision (the following information will be contained
in the outgoing notification):

• target devices: smartphone
• chosen mode: sound + message
• delivery timestamp: 2015-06-11T10:15:30.

Moreover, as depicted in Figure 1, the Decision maker is
supported by other modules. The first one is the Collector that
is responsible for retrieving any kind of notification generated
or arrived from every external service and IoT device.

Secondly, the Dispatcher module is responsible for the
distribution of the notifications: it adapts the notifications
generated by the Decision maker according to the output
methods supported by each device and to the method selected
by the Decision maker. Then, it sends them to the right device.

IV. PROTOTYPE AND PRELIMINARY RESULTS

In order to evaluate the best machine learning approach
applicable to managing overwhelming notifications, a prelim-
inary version of the Decision maker module was prototyped
and tested using a reduced dataset.

Aiming at obtaining data for the training and the test
phases of the developed machine learning algorithm, the MIT

Information # of elements Used values

senders 4 /

users (possible receivers) 94 /

personal devices per user 2 /

overlapping
activities 7

working, sleeping, cooking, break
from work, having a shower,

programming, surfing the Internet

notification types 5

social network, security alarm,
personal health, temperature

notification, wearable fitness tracker
notification

available user
locations 3 work, house, elsewhere

TABLE III: Dimension of used dataset

Media Laboratory Reality Mining project [3] was chosen as
the basis dataset containing as much needed information as
possible with a consistent number of samples. MIT researchers
used mobile phones to collect data about call logs, Bluetooth
devices in proximity, cell tower IDs, application usage, and
phone status. 94 people over 9 months were monitored and
the collected data were, then, used to infer different user
information including location.

Thus, a simplified dataset was created using a Python script
that added synthetic information to the dataset. It contains the
following data:

• Sender
• Receiver
• Type of notification
• Timestamp of receipt
• User current activity
• User current location
• Available devices for the user
• Target device.

For the purpose of training, a label was programmati-
cally assigned to each sample representing the chosen device:
Table III shows the dimensional details of the used dataset
containing 165,289 samples.

Moreover, in this preliminary implementation we decided
to simplify the work of the Decision maker by:

• choosing only one device as receiver of the notification
instead of more than one;

• assuming that each device has only one available mode
to show/notify the notification;

• ignoring the decision related to the best time to deliver
the notification.

As already discussed, machine learning algorithms learn
from and make predictions on data and the difference between
labeled and unlabeled dataset was already explained, however
another distinction between input data is needed. Considering
that machine learning algorithms accept only numerical values
as input and that these numbers can be related or not, we can
divide input data into:

• related data, that is represented by an ordinal value [14],
possessing the properties of ordering and proximity (e.g.,

ML Algorithm

Percentage of
corrected

predictions with
unrelated data

Percentage of
corrected

predictions with
related data

Support Vector Machine 81,6% 96.1%
Gaussian Naive Bayes 51.3% 83.4%

Decision Trees 99,9% 93.9%

TABLE IV: Percentage of corrected predictions obtained with
used algorithms

if a machine learning algorithm accepts the receipt time of
a notification as input, each value will be represented by
a related number and so 1 o’clock is nearer to 2 o’clock
than to 4 o’clock);

• unrelated data, that is data in nominal scale, i.e., data with
equality property and without the ordinal and proximity
ones (e.g., if a machine learning algorithm accepts the
sender of a notification as input, each sender will be
identified by a number and it is easy to understand that
the first sender does not have any relation to the second).

In our situation all the information contained in the simpli-
fied dataset can be considered as unrelated data except from
the receipt of timestamp

Each machine learning algorithm deals differently with
related and unrelated data, so we decided to compare three
different machine learning algorithms for this preliminary
implementation: Support Vector Machine (SVM) [15], Gaus-
sian Naive Bayes (GNB) [16] and Decision Trees (DT) [17].
The first two algorithms try to find a correlation between
inserted data in order to classify them and so they work better
with related data. Instead, the DT algorithm tries to create a
flowchart-like structure in which each internal node represents
a test on an attribute, each branch represents the outcome of the
test, and each leaf node represents a label. The paths from root
to leaf represents classification rules and, as can be understood,
it does not look for relations between data.

Moreover, two different experiments were conducted with
each algorithm, one with only related data and another one
with both related and unrelated data: we expected that SVM
and GNB work worse with unrelated dataset than with related
one and that DT works better with unrelated than with related.

The three algorithms were implemented using the Python
programming language through the Anaconda distribution [18]
and the Scikit-learn tool [19]. We used 80% of the data as
training dataset and the other 20% for tests over 165,289
samples.

A notebook with the following characteristics was used for
running all the experiments:

• CPU: Intel Core i7-4800MQ
• RAM: 16GB PC3-12800 (800MHz)

Table IV shows prediction accuracy results obtained with
both related and unrelated: as expected, SVM and GNB seem
to work worse than DT with unrelated data. But if we look at
the results obtained with related one, we can easily establish
that the SVM algorithm becomes the best algorithm as a
consequence of the addition of related information. Moreover,

ML Algorithm CPU time with
unrelated data

CPU time with
related work

Support Vector Machine 5296.1 s 5801.1 s
Gaussian Naive Bayes 1.2 s 12.9 s

Decision Trees 15.5 s 13.9 s

TABLE V: CPU time for a training phase with 33058 samples

ML Algorithm CPU time with
unrelated data

CPU time with
related work

Support Vector Machine 40.19 ms 40.22 ms
Gaussian Naive Bayes 0.29 ms 0.31 ms

Decision Trees 0.001 ms 0.001 ms

TABLE VI: Average CPU time for each notification classifi-
cation

the analysis of each wrong decision, we noticed that all the
errors made by DT in the second experiment were related to
combination of attributes that were not present in the training
set, implying that DT do not work very well with unknown
notifications contained in related data.

The CPU time was collected and the obtained values are
reported in Table V and Table VI1. Confidence interval are
not present in the tables since all the calculations occur for
a single run of each ML algorithm. As can be seen, the
SVM algorithm is the slowest algorithm between the analyzed
ones, however, the classification time is acceptable for real
situations. Consequently, considering the accuracy percentage
obtained with related data (that are the most complete) and
the obtained CPU time, SVM is the most promising machine
learning algorithm for notification classification and so it will
be at the core of our future work. In addition, we will also
evaluate the possibility of using it in combination with other
algorithms to obtain better predictions with both related and
unrelated information.

V. CONCLUSIONS

In this paper, we present a modular architecture that uses
machine learning algorithms to manage incoming notifications.
According to context awareness and user habits, the presented
architectural system is able to decide who should receive the
incoming notification, on which device(s), in which moment
and with which mode(s) (e.g., vibration, sound, light signal). A
simplified version of the architecture has been prototyped and
a preliminary validation has been performed. Three different
machine learning algorithms were used on an adapted dataset
and results show that the SVM algorithm is the most promising
algorithm for our purposes in terms of prediction accuracy and,
so, it will be at the core of our future efforts.

Future work will extend the dataset to include all the
information discussed in the Architecture section and a system
to collect real data and real notifications from volunteers will
be developed. Furthermore, a careful evaluation of the machine
learning algorithms will be performed and the possibility of
using different algorithms after other ones will be evaluated.
Finally, the prototype will be enhanced to include unconsidered

1The time reported in Table VI is computed dividing the execution time for
classifying all the notifications for the number of notifications.

blocks and a more complete implementation will be evaluated
by an adequate number of people aiming at obtaining struc-
tured information about the accuracy of predictions made by
it and a more completed dataset for the system training.

ACKNOWLEDGMENT

Teodoro Montanaro currently exploits a research grant by
Telecom Italia SWARM Joint Open Lab.

REFERENCES

[1] K. Church and R. de Oliveira, “What’s up with whatsapp?: Com-
paring mobile instant messaging behaviors with traditional sms,” in
Proceedings of the 15th International Conference on Human-computer
Interaction with Mobile Devices and Services, ser. MobileHCI ’13.
New York, NY, USA: ACM, 2013, pp. 352–361.

[2] A. Sahami Shirazi, N. Henze, T. Dingler, M. Pielot, D. Weber, and
A. Schmidt, “Large-scale assessment of mobile notifications,” in Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems, ser. CHI ’14. ACM, 2014, pp. 3055–3064.

[3] N. Eagle and A. (Sandy) Pentland, “Reality mining: Sensing complex
social systems,” Personal Ubiquitous Comput., vol. 10, no. 4, pp. 255–
268, Mar. 2006.

[4] P. Harrington, Machine Learning in Action. Manning Publications
Company, 2011.

[5] M. Böhmer, C. Lander, S. Gehring, D. P. Brumby, and A. Krüger,
“Interrupted by a phone call: Exploring designs for lowering the impact
of call notifications for smartphone users,” in Proceedings of the 32Nd
Annual ACM Conference on Human Factors in Computing Systems, ser.
CHI ’14. New York, NY, USA: ACM, 2014, pp. 3045–3054.

[6] L. Ardissono, G. Bosio, A. Goy, G. Petrone, and M. Segnan, “Managing
context-dependent workspace awareness in an e-collaboration environ-
ment,” in Proceedings of the 2009 IEEE/WIC/ACM International Joint
Conference on Web Intelligence and Intelligent Agent Technology -
Volume 03, ser. WI-IAT ’09. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 42–45.

[7] C. Roecker, V. Bayon, M. Memisoglu, and N. Streitz, “Context-
dependent email notification using ambient displays and mobile de-
vices,” in Active Media Technology, 2005. (AMT 2005). Proceedings of
the 2005 International Conference on, May 2005, pp. 137–138.

[8] A. Leonidis, G. Baryannis, X. Fafoutis, M. Korozi, N. Gazoni, M. Dim-
itriou, M. Koutsogiannaki, A. Boutsika, M. Papadakis, H. Papagian-
nakis, G. Tesseris, E. Voskakis, A. Bikakis, and G. Antoniou, “Alertme:
A semantics-based context-aware notification system,” in Computer
Software and Applications Conference, 2009. COMPSAC ’09. 33rd
Annual IEEE International, vol. 2, July 2009, pp. 200–205.

[9] S. Banerjee and D. Mukherjee, “Towards a universal notification sys-
tem,” in Web Intelligence (WI) and Intelligent Agent Technologies (IAT),
2013 IEEE/WIC/ACM International Joint Conferences on, vol. 3, Nov
2013, pp. 286–287.

[10] R. Etter, P. Costa, and T. Broens, “A rule-based approach towards
context-aware user notification services,” in Pervasive Services, 2006
ACS/IEEE International Conference on, June 2006, pp. 281–284.

[11] “Google inbox is an organized place to get things done and get back
to what matters. bundles keep emails organized.” [Online]. Available:
http://www.google.com/inbox/

[12] B. Poppinga, W. Heuten, and S. Boll, “Sensor-based identification of
opportune moments for triggering notifications,” Pervasive Computing,
IEEE, vol. 13, no. 1, pp. 22–29, Jan 2014.

[13] R. M. Arlein, S. Betge-Brezetz, and J. Ensor, “Adaptive notification
framework for converged environments,” Bell Labs Technical Journal,
vol. 13, no. 2, pp. 155–159, Summer 2008.

[14] S. S. Stevens, “On the theory of scales of measurement,” Science, New
Series, vol. 103, no. 2684, pp. 677–680, Jun. 1946.

[15] C. Cortes and V. Vapnik, “Support-vector networks,” Machine
Learning, vol. 20, no. 3, pp. 273–297, 1995. [Online]. Available:
http://dx.doi.org/10.1007/BF00994018

[16] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
2nd ed. Pearson Education, 2003.

[17] J. R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, no. 1,
pp. 81–106, Mar. 1986.

[18] “Anaconda is a completely free python distribution that
includes over 195 of the most popular python packages for
science, math, engineering, data analysis.” [Online]. Available:
https://store.continuum.io/cshop/anaconda/

[19] “Scikit-learn is a simple and efficient tools for data mining and data
analysis, accessible to everybody, and reusable in various contexts
and built on numpy, scipy, and matplotlib.” [Online]. Available:
http://scikit-learn.org/stable/

