
1536-1268/02/$17.00 © 2002 IEEE PERVASIVEcomputing 41

A Context-Aware
Decision Engine for
Content Adaptation

M
obile-device users often wish

that they could access the vari-

ety of rich hypermedia content

that exists or will exist on the

Web. Given, however, these

devices’ constrained computational and rendering

power and cellular networks’ limited bandwidth,

effective Web content presentation will require new

computation patterns. The mismatch between rich

multimedia content and constrained client capabil-

ity presents a research challenge.

Mobile devices’ variety also increases the difficulty

of accessing content. For example, mobile devices

are conveniently sized to fit in a

pocket, but this size constrains

their display area.1 Creating

trimmed versions of content could

get around this constraint, but dif-

ferences in display capabilities would easily make a

device-specific authoring approach too costly to be

practical.2 Examples of device differences include

screen sizes ranging from 20 × 5 characters to thou-

sands of pixels, and color depths ranging from two-

line black-and-white display to full-color display.3

Web content can also be encoded in many different

modes, such as JPEG, which best suits PCs, and the

1-bit WBMP format for Wireless Application Pro-

tocol (WAP) devices. Furthermore, mobile devices

support many different markup languages, includ-

ing HTML, HDML (Handheld Device Markup Lan-

guage), and WML (Wireless Markup Language). If

the client device subscribes to a Web site that uses a

presentational mode that the device cannot render,

information loss might result.

While users complain about the “World Wide

Wait” problem, owing partly to slow last-mile

speeds, cellular networks work at far lower data

rates, which work fine for plain text but are far from

adequate for Web pages.4 Much Internet content and

various other types of multimedia information that

mobile applications running on PDAs or notebooks

use, such as for identifying locations (for example,

the nearest restaurant) or describing product displays

(for stock inventory), are unsuitable for smaller

devices such as WAP phones.

To tackle these problems, we propose a content

adaptation system. Such a system decides the opti-

mal content version for presentation and the best

strategy for deriving that version, and then gener-

ates that version. The system’s most crucial compo-

nent is the decision engine, which negotiates for that

strategy. The engine takes into account the entire

computing context (see the “Context Awareness”

sidebar), focusing particularly on the user’s prefer-

ences. A prototype PDF document adaptation sys-

tem demonstrates our approach’s viability.

Content adaptation
The process begins when someone uses a mobile

device to submit a request to the system—that is, to

the content provider via an intermediary proxy

server (see Figure 1). After the system identifies the

user, it inputs context information to the decision

engine, which resides on the proxy server. On the

Building a good content adaptation service for mobile devices poses

many challenges. To meet these challenges, this quality-of-service–aware

decision engine automatically negotiates for the appropriate adaptation

decision for synthesizing an optimal content version.

C O N T E X T - A W A R E C O M P U T I N G

Wai Yip Lum and Francis C.M. Lau
University of Hong Kong

basis of some scoring scheme applied to

different content versions, the decision

engine then executes an algorithm that

computes the optimal version that is ren-

derable with the current client device and

network characteristics. “Version” at this

stage means a set of desired settings such as

color depth, scaling factor, and presenta-

tion format. The decision engine sends the

results to the transcoder, which generates

the desired content version. The inter-

mediate proxy then sends the adapted con-

tent to the target device for rendering.

Contextualization

To design a good adaptation service, we

must understand the environment suffi-

ciently. We can gain such an understand-

ing through a contextualization frame-

work that facilitates the expression and

capturing of context information.

One such framework is the Resource

Description Framework–based Compos-

ite Capability/Preference Profile (www.w3.

org/Mobile/CCPP). The CC/PP can de-

scribe the capabilities of a client device,

called a user agent, and the user’s specified

preferences within the user agent’s set of

options. It offers a mechanism for retriev-

ing capability and preference profiles via

the Web, from hardware or software ven-

dors. This approach reduces the amount

of information that the user agent must

directly send through a limited-bandwidth

communication channel.

For J2ME (Java 2 Platform, Micro Edi-

tion; http://java.sun.com/j2me) developers,

the Connected Limited Device Configura-

tion defines a standard Java platform for

small, resource-constrained, connected

devices and enables the dynamic delivery

of Java applications and content to those

devices. The only profile currently devel-

oped for the CLDC configuration is the

Mobile Information Device Profile.5

Both the CC/PP and MIDP can provide

the declarative semantics needed to deter-

mine the adaptation settings for transcoding

to produce the optimized content for a spec-

ified user agent. So, this article is concerned

mainly with the procedural semantics.

Transcoding techniques

On a related front, considerable research

has addressed techniques for different

transcoding methods. Little research, how-

ever, has addressed having the decision

engine provide quality of service-sensitive

decisions to compensate for or minimize

the losses due to transcoding. A gap seems

to exist between the declarative specifica-

tion of the client characteristics (such as

the CC/PP) and what the various transcod-

ing techniques can achieve. We propose a

negotiation model that the decision engine

would use to bridge this gap. Negotiation

happens between a representation of the

user preferences and a decision function

based on real-time parameters.

In existing transcoding methods, oper-

ations such as compression, color depth

reduction, image scaling, and so on are

lossy6 and cannot be blindly applied in all

application scenarios. These operations

should be managed according to strategies

synthesized from all related contextual

information sources.

Device- and user-specific preferences

Timothy Bickmore and Bill Schilit’s

research on device-independent access

offers good insight on handling client device

variability by staying away as much as pos-

sible from creating content versions specif-

42 PERVASIVEcomputing http://computer.org/pervasive

C O N T E X T - A W A R E C O M P U T I N G

A client device’s characteristics and capabilities are part of the

context of a client environment where Web content render-

ing occurs. Context includes any information that can characterize

an entity’s situation.1 An entity could be a person, place, or object

that is relevant to interaction between a user and an application.

The user and the application themselves are such entities.

This definition makes designing the relevant context easier be-

cause we don’t have to examine the context’s implicit and explicit

nature.2 Unlike human–human interaction, the distinction be-

tween implicit and explicit context information (for example, nod-

ding the head versus saying “Yes, I will drive you to the bank”) is

blurred or irrelevant for human–machine interaction because of

the semantic gap between machines and humans. Instead, the

concepts of qualitative and quantitative context information are

more applicable, as we discuss in the main article.

A system is context aware if it uses contexts to provide relevant

information or services to the user, where relevancy depends on

the user’s task.1 This definition is more general than the ones that

Richard Hull and his colleagues3 and Jason Pascoe and his col-

leagues4 provided, whereby context-aware applications must de-

tect, interpret, and respond to contexts. Here, we consider only the

interpretation of and response to contexts. We leave the detection

mechanism’s sensor design to other discovery systems, which we

can cleanly separate from the main context-aware process.

REFERENCES

1. G.D. Abowd and A.K. Dey, “Towards a Better Understanding of Context

and Context-Awareness,” Proc. 1st Int’l Symp. Handheld and Ubiquitous

Computing (HUC 99), Lecture Notes in Computer Science, no. 1707,

Springer-Verlag, Heidelberg, Germany, 1999, pp. 304–307.

2. A. Schmidt, “Implicit Human Computer Interaction through Context,”

Personal Technologies, vol. 4, nos. 2–3, June 2000, pp. 191–199.

3. R. Hull, P. Neaves, and J. Bedford-Roberts, “Towards Situated Comput-

ing,” Proc. 1st Int’l Symp. Wearable Computers, IEEE CS Press, Los Alami-

tos, Calif., 1997, pp. 56–63.

4. J. Pascoe, “Adding Generic Contextual Capabilities to Wearable Com-

puters,” Proc. 2nd Int’l Symp. Wearable Computers, IEEE CS Press, Los

Alamitos, Calif., 1998, pp. 92–99.

Context awareness

ically for individual device types.2 Armando

Fox and Eric Brewer’s research is in the same

vein and suggests that clients generally vary

along three important dimensions: network,

hardware, and software.7 The practical

approach in response to such research

assumes that the application scenario’s basis

is the client device’s possible variations. In

this article, we also examine client variabil-

ity along the line of user perception.

Richard Han, Veronique Perret, and

Mahmoud Naghshineh have discussed the

concept of multiuser and multidevice brows-

ing, focusing on the specific application sce-

nario of content browsing in a lecture.8 This

scenario required creating two different con-

tent views because the presenter might wish

to view his or her notes for each slide but

prevent the audience from viewing them.

Also, forward-and-backward navigation

access should be limited to the presenter

only. These separate views point to the need

for user-specific requirements in addition to

device-specific ones. Applying this to con-

tent adaptation, we can imagine creating

different views of the same content for dif-

ferent users according to their preferences.

Such a user-centric approach and the result-

ing content should increase user satisfaction.

Qualitative user preference and quan-

titative content value

Content adaptation systems’ decisions

can take into account numeric values asso-

ciated with different content versions or

transcoding strategies. Not all user prefer-

ences, however, are easily expressible in

terms of numeric values in a certain con-

text—for example, a user’s perception of

color. On the other hand, providing quali-

tative information on a user’s preference for

one quality domain over another would be

trivial. The user merely needs to specify the

preference without any exact quantification.

A preference relation (for example, rank-

ing) that connects different quality domains

can describe the qualitative information.

To reduce the user’s workload, assigning

a numeric score to a particular content ver-

sion should be automatic. To automate this

assignment, researchers have proposed

resource-based content value.9,10 This value

depends on the client device’s resources that

can be used to render the content. In this

article, however, we follow a different direc-

tion; we base the content value on user pref-

erences. Such a content score should lead to

the best user satisfaction, because quality of

service (QoS) is a user-oriented property.11

The decision engine
Our decision engine aims to increase

users’ satisfaction in their subscribing to

Internet contents in a constrained mobile

computing environment. The engine auto-

matically negotiates for the appropriate

content adaptation decisions that the

transcoder will use to generate the optimal

content version. A separate paper describes

the transcoding part of the system.12

Because our QoS-sensitive approach

compensates for transcoding’s lossy nature,6

it reduces the chance of serious loss of qual-

ity in various domains. The decision

engine tries to arrive at the best trade-off

for content adaptation while minimizing

content degradation due to lossy trans-

coding. It is aware of different types of

context information such as the user’s

preferences, the device’s rendering capa-

bility, and the network connection’s char-

acteristics (see Figure 2).

The engine relies on a user’s indication of

preferences according to his or her per-

ception in different quality domains. On

the basis of these preferences, the engine

can devise

• A method to express quantitatively any

given content’s quality along various

quality axes

• Algorithms to negotiate for an optimal

content version

JULY–SEPTEMBER 2002 PERVASIVEcomputing 43

Client device

Wireless
connection

Intermediary proxy server

User context

Gateway

Decision
engine Transcoder

Caching
proxy

Content profile

Network
context

HTTP

Content provider

Figure 1. Content adaptation’s overall

structure.

with some guarantee on the returned

objects’ QoS.

The critical issue in designing a content

adaptation system is how to determine a

trade-off that guarantees the desired QoS

by interpolating from context information,

without modifying the underlying system,

including the client device and the content

provider. That is, we desire “zero adminis-

tration”6 on the client side. In our decision

engine, content negotiation performs this

trade-off. This process takes into account

factors such as processing overhead, opti-

mization accuracy, and context awareness.

Content negotiation
Content negotiation has two stages: pre-

processing and real-time processing (see

Figure 3).

Preprocessing

This stage occurs before the user re-

quest arrives.

Data-type analysis. The set of quality

axes for different types of multimedia con-

tent forms the working properties that pre-

cisely define the QoS for any multimedia

content. We view the quality of a specific

version of an object as a point in an n-

dimensional space, where n is the number

of different qualities.

For example, take the QoS of a PDF

document:

QoSpdf–document = (color, scaling, segment, download-

ing-time, modality)

Modality addresses the change in the content’s

presentation scheme to render the content

in diverse devices (see Figure 4). For exam-

ple, a handheld device could display a PDF

document in its original PDF format. How-

ever, considering the cellular network’s

constrained bandwidth and the handheld

device’s limited resources, it is advisable to

convert the document to a format that the

device can comfortably render, such as

WML, which many WAP devices support.

Quantitative analysis of quality. To facil-

itate the expression and automatic pro-

cessing of QoS parameters, we need a

quantitative approach to characterizing

QoS in any axis. We define a metric based

on quality value. Take the color quality

axis as an example. We assign an 8-bit

color image a larger qv than that of a 1-bit

black-and-white image. However, express-

ing or measuring quantitatively the loss of

qv in terms of colors is not as straightfor-

ward. Also, different quality axes will have

different QoS characteristics; such diver-

sity makes capturing all the relevant char-

acteristics quantitatively a nontrivial task.

We use first order or second order mod-

eling to monitor the change of qv against

the quantization step qs. A quantization

44 PERVASIVEcomputing http://computer.org/pervasive

C O N T E X T - A W A R E C O M P U T I N G

User preference profile

Color perception

Scaling perception

Segment perception

Modality perception

Timing perception

Threshold time

Content metadata

Spatial size

Content purpose

Available modalities

Available color depths

Transcoding strategies

PDF to HTML

PDF to image

BMP to WBMP

HTML to WML

Color depth reduction

Image scaling

Image cropping

HTML segmentation

Device capabilty profile

Buffer size

Supported color depth

Supported encoding modes

Supported syntaxes

Screen dimension

Networking parameters

Bandwidth

Round-trip time

Negotiation

process

Figure 2. From contextual information to transcoding strategies.

User

preferences

Content

metadata

Data type

analysis

Score node

representation

scheme initialization

Score node

representation

scheme

To transcoding modules

Adaptation strategies

Score

evaluation

Preprocessing

Real-time processing

Score node

selection

algorithm

Decision logic

Device

capabilities

Networking

parameters

Figure 3. Content negotiation’s two stages: preprocessing and real-time processing.

step is a step in a scale covering the possi-

ble settings of a particular quality axis—for

example, 2, 16, 256, and so on for color.

For first-order modeling, qv increases

or decreases linearly as qs increases or

decreases. Second-order modeling charac-

terizes the modeling curve as a second-

order equation. This modeling applies sat-

uration whereby qv will attain saturation

near the far end of qs. At or near satura-

tion, qv will insignificantly increase or

decrease when qs changes. Consider again

the color quality axis. When qs is at 16-bit

colors (25,536 colors), adding more col-

ors will insignificantly affect qv. In con-

trast, increments of colors near the value

of 2 colors will more greatly affect the per-

ceived quality. We expect most user pref-

erences will exhibit such a saturation pat-

tern. To model quality domains that do not

have such a saturation behavior—for

example, the modality quality axis—we

can use first-order equations.

Together, these two models can capture

most if not all of the behavior of the most

common quality axes. If users have a strong

sensitivity to a quality axis that these two

models do not cover, they can input their

desired modeling curves in the system.

Score evaluation and representation.

Using quality axes, users can easily indi-

cate their preferences. For example, a user

might have a weak sensitivity to color but

a strong sensitivity to difference in dimen-

sional size. So, the user will rank the color

quality axis lower than the scaling axis.

Users can input their specific preference

(through ranking) for each quality axis,

and each axis’s relative weight can then be

calculated. An aggregate score can then be

computed based on these weights.

Having the user manually assign the

score to each possible version of content

would be difficult and impractical. Also,

using only resource utilization measures to

determine the score is unreasonable.9,10 We

offer a mechanism that automatically

assigns a score to a content version, taking

into account user perceptions in different

quality domains. The set of aggregate scores

serves as the main input for the decision

engine to determine the optimal version.

Scores corresponding to different ver-

sions must be stored in some organized

structure to facilitate efficient searching.

This structure is either a linked list or a

tree where each node represents a content

version and stores the corresponding

score. These score nodes also contain the

adaptation settings (the qs’s) for possible

subsequent generation of this content ver-

sion. A score node is not tied to any spe-

cific Web content; neither does it replicate

any actual content from the content

provider. It is generic and applicable to any

content. The actual content comes into the

picture only during transcoding. The same

is true of the global structure containing

all the score nodes.

At initialization time, the decision engine

creates a search space consisting of all pos-

sible score nodes, which covers all the pos-

sible adaptation decisions that the decision

engine can make. The engine computes

each node’s score during preprocessing

when the user registers and specifies his or

her preferences. This computation can

occur during preprocessing because of the

score–version association’s static nature.

That is, we expect that users will rarely

change their preferences for the various

quality domains. The decision engine pre-

processes the established score node space

into a suitable data structure such that

when the adaptation system receives a

request, the real-time heuristic search will

be effective and efficient. The construction

and initialization of this structure repre-

sents the end of preprocessing.

Real-time processing

This stage processes the user’s request.

Decision logic and score node selection. A

user’s score nodes capture all the possible

combinations of preference values in vari-

ous quality domains. They do not include

values of real-time parameters such as the

characteristics (metadata) of the Web object

being requested, the network connection’s

characteristics, and the device’s capability.

The decision logic aims to find the best scor-

ing node corresponding to a version of the

content that is renderable given those para-

meters. This is a negotiation process be-

tween the data structure containing the

user’s preference information and a decision

engine’s decision function (see Figure 5).

During negotiation, the negotiation algo-

rithm systematically traverses the score

nodes. This iterative heuristic search tries to

find the most optimal score node. To locate

the optimal node, the negotiation algorithm

examines each score node and generates a

binary decision (True or False) based on the

client device’s capability, the network para-

meters, the adaptation settings in the score

node, and the content itself:

T || F ← decision(score-node, content-metadata,

network-parameters, device-capability)

Score-node provides the settings of the qual-

ity axes. The binary decision True indicates

that if the adaptation system transcodes

the content according to the score node’s

adaptation settings, the target device will

be able to render it in the current network

environment. The binary decision False

indicates otherwise. The decision function,

decision(), negotiates iteratively with the score

node data structure until it finds a satis-

factory score node with a True decision.

JULY–SEPTEMBER 2002 PERVASIVEcomputing 45

Document

TextPDF encoding Image

HTML WMLJPEG WBMPBMP

Semantics

Encoding

mode

Syntax PDF

Figure 4. The concept of modality.

Ordered relations. The decision logic might

operate with different strategies in different

application scenarios. In some scenarios, we

can identify a metric with the ordered relation

property, on the basis of which we can make

binary decisions. For example, the resource

metric is based on an ordered relation. We can

save some effort during searching for the opti-

mal score node by using binary search or a

binary search tree. To have the ordered-rela-

tion property, a metric must satisfy three cri-

teria: a binary relation R on a set A is an

ordered relation if and only if it is reflexive,

asymmetric, and transitive. In some cases,

however, identifying a metric with the

ordered-relation property is difficult. We’ll

examine this situation in more detail in the

next section.

Choosing a negotiation
algorithm

To traverse the score nodes, the decision

engine can use one of four negotiation

algorithms.

SLL

The obvious choice of data structure for

score nodes is a linked list where the elements

are in descending order of scores. To deter-

mine the optimal version of content with the

highest score, the score linked listnegotiation

algorithm applies the simple search where deci-

sion() yields either True or False at a particular

node. The resultant score node is optimal in

that it has the highest score among all that

are feasible to render in the present context.

The SLL algorithm is easy to implement and

requires little housekeeping. In the worst case,

however, the number of nodes to traverse is

equal to the total number of nodes in the list.

So, we have an O(n) algorithm, where n is

the number of nodes in the linked list.

Score tree

The next two negotiation algorithms use

a balanced binary tree (for example, a red-

black tree) to reduce the worst-case search

complexity to O(lg n) or O(tree height).

The score tree’s main advantage over the

score list is reduced real-time processing

overhead. Deploying the adaptation ser-

vice involves frequent accesses of the data

structure, so the fewer score nodes the deci-

sion engine must traverse, the better its per-

formance. But the tree structure requires

considerable housekeeping for deleting and

adding score nodes. Fortunately, in adap-

tation applications, once the tree is initial-

ized, it seldom requires modification. The

initialization might incur some overhead,

but this should not be too significant

because initialization occurs only once.

ORST

The ordered-relation score tree negotia-

tion algorithm works when we can identify

an ordered-relation property for the deci-

sion logic. It works similarly to the classic

binary tree search but with the decision

function dictating tree traversal. During

preprocessing, this algorithm marks each

subtree with a value indicating the mini-

mum resource that a node in that subtree

requires. The decision function can decide

whether to visit a subtree by comparing this

value with the client device’s acceptable

resource level. This can lead to savings from

not having to visit all the nodes.

NORST

When determining whether a metric has

the ordered-relation property is difficult or

impossible, we cannot model the decision

logic with a comparison relation. Without

the comparison logic, we must visit every

node in the linked list in the worst case.

Using the linked-list data structure and the

linked-list traversal in this case would guar-

antee the best score for the adaptation, but

the traversal overhead would be O(n).

To achieve better efficiency, we allow a

trade-off between the traversal overhead

and the optimization’s accuracy. The idea is

a probabilistic score tree that incurs less

overhead and can likely return a good, if

not the best, score node for content adap-

tation. During preprocessing, the decision

engine computes the probability (pt) of find-

ing a node in a subtree that would return

True at the decision logic. It applies this

value to every subtree (the probability mul-

tiplied by the number of nodes) so that the

negotiation algorithm will know whether

it should visit a subtree during runtime.

This probabilistic score tree aims to find

a subtree that can most likely return True

at the decision logic while giving a good

score in the tree walk. Not all the nodes

returned will have the highest acceptable

score, but most nodes returned will have

the best score.

This nonordered relation score tree nego-

tiation algorithm can reduce the traversal

overhead to O(lg n). However, its major

shortcoming is nonoptimal accuracy. We can

derive its optimization accuracy (of finding

the optimal score node) and a bound on the

probability that the optimal node is not

returned (1 − optimization accuracy). On

the basis of this derivation, we find that

the optimization accuracy increases with

the value of pt. But even when pt is small

(for example, 0.3), the optimization accu-

racy still falls in the neighborhood of 70

percent, which is probably acceptable for

many applications.

SLL-NORST

If we need guaranteed higher accuracy,

we can use a mixed algorithm: the score

linked list–nonordered relation score tree

negotiation algorithm. SLL-NORST can

preserve SLL’s optimization accuracy while

exploiting NORST’s reduced overhead

over a series of requests.

46 PERVASIVEcomputing http://computer.org/pervasive

C O N T E X T - A W A R E C O M P U T I N G

User preference

score tree

Negotiation

Real-time contexts

such as network and

content metadata

decision ()

Figure 5. The negotiation process.

We can define a threshold for the opti-

mization accuracy (Athreshold)—for exam-

ple, 70 percent—such that when NORST’s

accuracy level falls below Athreshold, the sys-

tem will automatically switch to SLL. This

guarantees that the resulting optimization’s

accuracy will be bounded by this thresh-

old value.

The PDF Document Content
Adaptation System

Our PDF Document Content Adapta-

tion System is aware of the user context in

five quality domains: color, downloading

time, scaling, modality, and segment. We

previously discussed color preferences.

The user can also specify the maximum

downloading time he or she will tolerate

for content delivery. The modality domain

lets the user specify how he or she feels

about preserving the mode versus trans-

coding the original content to a different

mode. The scaling domain has four values

corresponding to the output format:

WML, HTML, bitmap, and PDF. The seg-

ment domain corresponds to how the user

feels about cropping the content, with four

different cropping ratios to choose from.

For the device capability context, we use

information derived from some commer-

cial portable-device models. The system

takes into account the screen size, the sup-

ported color depths, supported media

types, markup language, and the memory

buffer size (for example, the maximum

deck size acceptable for the WAP phone).

JULY–SEPTEMBER 2002 PERVASIVEcomputing 47

Figure 6. Delivering different modalities on the basis of device capability and user preference. The left side shows different

presentations for a WAP device based on whether the user favors preserving the original modality (the upper left) or

minimizing downloading time (the lower left). The right side shows presentations for a PDA, illustrating variations in

trade-offs between preserving the modality (the upper right) and minimizing the downloading time (the lower right).

WBMP

WML

PDF

BMP

HTML

The original content (PDF)

For the network context, we use parame-

ters such as bandwidth and round-trip time

of some popular communication chan-

nels—for example, Code Division Multi-

ple Access, General Packet Radio Service,

and Cellular Digital Packet Data. Figure 2

shows an overview of the parameters.

By supplying values to these parameters,

a Web browser or a WAP device simulator

(we used the Nokia 6210 simulator; see

www.nokia.com/phones/6210) can emu-

late the operation of any type of client

device, even a fictitious one. In practice,

techniques for automatically discovering

the client device type (through, for exam-

ple, HTTP headers), networking charac-

teristics, and some means of client identi-

fication (explicit userid or cookies) would

generate the necessary context informa-

tion. Our system uses userid embedding in

URLs to identify the end user.

We conducted several experiments to

demonstrate both the prototype’s useful-

ness in various practical application sce-

narios and our approach’s viability. These

experiments also show the negotiation

model’s sensitivity and awareness toward

different situational or user-centric con-

texts. To perform graphical-manipulation

operations such as image mode transcod-

ings involving PDF-to-image conversion

and color depth reduction, we used

ImageMagick 5.3.8. To convert PDF to

HTML, we used pdftohtml 0.21. We also

implemented a simple HTML-to-WML

transcoder. For all the cases, the time the

negotiation algorithm (SLL-NORST) takes

to arrive at a transcoding decision is small

and is negligible compared to the transcod-

ing and transmission times.

Modality preservation versus down-

loading time

Figure 6 shows sample results of our sys-

tem delivering the same PDF document to

a WAP device (on the figure’s left) and a

PDA (on the figure’s right). The difference

in presentation is due to the user perception

on two conflicting factors: modality preser-

vation and downloading time. For the WAP

device, if the user prefers preserving the

original modality, the system will produce

an image (WBMP). If the user prefers min-

imizing downloading time, the system will

produce a text version (WML). For the

PDA, we tested the negotiation algorithm’s

sensitivity by varying the trade-off between

these two factors while keeping the other

factors constant. Correspondingly, our sys-

tem presented the original content version

in PDF, an image (BMP), or text (HTML),

as the figure shows.

48 PERVASIVEcomputing http://computer.org/pervasive

C O N T E X T - A W A R E C O M P U T I N G

Figure 7. The content adaptation system

adjusts the content version to meet

changing requirements: (a) maximum

tolerable downloading time; (b) color

depth preferences; (c) available bandwidth.

Larger WMLWBMP Smaller WML

PDF with
16 colors

BMP with
256 colors

PDF with
2 colors

BMP with
16 colors

PDF with
256 colors

HTML

(a)

(b)

(c)

19.6 Kbps144 Kbps 9.6 Kbps

4 seconds 2 seconds 0.5 second

Maximum tolerable downloading time

If the user specifies a maximum tolera-

ble downloading time, the system will

negotiate the content version automatically

to meet this specification. In this case, the

content might require segmenting—for

example, cropping the large HTML text

and moving the residue to another page

linked by the “next” anchor. In Figure 7a,

the specified maximum tolerable down-

loading time decreases from left to right.

Color versus downloading time

Figure 7b demonstrates the effect of the

negotiation algorithm trying to strike a

balance between the conflicting factors of

color and downloading time. With de-

creasing weights on the user’s perception

of color, the system responds with content

versions of 256 colors, 16 colors, and 2

colors for the PDF document, to minimize

downloading time over a slow network.

Network characteristics

We tested the system’s adaptability to dif-

ferent network characteristics by varying

bandwidth while keeping the other factors

constant. As Figure 7c shows, the system

switches modality to suit the connection’s

current bandwidth to keep downloading

time within the allowed tolerance.

Device capability

To test the system’s ability to handle het-

erogeneous devices, we adjusted the device’s

memory buffer size to see whether the sys-

tem will automatically return the optimal

content version. The results were similar to

those for the network characteristics and

closely agreed with our expectations.

W
e plan to extend the nego-

tiation model to apply

transcoding to the tasks a

user wishes to perform on a

device, rather than just to the delivered

content. By “tasks,” we mean programs or

program functions. In the future, users will

be able to download program versions on

demand on the basis of their need and the

context. For example, an e-mail program

could have several versions: read only, read

and compose, or text only. Such function

adaptation is much more complex than

content adaptation. We also plan to extend

our prototype’s document model to include

images so that the quality domains could

also include histograms on color use, seg-

mentations, and so on.

In an ongoing project related to this one,

we study the trade-off between dynamic and

static adaptation.12 To produce content ver-

sions, the decision engine can exploit static

preadaptation (sacrificing I/O performance

for CPU performance) or dynamic real-time

adaptation (sacrificing CPU performance

for I/O performance). A mixed approach

can yield a productive balance between

these two modes, leading to the most cost-

effective methodology for content synthe-

sis, with the decision engine’s guidance.

ACKNOWLEDGMENTS

We are grateful to the reviewers for their useful

comments.

REFERENCES

1. T.L. Pham et al., “Composite Devices Com-
puting Environment: A Framework for Sit-
uated Interaction Using Small Screen
Devices,” Personal and Ubiquitous Com-
puting, vol. 5, no. 1, 2001, pp. 25–28.

2. T.W. Bickmore and B.N. Schilit, “Digestor:
Device-Independent Access to the World
Wide Web,” Proc. 6th World Wide Web
Conf. (WWW 6), 1997, pp. 655–663;
www.scope.gmd.de/info/www6/technical/
paper177/paper177.html.

3. S. Saha, M. Jamtgaard, and J. Villasenor,
“Bringing the Wireless Internet to Mobile
Devices,” Computer, vol. 34, no. 6, June
2001, pp. 54–58.

4. R. Comerford, “Handhelds Duke It Out for
the Internet,” IEEE Spectrum, vol. 37, no.
8, Aug. 2000, pp. 35–41.

5. C.E. Ortiz and E. Giguere, Mobile Informa-
tion Device Profile for Java 2 Micro Edition
(J2ME): Professional Developer’s Guide,
John Wiley & Sons, New York, 2001.

6. J.C. Mogul, “Server-Directed Transcod-
ing,” Computer Comm., vol. 24, no. 2, Feb.
2001, pp. 155–162.

7. A. Fox and E.A. Brewer, “Reducing WWW
Latency and Bandwidth Requirements by
Real-Time Distillation,” Proc. 5th Int’l
World Wide Web Conf. (WWW 5), 1996,

pp. 1445–1456; http://www5conf.inria.
fr/fich_html/papers/P48/Overview.html.

8. R. Han, V. Perret, and M. Naghshineh,
“WebSplitter: A Unified XML Framework
for Multi-Device Collaborative Web Brows-
ing,” Proc. Computer Supported Cooper-
ative Work 2000 (CSCW 2000), ACM
Press, New York, 2000, pp. 221–230.

9. C.-S. Li, R. Mohan, and J.R. Smith, “Mul-
timedia Content Description in the Info-
Pyramid,” Proc. IEEE Int’l Conf. Acoustics
Speech and Signal Processing (ICASSP 98),
IEEE Press, Piscataway, N.J., 1998.

10. R. Mohan, J.R. Smith, and C.-S. Li,
“Adapting Multimedia Internet Content for
Universal Access,” IEEE Trans. Multime-
dia, vol. 1, no. 1, Mar. 1999, pp. 104–114.

11. J.-P. Richter and H. de Meer, “Towards For-
mal Semantics for QoS Support,” Proc. 17th
Ann. Joint Conf. IEEE Computer and Com-
munications Societies (INFOCOM 98), vol.
2, IEEE Press, Piscataway, N.J., pp. 472–479.

12. W.Y. Lum and F.C.M. Lau, “On Balancing
between Transcoding Overhead and Spa-
tial Consumption in Content Adaptation,”
to appear in Proc. Mobicom 2002, ACM
Press, New York, 2002.

JULY–SEPTEMBER 2002 PERVASIVEcomputing 49

the AUTHORS

Wai Yip Lum is an M.Phil.

candidate in the University of

Hong Kong’s Computer Sci-

ence and Information Sys-

tems Department. His re-

search interest is in the design

of content adaptation ser-

vices for mobile and pervasive

computing. He received his B.Eng. in computer

engineering from the University of Hong Kong.

Contact him at the Univ. of Hong Kong, Pokfu-

lam Rd., Hong Kong; wylum@csis.hku.hk.

Francis C.M. Lau is the

head of the University of

Hong Kong’s Department of

Computer Science and

Information Systems. His

research interests are in par-

allel and distributed

computing, operating sys-

tems, and mobile computing. He received his

B.Sc. from Acadia University and his M.Math.

and PhD from the University of Waterloo, all in

computer science. He is a member of the IEEE

and served as a vice president of the IEEE Com-

puter Society in 1999. Contact him at the Dept.

of Computer Science and Information Systems,

Univ. of Hong Kong, Pokfulam Rd., Hong Kong;

fcmlau@csis.hku.hk; www.csis.hku.hk/~fcmlau.

