A Context-Aware Security Architecture for Emerging Applications*

Michael J. Covingtonf Prahlad Fogla, Zhiyuan Zhan, Mustaque Ahamad
College of Computing
Georgia Institute of Technology
Atlanta, Georgia 30332-0280

Abstract

We describe an approach to building security services
for context-aware environments. Specifically, we focus on
the design of security services that incorporate the use of
security-relevant “context” to provide flexible access con-
trol and policy enforcement. We previously presented a gen-
eralized access control model that makes significant use of
contextual information in policy definition. This document
provides a concrete realization of such a model by present-
ing a system-level service architecture, as well as early im-
plementation experience with the framework. Through our
context-aware security services, our system architecture of-
fers enhanced authentication services, more flexible access
control and a security subsystem that can adapt itself based
on current conditions in the environment. We discuss our
architecture and implementation and show how it can be
used to secure several sample applications.

1 Introduction

As computers become more pervasive and their function-
ality is more transparently integrated into homes and com-
munities, new applications will emerge to make everyday
living easier for people. Such applications, which will be
enabled by a pervasive computing and communication in-
frastructure, will provide unobtrusive access to important
information, resources and services. Clearly, the successful
deployment of such applications will depend on our ability
to secure them. In particular, we will have to ensure that
access to information and services is granted only to autho-
rized users, without requiring them to deal with complex
security policies or burdensome authentication procedures.

Traditionally, security requirements are assumed to be
relatively static since access control decisions do not change
with context, nor do they account for changing conditions in

*This work was supported in part by NSF grants CCR-9988212, ITR-
0081276 and ITR-0121634.
TContact Author: Michael.Covington@cc.gatech.edu

the environment. As computing technology becomes more
tightly integrated into the fabric of everyday life, it is imper-
ative that security mechanisms become more flexible and
less intrusive. To address these concerns, our research is fo-
cused on providing security services for context-aware com-
puting environments that can adapt to changing conditions
when requests are made. Specifically, we target an “aware”
or smart home setting, such as the Aware Home [12], in
which a pervasive computing environment is used to pro-
vide augmented services to the residents and their guests in
the home. Sensors are used to capture, process and store a
variety of information about the users, their activities and
the environment in which they interact. Access to certain
appliances may be controlled based on the context of the
request; for example, the time at which the request is made
or the activity in which the user is involved.

Although considerable work has been done in securing
military and commercial information systems, few projects
have specifically addressed the needs of a residential com-
puting infrastructure. Current research that specifically tar-
gets home environments attempts to move traditional secu-
rity mechanisms into the residential space. In contrast, we
are developing security techniques that are natural, intuitive
and non-intrusive for connected homes and community en-
vironments. In this paper, we present a middleware-level
architecture that has been designed to secure and support
context-aware applications in the Aware Home using the au-
thentication and authorization techniques that we presented
in [6, 17, 5]. Such an architecture We will show how such
applications have special requirements and properties that
require a generalized security architecture — one not found
in traditional systems — to provide the necessary support
for securing pervasive computing applications.

The remainder of this paper proceeds as follows: Sec-
tion 2 motivates our work by detailing the security chal-
lenges that are encountered in a context-aware environment
such as the Aware Home. We show how extended ac-
cess control models are beneficial in context-aware environ-
ments and discuss some of the unique features that distin-
guish these application scenarios from those found in tradi-

tional systems. In Sect. 3, we present an implementation of
an architecture for securing context-aware applications and
discuss our initial experiences with the security services.
Section 4 details our experience with building secure appli-
cations and provides experimental results that characterize
the performance of the services that make up the security
architecture. We discuss the benefits of our approach and
compare it with related work in Sect. 5. Finally, the paper
is concluded in Sect. 6.

2 Security Challenges in Context-Aware
Environments

The context-aware applications alluded to in the previ-
ous section present new and interesting security challenges.
The transparent nature of a pervasive computing environ-
ment motivates the need for a security architecture that will
transparently determine the sources of requests and handle
a high degree of context changes. We can no longer as-
sume that user “sessions” will persist for extended periods
with the same authentication and authorization credentials.
Thus, we must look at new access control models and au-
thentication techniques that will operate effectively in these
next-generation environments.

2.1 Context-Aware Authorization

Security policies in an information-rich environment like
the Aware Home can potentially be quite complex. A pol-
icy can restrict access to information or resources based on
several factors, including attributes pertaining to the subject,
the resource or the environment. For example, subjects can
be classified into roles such as “resident” or “guest.” Ac-
cess rights can depend on the subject’s classification (e.g.,
“resident”), as well as on his or her actual identity. Access
also may be restricted based on the subject’s location, or
based on environmental factors such as the temperature or
the time of day.

While time and location are natural examples of envi-
ronmental states that could be used in access control, richer
contextual information could also impact the result of an
access request. We take an approach which makes use of
the well-known notion of roles to capture security-relevant
state. In particular, we define environment roles based on
the security-relevant context or state of the environment [5].
Environment roles are one component in the Generalized
Role-Based Access Control (GRBAC) model [6, 17] and a
key extension to the core ideas found in traditional Role-
Based Access Control [20, 9].

While GRBAC presents a powerful and flexible model
for expressing access control policies for context-aware ap-
plications, the model itself clearly requires a more complex

system architecture to support the extended roles and in-
tricate policies that are made possible. In particular, the
system architecture must support mechanisms to securely
collect contextual information that is used to enforce ac-
cess control policies. In addition, GRBAC requires that a
separate authorization component be available to bind sub-
ject, object and environment roles together with an opera-
tion and corresponding permission. In Sect. 3, we present
our approach to building this architecture and discuss the
various components that provide the security infrastructure
to context-aware applications.

2.2 Non-Intrusive User Authentication

Another challenge presented by a pervasive computing
environment like the Aware Home involves relieving the
user from the “burden” of authentication. Ideally, informa-
tion available from sensors in the home should be used to
automatically infer a subject’s security-relevant attributes
(e.g., identity, role, location, etc.). Although it is possible
for a resident to use a physical authentication token, it is un-
desirable to expect the user to carry such an object around at
all times. Previous work with physical identification tokens
such as the Active Badge system [22] have yielded useful
results but are less practical for home use and unreliable
for authentication (users can assume a different identity by
simply carrying another person’s badge).

Several sensor-based technologies such as voice and
face recognition can be deployed in the Aware Home to
non-intrusively identify humans and track their movements.
Many such techniques can establish the identity of a sub-
ject with only a partial level of certainty. Such “partial
authentication” has important implications for access con-
trol models. In particular, some identification mechanisms
are known to be more reliable than others. Our model for
context-aware user authentication takes these differences
into account and provides a mechanism for “parameterized
authentication.” Parameterized authentication allows a le-
gitimate user to maintain access to a system even when the
overall quality of his authentication is not 100%. We do
this by granting subsets of access rights based on the cur-
rent “authentication parameter,” a metric that is based on
trust in the devices that provide authentication data and the
inherent accuracy of those devices. A related notion of vari-
ous levels of authentication for a user was recently proposed
in [10].

3 Implementation

To address the problem of providing security to context-
aware applications, we describe a Context-Aware Security
Architecture (CASA). CASA provides a security infrastruc-
ture upon which emerging applications can be built. Fig-

Authentication
Service

I

Security Systems/Sensors
Management
Service

Authorization

Authorization m A
. ccess
Service —_— Resource Request
/ \Pfrmlssmn \q ‘
Environment Role Object Role ; ;
Activation Service Activation Service User

I

Object Management

e

Resources Trust Management

Service

Figure 1. Logical Framework for Securing Context-Aware Applications

ure 1 provides a high-level overview of the various logical
components that comprise this security architecture.

We have implemented a prototype system that uses
CASA to provide security services to applications running
in an information-rich computing environment. Our imple-
mentation is built using the Java 2 Standard Edition Soft-
ware Development Kit (J2SE SDK)[16]. In the following
sections, we describe our instantiation of CASA and pro-
vide details on making these services available to context-
aware applications

3.1 Policy Specification Language

A Generalized Policy Definition Language (GPDL) is
described in [17] for defining GRBAC policies. We have
found that in practice, however, GPDL can be frustrating
and clumsy for a policy administrator to manage, especially
when editing large, complex policy files. Roles are inher-
ently visual, so it would be useful to have a graphical policy
editor that displays available roles, their relationships, and
policy rules in a clear-cut manner.

We have built a prototype graphical editor and are cur-
rently exploring how it can help to define and explain com-
plex security policies. Such an interface is necessary as our
access model is deployed in the Aware Home. By using
this graphical editor, we are able to display complex secu-
rity policies using simple constructs and an intuitive lay-
out. This GUI allows a security administrator to associate
permissions with various combinations of roles. For exam-
ple, a child can be denied access to a category of resources
that is classified using a single role, dangerous appliance,
during certain environmental conditions (e.g., during a par-
ent’s working hours). In a more intricate example, we could
specify complex, method-level access control on object re-
sources in the system. For instance, the family physician
may have access to read and write medical databases in the

home, while the family attorney can only obtain a limited
view of such records in the event of an emergency.

In our implementation, policies are defined through the
graphical management tool and encoded into eXtensible
Markup Language, or XML [4]. XML is used to spec-
ify access policies, role definitions and relationships and is
also used as a common representation to share data between
the various services in the architecture. Figure 2 shows the
XML-encoded policy that restricts a user in the child role
from accessing a dangerous appliance during specified en-
vironmental conditions.

Given well-structured rulesets, XML provides an effi-
cient structure for storing the policy that is generated and
enforced by our security services. We take advantage of
XML’s robust, non-proprietary and verifiable file-format by
using it to transmit policies and related information (e.g.,
environment role definitions) between services in our archi-
tecture. Each component in our infrastructure can construct
its own efficient runtime structures for local processing, but
XML is used to transfer information between services. This
allows us to standardize on a platform-independent policy
specification that can be read, verified and processed by any
authorized component.

3.2 Security Management Service

The Security Management Service (SMS) is responsible
for managing and storing system policies and role relation-
ships, as specified by the security administrator. We sepa-
rate the functionality of policy storage and runtime policy
evaluation so as to allow for a more distributed and efficient
system design. Policies that are enforced using the GRBAC
model are defined in terms of roles. The SMS manages the
relationships that exist between roles and provides appropri-
ate mechanisms for secure storage and retrieval of policies.

<GRBAC_TABLES>
<POLICY>

</POLICY>
</GRBAC_TABLES>

<SROLE> Child </SROLE>

<OROLE> Dangerous Appliance </OROLE>
<ACTION> ALL </ACTION>

<EROLE> Working Hours </EROLE>
<PERMS> Deny </PERMS>

Figure 2. Example GRBAC Policy Specification in XML

In our architecture, policy enforcement is provided by an
Authorization Service, while environment role activation is
managed by a separate logical service. The SMS allows
for role manipulation to be performed and ensures that any
associated roles or policies are updated accordingly. For
example, if a security administrator were to make policy
changes to an active system, the SMS would notify any role
activation service (subject, object, environment) affected by
the change.

In addition, the SMS provides a central location for
backup and recovery. Since it is responsible for all pol-
icy management and for the bootstrapping of other com-
ponents, the SMS can be distributed and protected more
efficiently and effectively than an architecture that would
distribute policy and management functionalities. For in-
stance, the SMS could be implemented on top of a dis-
tributed data repository such as the Secure Store [14] that
would provide data replication and enhanced availability in
a potentially hostile environment.

Our implementation provides an SMS that is comprised
of two separate components — a persistent storage mecha-
nism that is responsible for storing policy-related data and
a front-end processor that provides a communication inter-
face between this storage component and other services in
the framework. This modular design allows storage mecha-
nisms to be easily replaced without requiring changes to the
communication interface.

Although the SMS provides a centralized location for
policy storage and retrieval, no other components are struc-
tured in the same way. Authorization, authentication and
role-activation services can be centralized or distributed
based on the environment in which they operate. In the
Aware Home, some resources may instantiate a local Au-
thorization Service to perform their own resource access
checks. Other limited-capability resources may opt to of-
fload authorization to a central service. In either case, the
SMS serves as the central console for policy updates and
ensures consistency and well-formedness of policy and role
definitions.

3.3 Authorization Service

The Authorization Service is responsible for retriev-
ing policy definitions from the SMS and for determining
whether a particular request should be granted or denied.
Our implementation supports an Authorization Service that
can boot in two different modes. The first mode does not
store any authorization information locally. For every re-
quest, the Authorization Service must contact the SMS to
retrieve a copy of the relevant policy. In the second mode,
the Authorization Service stores all relevant policy defini-
tions in a local runtime structure. The second mode pro-
vides greatly enhanced performance but also requires more
resources at the Authorization Service.

Since our system allows for multiple Authorization Ser-
vices, it is useful for each Authorization Service to maintain
a cached list of active environment roles (ERoles) that have
already been evaluated. By assuming synchronized clocks
between the various services in our architecture, we define
a lifetime parameter that can be used to determine the life-
time of cached ERole status. In our implementation, the
Authorization Service caches only active ERoles.

When an access request is received by the Authoriza-
tion Service, it first determines what roles are active for the
object being accessed. Based on this active object role set,
policies are checked and the Authorization Service must de-
termine if it requires information from the Authentication
Service or ERAS. If so, appropriate calls are made to de-
termine active subject roles and/or environment roles that
are relevant to the access request. Policies are stored in the
form of a tuple:

<SRole, ORole, Action, ERole, Permss>

where SRole specifies a subject role, ORole specifies an
object role, Action specifies an operation, ERole specifies
environment role(s) and Perms determine whether the ac-
tion is granted or denied.

3.4 Environment Role Activation Service
The Environment Role Activation Service (ERAS) main-

tains information on system state and manages role activa-
tion and deactivation based on conditions that are held by

ERole ==
<LExp> ===
< M_Exp >
< Meta >
<LOpr> :u=
< C_Opr >
<M Opr> ==

+ =]/

< L_Exp > | < L_LExp >< L_Exp >< L_Opr >
True | False | < M_Exp >< M_Exp >< C_Opr >
< Meta > | < Meta >< Meta >< M_Opr >

< Constants > | < Environment_Variable >
AND | OR|NOT

=|<>|>|>=<]<=

Figure 3. Environment Role Definition

specified environment variables. It is through this compo-
nent that an administrator specifies the variables that define
environmentroles and the conditions that must be met in or-
der for the roles to be activated. This service interacts with
one or more Context Management Service/sensors to en-
sure that system state is collected and the appropriate roles
are activated when necessary.

Environment roles (ERoles) specify and capture envi-
ronmental conditions that are relevant to access control.
The Environment Role Activation Service (ERAS) is re-
sponsible for evaluating the status of ERoles. Environment
roles are activated when certain environmental conditions
are met. These conditions can change dynamically and
hence the active role set is also subject to change. In our
system, we have implemented an ERAS that evaluates role
status on-demand. Our model maintains two possible states
for each ERole, active and inactive, and we represent these
with boolean values. We have chosen to implement ERoles
as logical expressions. The major function of the ERAS is
to evaluate these logical expressions and determine the state
of any given ERole.

In a previous implementation, we used Conjunctive Nor-
mal Form (CNF) to represent ERoles (the logical expres-
sions) but found that this approach made it difficult to spec-
ify additional operations on environment variables. We
have since modified our implementation to one that utilizes
a postfix format and allows all mathematical and logical op-
erations (detailed below) to be treated in a unified fashion In
terms of our implementation, an ERole is defined as shown
in Figure 3.

Figure 4 illustrates a formal definition for the Party
ERole (equivalent to “Person_LivingRoom >= 10 and
NoiseLevel _LivingRoom_-DB >= 50"). ERoles can
also inherit definitions from existing ERoles. For example,
if ERoles Party and Weekend have already been defined in
the system, a new ERole Weekend_Party can be defined sim-
ply through logical “AND” of the logical expressions from
both of the existing ERoles. The newly created ERole in-
herits definitions from both of its parents and can also spec-
ify additional conditions that must hold in order for the role
to be activated. Further discussion of the environment role

model and related properties can be found in [5].

To overcome the costs associated with external commu-
nication with both the SMS and sensors, we have imple-
mented an ERAS that uses a caching mechanism to main-
tain the status of an evaluated ERole. Since environmen-
tal variables are subject to dynamic fluctuations in value, it
is not appropriate to cache such variables. However, once
an ERole is evaluated, it may be possible to cache its sta-
tus for future use. Our implementation assigns /ifetime and
inactive_lifetime attributes to each ERole. In other words,
ERoles can be cached regardless of status. In either case,
a zero lifetime indicates that the ERole must be evaluated
each time it is used. In addition, both lifetime values are
static. We are currently investigating other methods that
would allow us to derive a more dynamic lifetime value for
ERole caching.

With caching enabled, the ERAS is implemented as fol-
lows: a request from the Authorization Service will trigger
the ERAS to evaluate a list of ERoles. The ERAS will first
check whether the ERole requested is already in the cache.
If so, it will then determine the “freshness” of the cached
copy. If the lifetime is still valid, the cached status is sent
to the Authorization Service along with a new expiration
time. If a cached copy is not found, or if it is too old, the
ERAS will then contact the appropriate sensor(s) for current
state values which will be used to (re-)evaluate the ERole.
A request timestamp is associated with each (re-)evaluated
ERole when they are placed into the cache.

3.5 Authentication Service

We have developed algorithms that allow for the secure
and transparent authentication of users in context-aware en-
vironments. By making use of security-specific measure-
ments in our calculations, we are able to take into account
the likelihood of a sensor device being compromised, as
well as its inherent ability to accurately identify users in
the system. Such information is used to determine the level
of authentication that can be provided to the source of a re-
quest.

We have defined our API for the authentication service

Party := L_Exp; L_LExpy AND
L_Exp; == M_Exp;; 10 >=
L_Exps == M_Exps; 50 >=
M_Exp;; == Person_LivingRoom
M_Exp2;1 := NoiseLevel LivingRoom_DB

Figure 4. Example Environment Role Definition: Parry

and are currently building the components that will imple-
ment our algorithms and expose the API to other services
in our framework. In the mean time, the CASA architec-
ture provides an authentication service that can both verify
credentials and retrieve them from the environment.

The authentication service for CASA supports two mod-
els of authentication: push and pull. The push model is
similar to the traditional model where a user sends creden-
tials to the system at the time access is requested. The pull
model, on the other hand, only requires authentication to be
performed when necessary. In the above example, the Au-
thorization Service may determine that any user in the home
may access the family newspaper subscription and, there-
fore, no authentication needs to be performed. However, if
the Authorization Service were to receive a credential-less
request to access the medical database, it could dynamically
pull authentication information from the environment based
on the source of the request.

The CASA authentication service expects requests for
either credential verification or credential retrieval. In veri-
fication, credentials are passed to the authentication service
where their status (validity, expiration, etc.) is checked and
a user ID is returned, which can be used to activate subject
roles. For credential retrieval, the authentication service is
sent information pertaining to the source of the access re-
quest and a least-acceptable authentication parameter. The
authentication parameter details the level or quality of au-
thentication that is required by the Authorization Service.

Details of the algorithms that comprise the authentica-
tion service are beyond the scope of this document. Ad-
ditional details regarding the authentication service and its
interaction with the Authorization Service are provided in
Sect. 4.

3.6 Context Management Services

To facilitate the collection of environment variables and
their associated values, we make use of Context Manage-
ment Services (CMS). The ERAS monitors one or more
such services to maintain a snapshot of current environ-
mental conditions. Example CMSs include services based
on the Simple Network Management Protocol (SNMP), the
Context Toolkit (CTTK) [8] and similar services that mon-

itor environmental conditions (e.g., system, network, etc.)
and maintain a record of environment state.

Sensors are placed throughout the environment to col-
lect useful security-relevant data. Sensors can include mo-
tion detectors, fingerprint scanners, cameras and numerous
other sensing devices. In addition to authentication-related
data, sensors can also collect information related to envi-
ronmental state, such as temperature, ambient noise in a
room, network bandwidth and CPU usage. Sensors commu-
nicate directly with one or more CMSs that are responsible
for managing the received data.

Our current implementation makes use of the Context
Toolkit [8, 5] and a collection of distributed sensors for
the purpose of managing environmental context. The Con-
text Toolkit is a software infrastructure that provides use-
ful abstractions for collecting and organizing environmental
state information; it allows for the seamless incorporation
of sensed context into “aware” applications. The overall
organization of the software is shown in Fig. 5. Our im-
plementation of CASA makes several important changes to
the Context Toolkit to ensure that security-relevant environ-
mental context is collected in a secure fashion. This section
provides details on those changes and the Context Toolkit
in general.

In the CTTK, Context widgets represent abstractions
over sensors that hide details of how sensing and interpre-
tation of the environment occurs. Widgets are essentially
wrappers around an underlying sensor or service; they pro-
vide an interface to automatically deliver information to in-
terested components or services in the system. Aggregators
collect information for relevant entities of an application. In
the home, there could be aggregators for rooms in the house
(Room Aggregators) and residents of the household (Person
Aggregators). Finally, Interpreters are responsible for ab-
stracting low-level context to higher-level information. An
interpreter can convert state information to another format
or meaning. For example, a complex interpreter can take
location, identity and sound information and subsequently
determine that a meeting is underway.

We have built a secure version of the CTTK that will al-
low us to collect environment information in a manner that
is both secure and reliable. It is reasonable for us to as-
sume that the individual components of the toolkit are se-

Application

P

Interpreter

‘ Aggregators

Interpreter

T~

Widget

‘. Sensor)

Widget

': Sensor :7
R Context

Toolkit
Architecture

Figure 5. The Context Toolkit

cure as stand-alone services. For example, we assume that
sensors and widgets are securely bound together in such a
way that information from a sensor (e.g., an RF transmitter)
can be securely transmitted to its associated widget. How-
ever, the same may not be true for communication links be-
tween components.

We have built a certificate-based PKI to support com-
ponent authentication and data encryption. Specifically,
we use HTTP over SSL to allow for authenticated and en-
crypted sessions. Given the component-based nature of the
Context Toolkit, this approach allows us the flexibility to
select either secure or insecure channels, depending on the
properties of the communication that is taking place. We are
currently expanding our implementation to support multiple
communication protocols (in addition to HTTP) and a more
flexible key-sharing infrastructure (such as SPKI).

4 Securing Applications with CASA

Our context-aware security architecture — through the
incorporation of GRBAC and our enhanced authentication
techniques — presents a powerful approach for enforcing se-
curity policies in a ubiquitous computing environment. This
section shows how our security infrastructure can be ap-
plied, in practice, to the home environment. It also demon-
strates some of the additional benefits not offered by tradi-
tional approaches to system security. We present an oper-
ational scenario that requires an application to leverage the
security services of CASA. In addition, we provide a per-
formance analysis of the architecture.

Using our graphical Management Tool, we begin by cre-
ating a simple environment role hierarchy. In our example,
we define a series of basic time-related environment roles
that capture different times in an academic calendar. We
also specify the CMS/sensors that will be used to collect
the required information to determine the ERole status. Fi-
nally, we provide subject role and object role information
that is subsequently used to form a policy statement. When
complete, our role definitions (and the relationships that ex-
ist between them) and policy statements are encoded into an

XML format similar to that in Fig 6.

Using this access control policy we have run several ex-
periments to show the performance of CASA when process-
ing authorization requests from an application. The four
primary components (SMS, ERAS, Authentication and Au-
thorization) were started as separate services on distributed
machines. The experiments were conducted on a cluster
of workstations using dual-2.20GHz Intel Xeon processors,
running RedHat Linux 7.2, all connected by a 100 Mb Eth-
ernet switch. The Java virtual machine was part of the J2SE
SDK version 1.4 from Javasoft.

For our first set of experiments, we generated a series of
access requests using different sets of active ERoles. There
were a total of eleven access requests sent to the Autho-
rization Service. The first request involved a policy that
granted access regardless of environmental state; no ERoles
needed to be active and, therefore, no check with the ERAS
was necessary. All other requests in the series involved ac-
cess checks that made use of more complex policies; each
policy specified an environment role that used from one to
ten unique variables (sensors) in its definition. In addition,
authentication services were provided to verify credentials
that were “pushed” with the access requests.

This first set of experiments was run using HTTP as the
transport protocol and allowed us to generate an initial set
of measurements to demonstrate the efficiency of our imple-
mentation. Table 1 shows “round-trip time” for the experi-
ment, starting with the time that the access request is gener-
ated and ending with receipt of an access response from the
Authorization Service.

To illustrate the performance increase that was observed
through the use of caching mechanisms in both the ERAS
and the Authorization Service, the same set of experiments
was run, first with only an ERAS cache and secondly with
a fresh and fully-populated cache at the Authentication Ser-
vice. As demonstrated here, the CASA implementation can
provide access requests in a range of 1 to 40 milliseconds,
depending on cache state and contents. Clearly, when the
number of ERoles requiring evaluation increases, the time
spent evaluating ERole status also increases. This applies

<GRBAC_TABLES>
<EROLE_DESC>

</EROLE>
<EROLE_DESC>

</EROLE>

<POLICY>

</POLICY>
</GRBAC_TABLES>

<NAME> Academic Year </NAME>
<L_EXP> ROOT-EROLE </DC_NAME

<NAME> Spring Semester </NAME>
<L_EXP> Spring-Semester </DC.NAME>

<SROLE> Teaching Assistant </SROLE>
<OROLE> Classroom Computer </OROLE>
<ACTION> ALL </ACTION>

<EROLE> Spring Semester </EROLE>
<PERMS> GRANT </PERMS>

Figure 6. Example XML encoding of Role Definitions and Policy Statements

| ERole Defs | No Cache | ERAS Cache | AS Cache

No ERoles 25 9 9
1 Variable 26 10 6
2 Variables 29 10 2
3 Variables 32 12 5
4 Variables 30 13 6
5 Variables 35 14 7
6 Variables 36 13 7
7 Variables 39 13 6
8 Variables 57 15 6
9 Variables 37 18 5
10 Variables 38 16 5

Table 1. Request over HTTP, in milliseconds

to both uncached and cached values. However, we feel that
our implementation is highly efficient in determining ERole
status — the majority of time spent evaluating ERole status
is actually spent in communicating with the environmental
sensors that monitor variable conditions.

In order to ensure that policies are protected and that
credentials are not observed during transmission, we also
support encrypted communication channels in the CASA
implementation. We have performed a second set of exper-
iments in which we generate the same access requests as
before but use an SSL-encrypted HTTP channel over which
the services communicate. As before, there were a total
of eleven access requests sent to the Authorization Service.
Table 2 shows the results of our application test.

The results presented here were all obtained using SSL-
encrypted HTTP communication channels and, when com-
pared to the previous results, demonstrate the cost of es-
tablishing and using secure communications. This protocol
selection resulted in a delay that was caused by SSL-related
key exchange and session establishment. The overhead in-
troduced by the processing at the services is not significant

| ERole Defs | No Cache | ERAS Cache | AS Cache |

No ERoles 775 536 212

1 Variable 885 485 221
2 Variables 935 490 230
3 Variables 1181 438 206
4 Variables 1610 462 215
5 Variables 1946 438 217
6 Variables 1737 500 275
7 Variables 1925 426 243
8 Variables 2173 436 227
9 Variables 2417 525 213
10 Variables 2450 415 193

Table 2. Request over HTTPS, in milliseconds

when compared to the connection establishment and com-
munication times. We are currently working on a communi-
cation subsystem that utilizes session key-reuse; we expect
this to eliminate a significant portion of the overhead cost
associated with the HTTPS-based communication.

The experimental results show that services in our ar-
chitecture can authorize requests in a reasonable amount
of time. Furthermore, by taking advantage of our caching
framework and other runtime efficiencies, such as leav-
ing established (secure) connections open between requests,
context-aware security does not present any significant
overhead to the application.

In future work we will complete our analysis of the over-
all architecture and are currently building a secure imple-
mentation of a smart intercom application that will provide
a foundation for our experiments. Not only will we focus
on comparing an insecure, context-aware application with
a secured version, but analyzing the effectiveness of the in-
terfaces that are exposed to residents in the Aware Home as
well.

5 Related Work

Despite considerable interest and research in pervasive
computing [23, 19], security concerns in such environments
have received little attention. In this section, we briefly
highlight several existing projects and technologies that
have influenced our work with providing security services
in context-aware environments.

There are a number of well-known architectures that
have been used to build secure systems in the past. The
Kerberos system [13] implements a protocol that can be
used to efficiently authenticate entities in a distributed sys-
tem. Satyanarayanan [21] discusses the architectural issues
surrounding the security services that are incorporated into
the Andrew distributed computing environment. In addi-
tion, significant work has been focused on the modeling,
building and analysis of secure Public Key Infrastructures
(PKIs). Other issues related to building secure distributed
systems, including subject role authentication and delega-
tion are addressed by Lampson et. al. [15].

In addition to these architectures, other security infras-
tructures have been presented to specifically address the
needs of authorization logic. In [2], an architecture is pro-
posed for securing distributed document management sys-
tem. The authors address the need for an access control
logic in a complex distributed system. In particular, they
discuss a logic that supports linked local name spaces and
the management of a large system spread across adminis-
trative domains.

Al-Mubhtadi et al. [1] present an approach to transfer tra-
ditional security solutions—specifically the Kerberos ex-
tension SESAME—into “smart spaces” such as the home.
Their work focuses on the integration issues that must be ad-
dressed when placing computing-intensive security mecha-
nisms into devices with limited resources. While a GRBAC-
like component could conceivably be added to their solu-
tion, our architecture is appropriate in the context-aware
environments that we target. The architecture that we pro-
pose can support partial authentication, context-aware ac-
cess control and dynamic policy generation based on roles —
elements not found in traditional computing environments.

We have also discussed traditional Role-based Access
Control (RBAC) [20, 9] and acknowledge the tremendous
influence it has had on our research efforts. Our work ex-
pands the RBAC model by providing a more versatile and
more expressive framework that incorporates the use of en-
vironment and object roles. By using the uniform notion of
arole to capture user, environmental and resource attributes,
our model allows for the definition of context-aware secu-
rity policies. In addition, roles make it easy to define and
understand complex security policies.

The use of XML in security policy definition has been
studied in numerous contexts, though work in this area

has focused primarily on the development of access control
models and methods to address encryption in the language.
Some of the more relevant work in XML security includes
[7] in which Damiani et al. present an access control model
that uses an XML-based approach to define and enforce
access restrictions directly on the structure and content of
Web documents. In [3], Bertino et al. present an XML-
compliant formalism for specifying security-related infor-
mation for Web document protection. In addition, Herzberg
et al. present a Trust Policy Language (TPL) [11] that de-
fines policies using a well-formed XML document. Finally,
Netegrity [18] has presented S2ML, a Security Services
Markup Language that provides a mechanism for describ-
ing existing security models using XML syntax.

6 Conclusion

In this paper we have introduced a new model for se-
curing context-aware environments and describe why we
believe it will be useful for securing applications in the
highly-connected world of tomorrow. Much of this work is
focused on providing more adaptive security services than
those found in traditional computing environments.

We have presented a framework for providing authoriza-
tion services in context-aware environments and applica-
tions. This framework supports the collection of contex-
tual information from resources, the environment and the
users who interact in that environment. In addition, we have
explored, through the context aware security architecture,
an implementation of the Generalized Role-Based Access
Control model. We have discussed our initial experience
with the security framework and provided experimental re-
sults regarding its effectiveness in securing context-aware
applications.

References

[1] Jalal Al-Muhtadi, Manish Anand, M. Denis Micku-
nas, and Roy H. Campbell. Secure smart homes us-
ing Jini and UIUC SESAME. In Proceedings of the
Annual Computer Security Applications Conference
(ACSAC), December 2000.

[2] Dirk Balfanz, Drew Dean, and Mike Spreitzer. A secu-
rity infrastructure for distributed java applications. In
Proceedings of the IEEE Symposium on Security and
Privacy, pages 15-26, 2000.

[3] Elisa Bertino, Silvana Castano, and Elena Ferrari. On
specifying security policies for web documents with
an XML-based language. In Proceedings of the 6th
ACM Symposium on Access Control Models and Tech-
nologies, pages 57-74, Chantilly, Virginia, USA, May
2001.

(4]

(5]

(6]

(7]

(8]

(9]

—
—
=]

=

[11]

[12]

[13]

World-Wide Web Consortium. eXtensible
Markup Language (XML). W3C Specifications.
http://www.w3.org/TR/WD-xml-lang.html.

Michael J. Covington, Wende Long, Srividhya Srini-
vasan, Anind Dey, Mustaque Ahamad, and Gregory
Abowd. Securing context-aware applications using
environment roles. In Proceedings of the 6th ACM
Symposium on Access Control Models and Technolo-
gies, pages 10-20, Chantilly, Virginia, USA, May
2001.

Michael J. Covington, Matthew J. Moyer, and Mus-
taque Ahamad. Generalized role-based access con-
trol for securing future applications. In Proceedings of
the 23rd National Information Systems Security Con-
ference (NISSC), pages 40-51, Baltimore, Maryland,
USA, October 2000.

Ernesto Damiani, Sabrina De Capitani di Vimercati,
Stefano Paraboschi, and Pierangela Samarati. A fine-
grained access control system for XML documents.
ACM Transactions on Information and System Secu-
rity, 5(2):169-202, May 2002.

Anind K. Dey, Daniel Salber, and Gregory D. Abowd.
A context-based infrastructure for smart environ-
ments. In Proceedings of the 1st International Work-
shop on Managing Interactions in Smart Environ-
ments (MANSE °99), Dublin, Ireland, pages 114—128,
December 1999.

David F. Ferraiolo, John F. Barkley, and D. Richard
Kuhn. A role based access control model and refer-
ence implementation within a corporate intranet. In
ACM Transactions on Information and System Secu-
rity, volume 1, February 1999.

Gregory R. Ganger. Position summary: Authentica-
tion confidences. In Proceedings of the IEEE Work-
shop on Hot Topics in Operating Systems (HotOS),
2001.

Amir Herzberg, Yosi Mass, and Joris Mihaeli. Access
control meets public key infrastructure, or: Assigning
roles to strangers. In Proceedings of the IEEE Sympo-
sium on Security and Privacy, pages 2—14, 2000.

Georgia Tech Broadband Institute. The Aware Home
Research Initiative. Research Initiative Web Page,
2002. http://www.cc.gatech.edu/fce/ahri/.

John T. Kohl, B. Clifford Neuman, and Theodore Y.
T’so. The evolution of the kerberos authentication sys-
tem. Distributed Open Systems (IEEE Computer So-
ciety Press), 1994.

[14]

[15]

[16]

[17]

[19]

[20]

[21]

[22]

[23]

Subramanian Lakshmanan, Mustaque Ahamad, and
H. Venkateswaran. A secure and highly available dis-
tributed store for meeting diverse data storage needs.
In International Conference on Dependable Systems
and Networks (DSN), July 2001.

Butler Lampson, Martin Abadi, and Michael Burrows.
Authentication in distributed systems: Theory and
practice. ACM Transactions on Computer Systems,
1992.

Sun Microsystems. Java 2 standard edition. Software
Development Kit. http://java.sun.com.

Matthew J. Moyer and Mustaque Ahamad. General-
ized role based access control. In Proceedings of the
IEEE International Conference on Distributed Com-
puting Systems (ICDCS), Mesa, Arizona, USA, April
2001.

Netegrity. S2ml: The XML standard for describing
and sharing security services on the internet. Technical
report, 2001.

Daniel M. Russell and Mark Weiser. The future of in-
tegrated design of ubiquitous computing in combined
real & virtual worlds. In Communications of the ACM,
page 275. ACM, 1998.

Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein,
and Charles E. Youman. Role based access control
models. In IEEE Computer, volume 2, February 1996.

M. Satyanarayanan. Integrating security in a large dis-
tributed system. ACM Transactions on Computer Sys-
tems, 7:247-280, August 1989.

Roy Want, Andy Hopper, Veronica Falcao, and Jon
Gibbons. The active badge location system. Technical
report, Olivetti Research Ltd. (ORL), 1992.

Mark Weiser. The computer for the 21st century. Sci-
entific American, September 1991.

