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A Context for Constraint Satisfaction Problem

Formulation Selection

Abstract: Much research effort has been applied to finding effective ways for solving constraint
satisfaction problems. However, the most fundamental aspect of constraint satisfaction problem
solving, problem formulation, has received much less attention. This is important because the selection
of an appropriate formulation can have dramatic effects on the efficiency of any constraint satisfaction
problem solving algorithm.

In this paper, we address the issue of problem formulation. We identify the heuristic nature of
generating a good formulation and we propose a context for this process. Our work presents the
research community with a focus for the many elements which affect problem formulation and this is
illustrated with the example adding redundant constraints. It also provides a significant step towards
the goal of automatic selection of problem formulations.
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1. INTRODUCTION

The success of constraint based technology has resulted in a considerable amount of research
effort aimed at producing ever more effective and efficient ways of tackling constraint
satisfaction problems. It has now become a vast field and the use of constraint satisfaction
techniques has been incorporated into many applications (Lever et al 1995; Puget 1995; Simonis
1995; Wallace 1996). However, one facet of constraint satisfaction, which has remained largely
neglected to date, is perhaps the most fundamental of all - how to effectively formulate a given
problem as a constraint satisfaction problem.

The basic elements of any constraint satisfaction problem are its variables, domains and
constraints are. It is defined as follows;

Definition 1 (Tsang 1993) - A constraint satisfaction problem, or CSP, is a triple (Z, D, C). Z is
a finite set of variables {x1, x2, ... xn}. D is a function which maps each variable in Z to its domain
of possible values, of any type, and 

ixD is used to denote the set of objects mapped from xi by D.

C is a finite, possibly empty, set of constraints on an arbitrary subset of variables in Z. v

From definition 1, given a problem, the process of formulating it as a CSP must at some stage
involve mapping a problem description to an instantiation of Z, D and C. Put simply, problem
formulation involves defining the variables in Z, the domains in D and the constraints in C such
that the solutions to the resulting CSP allow us to obtain the desired solutions to the problem. We
refer to a formulation generated in this way as a ZDC formulation.

There are often many ways in which a problem can be formulated as a constraint satisfaction
problem. Furthermore, decisions made at this stage in the problem solving process are very
important and can have a dramatic effect on the eventual cost of solving the problem. (Amarel
1968) and (Korf 1980) discuss the effects of changes in representation at length in the context of
search in  general. (Nadel 1990) represents one of the few instances of work which analyses the
effects of changes in formulation of CSPs, where he considers different ZDC formulations of the
n-Queens problem. (Borrett 1998) also addresses the issue of ZDC formulation selection.

Problem formulation is an extremely important part of problem solving. The choice of a good
formulation can result in order of magnitude savings in search cost. Conversely, if a bad
formulation is adopted, we can experience order of magnitude increases in search cost. Our aim is
to address the issue of problem formulation and how to traverse the space of possible alternatives
in a systematic and effective manner. The result of our work, as will become clear, is a significant
step towards that goal.

There are many different aspects of constraint satisfaction research which affect the process of
ZDC formulation selection. An example of this is the area of problem transformation techniques
such as the removal of redundant constraints (Dechter&Dechter 1987). Preprocessing using
problem reduction techniques (Tsang 1993) represents another form of transformation. Other
areas of research include the investigation of the properties of CSPs and estimating the
complexity of searching for solutions to a particular problem (Nudel 1983a). These all have a role
to play in the process of formulation selection.

In this paper we develop a context in which many aspects of CSP research can be related to ZDC

formulation selection. By doing so, we provide a focus for research in this area which, we
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believe, will result in improved techniques for achieving more reasoned ZDC formulation
selection. In the next section we describe the space of possible ZDC formulations. In section 3 we
describe the task of selection and in section 4 we identify the elements of our context which
provide a framework for performing the selection task. In order to illustrate the mechanics of our
context, in section 5 we provide an example application where redundant constraints are added to
an original ZDC formulation. Finally, in section 6 we present our conclusions.

2. THE SPACE OF POSSIBLE ZDC FORMULATIONS

There are many different approaches to generating a set of candidate ZDC formulations of a
problem. The starting point of this process is to translate the original problem description into an
instantiation of Z, D and C. In fact we can generate a range of ZDC formulations in this way.
Further formulations are then possible using transformation techniques1.

Some transformations can result in very different ZDC formulations being created, while other
transformations can result in ZDC formulations with only very subtle differences in their
characteristics. Transformations, combined with manual generation can lead to a large spread of
ZDC formulations, some having very similar properties and others having very different ones.
The idea of there being such a spread is illustrated in figure 1.

Figure 1 - The space of possible ZDC formulations for a given problem

One restriction which must hold within the ZDC formulation space for a given problem is that
they must all be equivalent. By this we mean equivalent in terms of the definition used by (Rossi
et al 1990) whereby the solution sets of different formulations are said to be mutually reducible.

Definition 2 (Rossi et al 1990) - Two CSPs P1 and P2 are equivalent if P1 is reducible to P2 and
P2 is reducible to P1. This is written as P1 ≡e P2. v

A CSP P1 is reducible to CSP P2 if there is a way to go from the solutions of P2 to the solutions
P1 by mapping variables and values in P2 into variables and values in P1. When this mapping
works in both directions the problems are said to be mutually reducible.

2.1 The SENDMORY Puzzle: an Example ZDC Formulation Space

As an example space of candidate ZDC formulations, we consider the crypto-arithmetic
SENDMORY puzzle. This problem is shown in figure 2.

1 Transformation techniques are discussed in more detail in section 4.

Closely related
ZDC formulations

The space of all
ZDC formulations
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Figure 2 - The SENDMORY problem

The aim of the SENDMORY puzzle is to assign a unique digit to each of the letters used in the
summation. One candidate ZDC formulation which we could have is SENDMORY_1;

SENDMORY_1: Z: The eight letters of the problem
D: Each variable represents a digit having the domain {0,...,9}
C: C1 all variables have different values

C2 - 1000(S+M) + 100(E+O) + 10(N+R) + D + E = 
10000M + 1000O + 100N + 10E + Y

A second candidate ZDC formulation is possible if we use carry variables in order to split up the
large equality constraint. This gives us SENDMORY_2;

SENDMORY_2: Z: The eight letters of the problem plus three carry variables a, b and c
D: Each letter variable represents a digit having the domain {0,...,9}

each carry variable has the domain {0,1}
C: C1 - all letter variables have different values

C2 - D + E = Y + 10a

C3 - N + R + a = E + 10b

C4 - E + O + b = N + 10c

C5 - S + M + c = O + 10M

If we compare these two ZDC formulations we see that there are significant differences. For
example, we can calculate the complexity of the search space, S, for each ZDC formulation. This
is given by the product of the domain sizes of the variables and is equal to;

S Dxi
i

i n

=
=

=

∏
1

(1)

The value of S is 108 for SENDMORY_1 and 108.9 for SENDMORY_2.  Another feature of
SENDMORY_2 is that it has more diversity in its topology when compared to SENDMORY_1.
For example, the constraints C2 - C5 have relatively low arities, ranging from 4 to 5. In contrast,
the arities of the constraints C1 and C2 in SENDMORY_1 are both 8.

As a third candidate ZDC formulation we can make some modifications to SENDMORY_1. More
specifically, we can add three redundant constraints, C3, C4 and C5, which provide additional
explicit constraint based information about the nature of the solution set. This gives us
SENDMORY_3;

SENDMORY_3: Z: The eight letters of the problem
D: Each variable represents a digit having the domain {0,...,9}
C: C1 - all variables have different values

C2 - 1000(S+M) + 100(E+O) + 10(N+R) + D + E = 
10000M + 1000O + 100N + 10E + Y

C3 - S+M ≤ 10M + O
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C4 - 10S + E + 10M + O ≤ 100M + 10O + N
C5 - 100S + 10E + N + 100M + 10O + R ≤ 1000M + 100O + 10N + E

SENDMORY_3 is very similar to SENDMORY_1 since the only difference is the three redundant
constraints C3, C4 and C5. This is an example of two ZDC formulations that might be considered
to be “close” in terms of the space of all ZDC formulations of the problem. Of course, the notion
of  “closeness” is somewhat subjective in nature and depends on the criteria used.

Despite the relative simplicity of the SENDMORY problem and the restricted set of ZDC

formulations presented in this section, it is not obvious which ZDC formulation we should use.
With more complex problems, with no tools available to help make a decision, it is difficult to
choose from among candidate ZDC formulations, especially in cases where the problem solver
has no knowledge of constraint satisfaction techniques.

3. THE TASK OF ZDC FORMULATION SELECTION

In order to aid the problem solver in making reasonable decisions about how to generate or select
a ZDC formulation, some very general guidelines have been suggested. Examples of these
guidelines, or rules of thumb, include the use of redundant constraints (VanHentenryck 1989) and
making constraints as tight as possible (Chamard et al 1995). However, in general, current
approaches to selecting the best ZDC formulation of a problem are somewhat ad-hoc in nature.

This situation is undesirable since there are significant gains to be made from selecting the
correct formulation and, conversely, there are significant losses that can be incurred by selecting a
poor one. We should therefore like to take advantage of the potential gains, and avoid the
potential losses. In this section we define the task of ZDC formulation selection and the goals of
an ideal ZDC formulation selection method. We follow this by a discussion of what we believe to
be practical and achievable goals.

3.1 The Task Defined

We have seen how there are many ways problems can be formulated as CSPs. In addition, we
notice that different algorithms are affected in different ways by different CSPs, and hence by
different ZDC formulations. This was demonstrated in (Tsang et al 1995) and (Kwan 1997).
These facts lead us to the definition of the primary task of the ZDC selection process;

Task 1: Let cost(a, f) be the cost of solving an individual ZDC formulation f using algorithm a.

Given a problem p and the set of all ZDC formulations F, the task of the selection process is to

find f∈ F such that we minimise the value of cost(a, f).

This task assumes that we have committed ourselves to the use of a particular algorithm for
solving the problem p. An extension of task 1 is to find the ZDC formulation which gives the
minimum value of cost(a, f) for a set of algorithms, A. This leads us to a second task;

Task 2: Given a problem p, a set of ZDC formulations F and a set of algorithms A, the task of the

selection process is to find f∈ F and a∈ A such that we minimise the value cost(a, f).

The two tasks we have outlined above can be considered the requirements for an ideal ZDC

formulation selection method. There are also some further requirements which are implicit in
these tasks. These are;
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Generality - the method of selection should be general in that it can be applied to all
classes of problem.

Accuracy - the method of selection should be highly accurate, ideally 100%
accurate in choosing the most effective formulation.

Cost - the method of selection should have a low cost, ideally the cost should
be nil.

Currently no such method exists and it seems unlikely that all three of these requirements can be
satisfied simultaneously. However, a more reasonable proposition is that these ideal properties
can act as a guide to the qualities of any practical selection method.

3.2 Expectations

Tasks 1 and 2 are extremely important tasks. However, we must acknowledge that they are both
impossible to achieve with certainty. One reason for this is that they depend on the availability of
all possible ZDC formulations of a problem. Furthermore, the expression cost(a, f) cannot be
100% accurate unless we actually solve the ZDC formulation in question.

For any practical ZDC formulation selection method, we only ever have a subset of all possible
ZDC formulations. For example, with our SENDMORY example, we only considered three ZDC

formulations of the problem. In addition, we also have to rely on approximations of cost(a, f). For
a practical method to be effective, we therefore rely on;

• a good pool of candidate ZDC formulations

• an effective method for approximating cost(a, f)

The higher the quality of these elements, the higher the quality of the selection and the closer we
can get to fulfilling tasks 1 and 2.

The only selection method which has zero cost is that of arbitrary selection. For other approaches,
the cost should be taken into account. If this were not the case then we would have a simple
solution to the 100% accuracy criterion whereby we solve each ZDC formulation of the problem
before making our selection. Such an approach is unacceptable since it will always give worse
overall search complexity than simply choosing one of the ZDC formulations at random and
solving that one. We do not propose to put a figure on the cost that should be allowed in the
selection process. However, it is desirable that this cost should be minimised and remain a low
proportion of the overall solving cost.

The fact that the ideal is not achievable leads us to an approximation. The use of heuristics can
help produce an effective approximation. Our approach to ZDC formulation selection is to
develop heuristics based on the properties of CSPs. This idea is presented in (Borrett 1998) where
a set of heuristics was developed, based on theoretical complexity estimates. As we shall see in
the next section, these heuristics have a significant role to play in our context for ZDC

formulation selection.

4. A CONTEXT FOR SELECTION

The aim of this section is to define our context for the selection of ZDC formulations of a given
problem. Such a context has not been defined previously and, as a result, many aspects of
constraint satisfaction research which affect the ZDC formulation selection process remain
unconnected. We believe our context will help to bring these together. It also acts as a focus for
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our work, allowing us to target specific aspects of the selection process. Furthermore, our context
provides a useful framework which can act as a base model for automatic ZDC formulation
generation techniques.

A problem formulation generator G takes a problem specification and generates an instantiation

of Z, D and C. If 3 is the set of problem specifications within the domain of G and ) is the set of

all possible ZDC formulations then we have the mapping;

G: 3 → ) (2)

As we discussed earlier, our view of ZDC formulation selection is one of a heuristic traversal of

the space of all possible formulations, ). If we are given a particular ZDC formulation f as a

starting point, we can always move to alternative points in that space using transformation
algorithms, or move operators. We then need two types of heuristic in order to facilitate that
movement. The first type of heuristic is one that suggests an appropriate transformation that we
expect to produce an improvement on the current ZDC formulation. The second type is used to
evaluate the actual result of any suggested transformation. These three elements of our context,
move operators, suggestion heuristics and evaluation heuristics, are described in the following
sections.

4.1 Move Operators and Transformation Algorithms

The role of move operators is to provide mobility through the space of possible ZDC

formulations. There are two basic approaches to moving through this space. The first is to use the
actual problem solver to generate alternative ZDC formulations. A second approach is to use
ZDC formulation transformation algorithms;

Definition 2 - Given a problem p and a ZDC formulation f, a ZDC formulation transformation

algorithm T(f) generates as its output an equivalent ZDC formulation for that problem. v

This gives us;

T: ) → ) (3)

An example ZDC transformation algorithm is the dual transformation (Dechter & Pearl 1989).
The output ZDC formulation of this transformation, f2, is dual in the sense that for every
constraint in the original, f1, we create a variable in f2. The domain of these variables is then
determined to be the set of legal compound labels defined in the associated original constraint.
This is seen in figure 3 where we have two variables in f2, corresponding to the two constraints
CAB and CAC in f1. In order to ensure equivalence in both ZDC formulations, the final step in the
transformation is to add constraints between variables in f2 which originate from constraints in f1
having common variables. In our example, xAB and xAC have a common f1-variable, namely xA.
The constraint CAB,AC simply ensures that the identical label is used for the common f1 variable.
An interesting property of the dual transformation is that it always produces a binary CSP as its
output.
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Figure 3 - The dual transformation

Many other transformations are possible. Examples include;

• problem reduction techniques (Tsang 1993) such as arc-consistency
(Mackworth 1977)

• abstraction (Freuder et al 1995) (Freuder & Sabin 1997)

• the addition and removal of redundant constraints (VanHentenryck 1989)
(Dincbas et al 1988) (Smith 1996) (Borrett 1998)

Having such a range of transformations available means that we have more freedom to move
within the space of all possible ZDC formulations. We may also use combinations or sequences
of transformations in order to generate yet more ZDC formulations. For example, we could use
the dual transformation followed by the removal of certain redundant constraints.

4.2 Suggestion Heuristics

As the number of ZDC transformation algorithms available to us increases we gain an increasing
level of mobility within the space of ZDC formulations. However, this gain does not come
without cost and we only want to apply transformations that are likely to produce beneficial
effects. Simply using all transformation algorithms available to us is not a sensible path to ZDC

formulation generation. What we should like is to use heuristics which guide us to sensible
moves through the ZDC formulation space. This is the role of suggestion heuristics.

Definition 3 - Given a ZDC formulation f and a suggestion criterion g, the role of a suggestion

heuristic, Hs, is to select one or more transformation algorithm, T, which is expected to improve

the suggestion criterion g. v

This gives us;

Hs: ) → 7 (4)

where 7 is the set of available ZDC formulation transformation functions.

The key to an effective suggestion heuristic is the choice of the suggestion criterion, g. A range of
candidates are criteria based on the properties of ZDC formulations as discussed in (Borrett
1998). For example, the search space complexity, S, is a potentially useful candidate. A
suggestion heuristic based on this criterion might point us towards the use of problem reduction
algorithms or the merging of variables, both of which fulfil the criterion. It would not recommend
transformation algorithms which are likely to increase S, which is sometimes the case with the

A

CB

≠≠ ≠≠

{1,2,3}

{1,2,3}

{1,2,3}

AB

AC

{(1,2),(1,3),(2,1),
(2,3),(3,1),(3,2)}

{(1,2),(1,3),(2,1),
(2,3),(3,1),(3,2)}

f1 f2

Dual(f1)
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dual transformation. Other candidates include increasing the level of constraint based redundancy
(VanHentenryck 1989) and tightening the constraints (Chamard et al 1995).

One view of suggestion heuristics is to compare them with variable ordering heuristics. These are
usually chosen before search begins and can be extremely effective. However, no variable
ordering heuristic has yet been found which is the universal champion, to be used for all problem
classes. Results to this effect were seen in (Tsang et al 1995). In similar way, we believe ZDC

formulation suggestion heuristics may have domains according to the particular ZDC formulation
they are operating on.

4.3 Evaluation Heuristics

An important element of tasks 1 and 2 is the mechanism for evaluating the function cost(a, f).
Without such a function, we are left with making an arbitrary choice between ZDC formulations.
Since we do not know of any ideal selection method, our objective is to obtain approximations to
the cost function. In other words we need to find heuristics which allow us to make good
decisions about their relative merits. We call such heuristics evaluation heuristics.

Definition 4 - Given two ZDC formulations f1 and f2, an evaluation heuristic, He, returns a tri-

state value which gives an indication of the relative expected cost of solving them. A value of 1
denotes that f1 is expected to have the cheapest solving cost, a value of -1 denotes that f2 is
expected to have the cheapest solving cost and a value of 0 denotes that there is no expected
difference. v

This gives us;

He: ) × ) → & (5)

where

& = { 1, 0, -1 }

In (Borrett 1998), a selection of properties of CSPs was described. Many of these can be used to
give an indication of the expected problem solving cost. Since it is not practical to actually solve
candidate ZDC formulations before making any selection, He must be based on a subset of such

properties, or measures. When this subset includes more than one measure, He must resolve them

to generate an indication of expected relative problem solving cost.

Since there is an almost unlimited source of potential measures that can be defined, the key to
effective evaluation heuristic design is the use of properties which provide a good correlation
between their value and the cost of solving the ZDC formulations in question. Furthermore, while
increasing the number of properties used may provide a greater resolution of discrimination
between ZDC formulations, there is a trade-off between the number of such properties and
complexity of the method for resolving them.

A summary of the whole context and how evaluation heuristics fit into it is given in figure 4.
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Figure 4. – The context for constraint satisfaction problem solving

5. ADDING REDUNDANT CONSTRAINTS - AN EXAMPLE

Redundant constraints provide a widely recognised technique for improving the efficiency of
constraint satisfaction problem solving. A classic example of this is seen in (Dincbas et al 1988)
and (van Hentenryck et al 1992) where redundant constraints are added to an initial ZDC

formulation in order to improve the cost of solving car sequencing problems. The effects of their
use was significant since it allowed for many problems to be solved which were previously
believed to be beyond the capabilities of some computational techniques. (Smith 1996) also
discusses this approach.

In some cases it can be advantageous to remove redundant constraints. This was seen in (Dechter
& Dechter 1987) where the motivation for removing redundant constraints was to alter the
topology of the constraint graph. In this way, they found that considerable savings in search cost
could be achieved for certain problem classes.

The manipulation of redundant constraints can be an extremely powerful tool. At the same time,
decisions about how to use them are not always straightforward. When redundant constraints are
added, they offer the potential for eliminating futile sections of the search space. However, the
addition redundant constraints introduce an overhead to search algorithms since the total number
of constraints which actually need to be checked is increased. A trade off in these effects must
therefore be achieved.

In this section we illustrate the main features of our context. We develop a ZDC transformation, a
selection heuristic and an evaluation heuristic for the addition of redundant composition

Problem
specification 3

Formulation )

Selection
conclusion &

Transformation 7

Formulation
Generator G

7 selected by

heuristic Hs

) selected by

heuristic He
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constraints to binary CSPs. Our example shows how these elements can be combined to give
significant savings in search cost.

5.1 Redundant Constraints

To illustrate the notion of redundant constraints, consider the problem in figure 5.

P < Q < R

Figure 5 - A simple arithmetic problem, where P, Q and R are
digits in the range 1 to 10.

A straightforward and natural ZDC formulation of this problem is to have three variables in Z: p,
q and r, corresponding to P, Q and R. Each of these variables is then given a domain of {1...10}.
Having made these decisions, we now need to define the constraints in C. One obvious
possibility would be to have two constraints corresponding to the inequalities;

Cpq: p < q (6)
and

Cqr: q < r (7)

By further analysing the original problem, we note that the sum of Q and R is also greater than P.
We can incorporate this additional knowledge of the problem into our ZDC formulation by
adding the constraint;

Cpqr: p < q + r (8)

The addition of constraint Cpqr is valid, though not necessarily useful, because its presence or
absence in the ZDC formulation does not affect the number of possible solutions. Because of this
we say that constraints such as Cpqr are redundant;

Definition 3 (Tsang 1993) - A k-constraint in a CSP is redundant if it does not restrict the k-
compound labels of the subject variables further than the restrictions imposed by the other
constraints in that problem. This means that the removal of it does not change (increase) the set
of solution tuples in the problem. v

As we have already discussed, the addition, or removal of redundant constraints can have a
marked effect on the efficiency of search in a particular ZDC formulation.

5.2 Generating Redundant Constraints - a ZDC Formulation Transformation

Redundant constraints can sometimes be generated automatically. For example, consider an
original ZDC formulation having a core constraint graph, such as the graph indicated by the solid
edges in figure 6. Without any knowledge of the actual nature of the problem being solved, we
know that there are potential redundant binary constraints for all of the dashed edges in the graph.
If the content of these constraints can be determined, then we have potentially useful redundant
constraints.
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Figure 6 - An example constraint graph with some candidate
redundant edges shown as dashed

If we revisit the problem described in figure 5, it can be viewed as two individual arithmetic
expressions. This view of the problem resulted in the two constraints Cpq and Cqr for our original
ZDC formulation. In addition, we can also derive a further expression from the problem which is
the composition of these two base expressions. This composition expression is;

P<R (9)

The above composition expression represents further implied knowledge about the problem
which was determined by a simple rule of arithmetic. We can use the same approach to determine
redundant composition constraints. These constraints are important because for any group of
three variables, a redundant composition constraint can always be found, provided two of the
three possible binary constraints between the variables exist. So in the example problem of figure
5, a redundant composition constraint Cpr exists.

It is these redundant composition constraints that we use in the remainder of this section. In terms
of our context, we have ZDC formulation transformation function, Trc, which takes an original
ZDC formulation and adds redundant composition constraints to it.

5.3 Suggestion Heuristics for Redundant Composition Constraints

While redundant constraints clearly provide us with potential benefits, they are not an essential
part of any given ZDC formulation in the sense that they have no effect on the solution set. The
additional constraint-based information a redundant constraint provides gives explicit details of
illegal states in the search space which are already implicit in the original ZDC formulation. For
systematic search algorithms this means that the usefulness of any redundant constraint is
dependent on it bringing forward the possibility of using the explicit constraint-based information
it provides. If a redundant constraint brings forward knowledge of a no-good in the search, this
can be useful to an algorithm. However, if it does not, then the additional constraint simply
presents itself as a further constraint which needs to be checked without providing any benefit.
As a result, one factor which affects the usefulness of a redundant constraint is the order in which
variables are labelled, and hence the variable ordering heuristic used.

Both static and dynamic variable orderings can be used with search algorithms to give significant
savings in search cost. For some classes of problem, a particular dynamic variable ordering and
algorithm combination might prove the best choice, whilst for another class of problem, a static
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variable ordering and algorithm can be the best choice.2 For the purposes of our example, we
shall base our suggestion heuristic on the scenario where a static variable ordering is used.

By analysing the effects of a redundant composition constraint with respect to a given algorithm,
we can be more selective in how their addition is applied.

Figure 7 - Possible scenarios for redundant composition constraints
under search ordering O

Considering figure 7, when constraints Cpr and Cqr exist, we can generate a redundant constraint
Cpq by composition. For standard backtracking the introduction of constraint Cpq can only result
in fewer, or at worst the same number of nodes being visited by the algorithm. This leads us to
proposition 1;

Proposition 1: The addition of redundant composition constraint Cpq results in the same or fewer

nodes being visited by standard backtracking, when a static variable ordering is used. Cpq never
increases the total number of nodes visited.

Proof: The constraint Cpq is first checked by standard backtracking when the search reaches level
q. For all previous search levels, the algorithm visits the same nodes as it would do in an original
ZDC formulation which does not include Cpq. When Cpq is checked at level q, if no compatible
values are found, a backtrack will occur and no further nodes are expanded in that particular sub-
search space. For the case of the original ZDC formulation, a backtrack resulting from the

                                          
2 Many believe that different algorithms are efficient for different problems. This observation applies to algorithms
with dynamic and static ordering. Tsang et al (1995) and Kwan (1997) mapped different classes of constraint
satisfaction problems to a variety of algorithms (covering algorithms that use dynamic ordering as well as algorithms
that use static ordering) and demonstrated that such mapping can enhance search efficiency. Borrett et al (1996) used
a set of algorithms, some using dynamic ordering and some using static ordering, in a sequence to solve a large class
of constraint satisfaction problems. It was found that problems that were “exceptionally hard” (Gent & Prosser 1994;
Hogg & Williams 1994; Smith & Grant 1995) to one algorithm could be solved easily by another. Dynamic variable
ordering is currently believed to have wide applicability. However, the role of static ordering cannot be under-
estimated. For example, building on Freuder’s work (1982), Dechter & Pearl (1988) proposed the directional arc-
consistency idea and the tree-search procedure (which requires static ordering) for solving constraint satisfaction
problems whose constraint graph may form a tree. Zabih (1990) showed that the minimal bandwidth ordering can be
an effective (static) ordering heuristic. Zabih further related the minimal bandwidth ordering to the induced width
(Dechter 1988) and proved interesting results in complexity analysis.

p

q

r

Search
Ordering, O Cpq

Cpr

Cqr
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composition of conflicts with variables p and r will not take place at this point and it is deferred,
possibly until the search reaches q. As a result, the addition of Cpq can only result in the same or
less nodes being visited. v

The effect of Cpq on the number of constraint checks performed by standard backtracking is less
easily identified. If fewer nodes are visited then this should result in a reduction in the number of
checks performed. However, countering this gain, there is the overhead of actually performing
the check of the new constraint, as we have previously indicated. As a result, we can say that the
addition of Cpq to an original ZDC formulation can have both beneficial and detrimental effects
on the number of constraint checks performed.

When constraints Cpr and Cpq exist, we can generate a redundant constraint Cqr by composition.
For standard backtracking, the introduction of Cqr has no effect on the number of nodes visited.
This gives us proposition 2;

Proposition 2: The addition of redundant constraint Cqr has no effect on the number of nodes
visited by standard backtracking, when a static variable ordering is used.

Proof: The constraint Cqr is first checked by standard backtracking when the search reaches level
r. At this level the algorithm would have also checked Cpq. Since Cqr is the composition of the
constraints Cpq and Cpr, it rules out no further compound labels at or after level r because it can
provide no effect different to that of checking Cpr. As a result, we can therefore say that the same
number of nodes are expanded in ZDC formulations with or without constraint Cqr. v

It follows from proposition 2 that we cannot gain in terms of the number of constraint checks
when Cqr is added.

Proposition 3: The addition of redundant constraint Cqr can only increase the number of
constraint checks performed by standard backtracking, when a static variable ordering is used.

Proof: The number of nodes is unaffected by the addition of Cqr. Since its addition increases the
number of constraints checkable at level r, provided it is checked at least once, Cqr must result in
the total number of constraint checks being the same or greater than for the original ZDC

formulation. v

When constraints Cpq and Cqr exist, we can generate a redundant constraint Cpr by composition.
For standard backtracking, the introduction of Cpr has no effect on the number of nodes visited.

Proposition 4: The addition of redundant constraint Cpr has no effect on the number of nodes
visited by standard backtracking, when a static variable ordering is used.

Proof: The constraint Cpr is first checked by standard backtracking when the search reaches level
r. At this level the algorithm would have already checked Cpq. Since Cpr is the composition of the
constraints Cpq and Cqr, it rules out no further compound at or after r because its effect can
provide no effect different to that of checking Cqr. We can therefore say that the same number of
nodes are expanded in ZDC formulations with or without constraint Cpr. v

It follows from proposition 4 that we cannot gain in terms of the number of constraint checks
when Cpr is added.
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Proposition 5: The addition of redundant constraint Cpr can only increase the number of
constraint checks performed by standard backtracking, when a static variable ordering is used.

Proof: The number of nodes is unaffected by the addition of Cpr. Since its addition increases the
number of constraint checkable at level r, provided it is checked at least once, Cpr must result in
the total number of constraint checks being the same or greater than for the original ZDC

formulation. v

The above analysis is important because it identifies occasions when redundant composition
constraints are never likely to be useful. It also identifies scenarios where they may prove useful.
In terms of the context, we can regard propositions 1-5 as the basis of a ZDC formulation
suggestion heuristic, Hs, for the standard backtracking algorithm. They suggest to us when we

might gain from using ZDC transformation Trc. In (Borrett 1998) similar analyses are given for
the backjumping (Gaschnig 1979) and forward checking (Haralick&Elliott 1980) algorithms.

5.4 Evaluation Heuristics for Redundant Composition Constraints

We have seen how some redundant composition constraints can be useful for certain algorithms.
In order to take advantage of this important opportunity for reducing search costs, we need to
develop a heuristic for evaluating the actual expected impact of these constraints. If this can be
achieved, it will allow us to selectively modify an original ZDC formulation by only accepting
moves by Trc which show promise.

5.4.1 Expected Search Cost

In section 4.3 we concluded that an effective evaluation heuristic should provide us with a good
correlation between their value and the actual search cost of the transformed ZDC formulation.
There are many possible ways of addressing this issue. One approach, which we shall use for the
purposes of our example, is to generate estimates of the expected search cost. Haralick and Elliott
devised a simple probabilistic model for constraint satisfaction problems in (Haralick & Elliott
1980). Nadel extended this work to allow estimates of complexity to be generated for classes of
problem defined to a greater level of detail (Nudel 1983a).

A comprehensive assessment of Nadel’s work, with respect to evaluation heuristics, was
performed in (Borrett 1998).  The aim of that assessment was to determine whether or not the
equations given by Nadel could form the basis of reliable heuristics over a wide range of problem
classes. The principle findings were:

•  for some classes of CSP, estimates of complexity were reasonably accurate

•  estimates of complexity can provide good heuristic properties when used to compare the
relative search costs of alternative ZDC formulations

•  complexity estimates can show useful heuristic properties for the case where only a single
solution was searched for – this was important since the complexity estimates given by Nadel
were for finding all solutions to a problem

These findings showed that there was a significant potential for the use of theoretical complexity
estimates for evaluation heuristics. Further details are given in appendix A.

5.4.2 Evaluation Heuristics Based on Expected Search Cost
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We demonstrated in section 5.3 that the redundant composition constraint Cpq could have a
beneficial effect on the search cost. Our evaluation heuristic therefore applies to this constraint.

Taking the findings of the previous section, we now demonstrate how the theoretical complexity
estimates of Nadel can be modified and used to develop an evaluation heuristic for redundant

composition constraints. We call our evaluation heuristic for standard backtracking ρbt:

ρbt(Cpq) < 1.0  ⇒   the addition of redundant composition constraint Cpq is likely to
be useful

and

ρbt(Cpq) ³  1.0  ⇒  the addition of redundant composition constraint Cpq is not likely
to be useful

From (Borrett 1998) we have;

ρbt(Cpq) = c_red(bt) / c(bt) (10)

where c(bt) is the expected complexity of search, in terms of constraint checks, in the original
problem and c_red(bt) is the expected complexity of search in the transformed problem, which
includes the redundant constraint.

c(bt) is given in (Nudel 1983a) and is equal to;
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and the notation used is;

k - a search level, ranging from 1 to n, the number of variables in the
CSP

Ak - the set of assigned variables at level k
Gk - the set of previous variables constrained by the variable at level k;

these are in a fixed order
gjk - the jth variable in the set Gk

pij - the looseness or satisfiability of the constraint between variables i and
j. It is the opposite of tightness and is equal to 1-p2

c_red(bt), the expected number of constraint checks performed by standard backtracking with the
transformed formulation is equal to;

c red bt c red bt k
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where c_red(bt, k), the expected number of constraint checks performed at search level k, is given
by;

c red bt k p D p
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c_red(bt, k) effectively ignores the effect of the redundant constraint on the expected number of
nodes expanded for search levels where it provides the algorithm with no additional constraint
based information.

Using (10), when the expected cost after adding Cpq is less than the expected cost of the original

ZDC formulation, we have ρbt < 1.0 which fits the definition of ρbt given at the start of this
section.

5.5 Experiments

To assess the effectiveness of the heuristics we have outlined above, we conducted a series of
experiments. Our approach was to generate several sets of random binary CSPs, each having
different characteristics. These CSPs are defined using the 4-tuple <n, m, p1, p2> where n is the
number of variables in the problem, m is the uniform domain size of the variables, p1 is the
density of the constraint graph and p2 is the tightness of the individual constraints. This model
was used in (Smith 1994).

For each instance generated, we call that ZDC formulation R1. We then applied the redundant
composition constraint addition algorithm, given in figure 8, to that ZDC formulation in order to
generate a second ZDC formulation, R2. The transformation algorithm looks at candidate
redundant constraints according to propositions 1-5 and adds them according to evaluation
heuristic He. Two instantiations of, He, at line 9 of the algorithm were used;

i. He = 1.0 - uninformed addition for standard backtracking (control)

ii. He = ρbt

The reason for including case i was to test our “informed” evaluation heuristic against this
uninformed baseline. We call the ZDC formulation resulting from this transformation R3.

For each problem class considered, we generated 100 instances and each was solved using
standard backtracking. In addition, the above R2 and R3 formulations were created for each of
those instances. We then solved each of these using the standard backtracking algorithm.
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Figure 8 - The redundant composition constraint addition algorithm

Our expectation was that the use of the uninformed heuristic should show good performance with
some problem classes and bad in others. The reason for this is that for problem classes where the
redundant composition constraints are relatively tight, these constraints have a high chance of
being useful. However, such a naive approach should break down when the redundant

composition constraints become looser. If our ρbt evaluation heuristic is effective, then would
should expect them to perform well over a wide range of problem classes, thus enabling them to
take advantage of useful redundant composition constraints while rejecting those which are not.
Our results are presented in the next section.

5.5.1 Results

For each problem instance we had a cost measure;

cc(R1) - the cost of solving the original ZDC formulation
cc(R2) - the cost of solving the output of figure 8 using case ii
cc(R3) - the cost of solving the output of figure 8 using the uninformed

  cases i

Our results, over a range of problem classes, were processed with a view to observing both
qualitative and quantitative aspects of performance. In order to assess the qualitative performance

of our ρbt heuristic, for each problem class tested, we divided the results into three categories;

cat. 1 - Instances where cc(R2) was less than cc(R1) by a margin of significance -
i.e. a benefit was seen from the using the transformation. These results
are given in columns 3 and 5 in table 1

cat. 2 - Instances where cc(R2) was greater than cc(R1) by a margin of
significance - i.e. using the transformation resulted in a degradation in
performance. These results are given in columns 4 and 6 in table 1

cat. 3 - Instances where the difference between cc(R2) and cc(R1) is within the
margin of significance - i.e. using the transformation resulted in no
significant change in performance.

1  Given a CSP(Z, D, C), algorithm alg and a variable v in ordering O:
2  BEGIN
3      FOR i = 1 to i = |Z|
4          FOR j = i+1 to j = |Z|
5               FOR k = j+1 to |Z|
6                   IF (CONNECTED(vi, vk) ∧
7                         CONNECTED(vj, vk) ∧
8                         ¬CONNECTED(vi, vj))
9                       IF He < 1.0

10                           ADD_COMPOSITION(vi, vj)
11              k++
12          j++
13      i++
14  END
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By partitioning the results in this way we are able compare the frequency of improvement and the
frequency of degradation when using the transformation. For example, if there are more category
1 instances than category 2 instances, then we can say we are seeing a benefit from using the
transformation in that we are gaining more often than we are losing. In fact, if the number of
category 1 instances is greater than category 2 then we have a good result. Conversely, if the
number of category 2 instances is greater than the number of category 1 instances then the result
is considered bad. For the ideal case, we should like to see as many category one instances as
possible and as few category 2 as possible.

Processing the results as we have outlined above we can assess the performance of the redundant

composition constraint transformation when combined with the ρbt heuristic. However, we

should also like to be able to assess how much improvement our ρbt heuristic provides over the
uninformed addition of redundant composition constraints. To see this effect we need to compare
the number of instances in each category for ZDC formulations R2 and R3. The results for R3 are

given as the figures in brackets in table 1. If the ρbt heuristic is performing well and providing an
improvement on the uninformed approach, then we should see more instances in columns 3 and 5
and fewer in columns 4 and 6.

Some of the cells in table 1 are shaded grey. This is to highlight the cases where the uninformed
addition of redundant constraints resulted in cc(R3) being higher than cc(R1) more often than not.

At the same time, the results for our ρ heuristics in these cells show much better performance,
easily satisfying that criterion.

Accuracy with 5% margin
(%instances)

Accuracy with 15% margin
(%instances)

Class Algorithm+
Heuristic
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cc R
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1
105³ cc R

cc R
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1
0 85≤ cc R

cc R

( )

( )
.

2

1
115³

<20, 5, 0.10, 0.84> bt+nat 99 (100) 0   (0) 98 (100) 0   (0)

<20, 5, 0.30, 0.32> bt+nat 75 (73) 1   (14) 62 (68) 0   (7)

<20, 5, 0.30, 0.36> bt+nat 91 (95) 0   (1) 81 (84) 0   (0)

<20, 5, 0.30, 0.40> bt+nat 98 (98) 0   (1) 95 (94) 0   (1)

<20, 5, 0.30, 0.44> bt+nat 100 (100) 0   (0) 97 (98) 0   (0)

<20, 10, 0.10, 0.81> bt+nat 94 (99) 0   (0) 94 (99) 0   (0)

<20, 10, 0.10, 0.86> bt+nat 92 (96) 0   (0) 92 (96) 0   (0)

<20, 10, 0.10, 0.91> bt+nat 98 (99) 0   (0) 98 (99) 0   (0)

<20, 10, 0.30, 0.50> bt+mwo 3   (7) 0   (84) 1   (3) 0   (71)

<20, 10, 0.30, 0.55> bt+mwo 11 (7) 0   (78) 4   (1) 0   (51)

<20, 10, 0.30, 0.60> bt+mwo 12 (12) 0   (53) 2   (3) 0   (14)

<40, 5, 0.10, 0.44> bt+mwo 37 (91) 0   (3) 24 (87) 0   (1)

<40, 5, 0.10, 0.48> bt+mwo 47 (98) 0   (1) 34 (93) 0   (0)

<40, 5, 0.10, 0.52> bt+mwo 48 (92) 0   (1) 36 (86) 0   (0)

<40, 5, 0.30, 0.20> bt+mwo 8   (59) 0   (12) 5   (39) 0   (0)

<40, 5, 0.30, 0.24> bt+mwo 12 (36) 0   (41) 5   (23) 0   (19)

Table 1 - Results of adding redundant composition constraints using ρbt -
uninformed figures, cc(R3)/cc(R1), are in brackets

The qualitative performance of our heuristic was very good, with high levels of accuracy seen. In

order to see the quantitative performance, we show results in figure 9 for the performance of ρbt

on problem class <40, 5, 0.10, 0.48>. These results show a scatter plot of the ratio of cc(R2) and
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cc(R1) for a sample of 500 instances. This gives us a useful indication of the actual savings that
can be expected through the use of our new ZDC formulation evaluation heuristics.

These results demonstrate how our approach allows us to obtain significant savings in search cost
from the addition of redundant composition constraints. There are several instances where order
of magnitude gains are seen. In addition, we see that, while there are a few instances where
degradation in performance is seen, and the ratio cc(R2)/cc(R1) is greater than 1, the magnitude
of that degradation is very small.
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Figure 9 - Search costs on ZDC formulations R1 and R2 using ρbt

- sample size of 500

On inspection of the results in table 1, we see that for some cases, the use of uninformed addition
of redundant composition constraints performs well. An example of this is for the problem class
<20, 10, 0.10, 0.81>. However, there are also many cases where arbitrary addition leads to the
generation of ZDC formulations where the search performance is degraded more often that it is
improved as seen for the class <20, 10, 0.30, 0.55>. Further examples of these classes are
indicated as the grey cells in the tables. This contrasts greatly with gains we see from using the

ρbt heuristic which provide excellent all round performance.

6. DISCUSSION

In this paper we have described a context for the heuristic selection of ZDC formulations which
allows us to focus on areas of constraint satisfaction research which affect the ZDC formulation
selection process, both directly and indirectly. These three main elements of our context are;

•  move operators

•  suggestion heuristics

•  evaluation heuristics

We have presented an example incorporating all of these three elements of the context where
redundant composition constraints are added to ZDC formulations. Our approach has
demonstrated how individual instances can show improved search by systematic manipulation of
their ZDC formulation. Another example of the context being used effectively is presented in
(Borrett 1998) where pairs of variables are merged selectively.

A significant amount of work which has already been done in relation to ZDC formulation
transformation algorithms, which act as move operators. Relating such algorithms directly to our
context will allow us to view them more directly in association with the ZDC formulation
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selection process. This contrasts with the traditional view of simply being a pre-processing step
carried out before search, as is often the case with problem reduction techniques such as arc-
consistency.

Much work needs to be done in the area of suggestion and evaluation heuristics (Hs and He). We

have used a method makes use of expected complexity estimates. There are many other possible
approaches which could be adopted to make use of the many different properties of ZDC

formulations. The important challenge is to identify specific properties or combinations which
provide us with useful heuristic information.

The example we have presented represents a small step in a vast area of research. However, we
believe that our results are promising and that our work represents a significant step towards the
goal of more reasoned and systematic ZDC formulation selection.
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APPENDIX A - THEORETICAL ESTIMATES FOR EVALUATION HEURISTICS

Probabilistic models of constraint satisfaction problems provide a useful mechanism for
estimating search costs. If such estimates can be shown to be sufficiently accurate, then they
provide us with a tool which can form the basis of some ZDC formulation evaluation heuristics,
He. Detailed work on the use of theoretical complexity estimates is presented in (Borrett 1998).

To give the readers some flavour of this work, we provide in this appendix a summary of some
aspects of that work, with respect to the standard backtracking algorithm. For complexity
estimation in look ahead and back jumping algorithms, readers are referred to (Borrett 1998).

A.1 INTRODUCTION

One of the first attempts to develop a probabilistic model for constraint satisfaction problems was
presented in (Haralick & Elliott 1980). Haralick and Elliott devised a very simple model for
problem classes defined by n the number of variables and m the uniform domain size of all n

variables. Nadel’s early research (Nudel 1982, 1983a, 1983b) looked at improving the ideas
presented by Haralick and Elliott in terms of the resolution of problem class being considered.

Nadel observed that the more detail one chooses to ignore about CSPs, the coarser the
corresponding partition and the easier it is to carry out a (worst case or expected) complexity
analysis over a class of problems - but the less relevant it becomes for an individual problem. The
result of Nadel’s work was a set of equations for estimating the expected complexity of CSPs for
a given n, m and set of constraints. The equations could be applied to the standard backtracking
and forward checking algorithms.

The following sections are organised as follows:

•  A.2 summarises Nadel’s work on complexity analysis for standard backtracking;

•  A.3 produces evidence to show that Nadel’s estimations of the search costs are reasonably
accurate;

•  A.4 produces evidence to show that even if the estimates are not very accurate for certain
problem instances, they can be used to reflect the relative costs on transformed problems.
This suggests that Nadel’s complexity analysis can be a useful evaluation heuristic (He).

A.2 THEORETICAL COMPLEXITY EQUATIONS FOR STANDARD

BACKTRACKING

In this section we summarise the equations developed by Nadel for the standard backtracking
algorithm. For more details of the derivation of these equations, we refer the reader to (Nudel
1983a). The following symbols are used;

k - a search level, ranging from 1 to n, the number of variables in the
CSP

Ak - the set of assigned variables at level k
Gk - the set of previous variables constrained by the variable at level k;

these are in a fixed order
gjk - the jth variable in the set Gk

c(alg) - the expected number of constraint checks for algorithm alg

c(alg, k) - the expected number of constraint checks for algorithm alg at level k
n(alg) - the expected number of nodes expanded for algorithm alg

n(alg, k) - the expected number of nodes expanded for algorithm alg at level k
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ixD - the domain size of the variable at level i

pij - the looseness or satisfiability of the constraint between variables i and
j. It is the opposite of tightness (p2 described in section 5.5) and is
equal to 1 − p2

In general, for a given search algorithm, alg, the total number of nodes visited during search
when searching for all solutions is equal to the sum of nodes expanded at each level, k, in the
search;

n alg n alg k
k

n

( ) ( , )=
=
∑

1

(A-1)

The total number of constraint checks carried out during the search is equal to the product of the
number of nodes at each level in the search and the expected number of constraint checks
performed for each value of the variable at that level. This is given by:

( )c alg c alg k n alg k
k

n

( ) ( , ) ( , )= ×∑
=1

(A-2)

These expressions give us the top level calculation required for estimating nodes and constraint
checks for specific algorithms, when finding all solutions. For the standard backtracking
algorithm in particular, the expected number of nodes at level k is effectively the number of
values that the algorithm attempts to label at that level. This is determined by multiplying the
product of the domains of all variables up to the search level k, by the probability that all
constraints connected between variables at search levels preceding k were satisfied. That
probability is given in (A-3).
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Using (A-4), we obtain (Nudel 1983a);
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(A-4)

The expected number of checks per node is dependent on how many constraints are connected to
the variable at the current search level, k. Furthermore, we only continue checking the constraints
if all previous checks against the current assignment are successful. The total expected number of
constraint checks at level k is therefore equal to the sum of the probabilities of each constraint
between xk and previously assigned variables is checked, multiplied by the number of nodes
expanded at that level;
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(A-5)

Combining (A-2), (A-4) and (A-5), we obtain an estimate for the total number of constraint
checks performed by standard backtracking (Nudel 1983a);
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c bt c bt k
k

n

( ) ( , )=
=
∑

1

(A-6)
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A.3 THE ACCURACY OF THEORETICAL ESTIMATES FOR SEARCH COST

PREDICTION

Since equation (A-7) is derived from a probabilistic model, randomly generated CSPs are a good
candidate for assessing their underlying accuracy - if they are not accurate for random problems,
then it is unlikely that they will be accurate for non-random ones. For our experiments we used a
range of binary random CSPs defined by the tuple <n, m, p1, p2>, where n is the number of
variables, m is the uniform domain size of the variables, p1 is the density of constraints within the
constraint graph and p2 is the tightness of each constraint. For this particular experiment we used
a different constraint graph for each problem instance.

The sample size for each set of parameters used was 100 and for each instance the standard
backtracking algorithm was run using the minimum width variable ordering heuristic (Freuder
1982). The heuristic was used in order to reduce the amount of time taken to solve the CSPs. The
observed cost for solving each instance was recorded and then compared with the estimated
number of constraint checks.

In order to give a concise overview of our results we analysed each set with respect to four
parameters;

i. minimum ratio of expected and measured search cost
ii. maximum ratio of expected and measured search cost
iii. mean ratio of expected and measured search cost
iv. standard deviation of ratio of expected and measured search cost

The above parameters give a good indication of the worst case accuracy of our estimate, together
with a typical accuracy. The complete set of results are given in table A.1.

Expected Cost / Measured Cost

Algorithm Problem Class Minimum Maximum Mean Standard
Deviation

bt <10,10,0.2,0.88> 0.31 3.59 1.42 0.77

bt <10,10,0.5,0.63> 0.49 1.48 1.02 0.20

bt <10,10,1.0,0.40> 0.70 1.52 1.02 0.15

bt <20,10,0.2,0.63> 0.24 17.00 2.1 2.28

bt <20,10,0.5,0.38> 0.62 1.90 1.06 0.24

bt <20,10,1.0,0.21> 0.57 1.50 1.03 0.18

bt <30,10,0.2,0.52> 0.42 5.67 1.27 0.67

bt <30,10,0.5,0.26> 0.49 1.72 1.12 0.28

Table A.1 - General accuracy of estimated complexities for bt with randomly
generated binary CSPs. A sample size of 100 problems per class was used.
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Our results are significant in that they show a reasonable degree of accuracy for all of the
problem classes, except for those with the lower density problems. However, only the set of
results which is shaded grey showed an average worse than a factor 2 error. Most estimates of the
worst case search costs are well within a factor 2 of the observed cost. The average ratio of
estimated to measured is much closer to 1.0 in most cases.

These results suggest that we can use the complexity estimates reliably for some randomly
generated binary CSPs with high-density constraint graphs. These findings show promise,
indicating that the use of theoretical complexity estimates is possible for the purposes of
estimating the search cost of algorithms for some problem classes. As a result they have the
potential for playing a significant role in the design of ZDC formulation evaluation heuristics. In
the next section we investigate the direct usefulness of this approach when comparing different
ZDC formulations of a given problem.

A.4 THEORETICAL ESTIMATES AS ZDC FORMULATION EVALUATION

HEURISTICS

In the previous section we considered the use of theoretical complexity estimates for predicting
the search costs of solving CSP instances, with respect to their solving by a particular algorithm.
One important application of such estimates is with the comparison of different ZDC

formulations of a problem, as suggested in (Nudel 1983b) (Nadel 1990). If the theoretical
complexity estimates give a good indication of the actual cost of solving a given CSP, then they
provide us with a candidate for use as an evaluation heuristic.

Furthermore, the purpose of an evaluation heuristic is to identify the relative expected search cost
of a given pair of formulations. This means that even if the estimates are not particularly accurate
in terms of predicting the actual cost of particular instances, they may still be useful, provided
they accurately reflect the relative cost. We should remember that what we are looking for is
evaluation heuristics which give us this relationship. The important point is the qualitative
relationship and not necessarily the exact quantitative nature of it. This is analogous to Nadel’s
use of estimates to obtain “optimal” search orderings (Nudel 1983a). His results there showed
that complexity estimates could accurately reflect the qualitative nature of varying the search
ordering.

The problem type that we used for the purposes of assessing the usefulness of equation (A-7), as
the basis for an evaluation heuristic, was that of randomly generated binary CSPs. We required
two different formulations of each problem instance considered before any comparison could be
made. As the first ZDC formulation we used CSPs generated in the same way as we did in
section A.3, using the 4-tuple <n, m, p1, p2>. We denote this formulation to be R1;

R1 - Z: The n variables
D: {1..m} for each variable.
C:  p1×n(n-1)/2 random binary matrix constraints each having tightness p2.

Our second formulation was based on the idea of taking an R1 instance and transforming it by
replacing pairs of constrained variables with a new variable which is generated by merging the
original pair. For example, given a pair of variables xa and xb which are constrained by Cab, the
domain of the new merged variable, xab, is given as the set of legal tuples in the constraint Cab.
An example of this process is given in figure A.1.
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Figure A.1 - An example of variable merging for the case where the
constraint Ca-b is “not equal”.

In order to create an alternative ZDC formulation we arrange the variables of R1 in the search
ordering we propose to use for R1. We then systematically take a single pass through that
ordering and merge consecutive pairs of variables which are constrained by each other. The result
of the transformation process is a new ZDC formulation of the problem which we call R2;

R2: Z: A mixture of merged and non-merged variables. If variables vi and vj from R1 are merged, 
then they form a single variable vi,j in R2, as indicated in figure A.1

D: Either {1...m} for non-aggregated variables or the set of legal tuples given by an aggregation 
constraint

C: A combination of original constraints and constraint which have been modified to 
accommodate the aggregated variables

For our experiments we used samples of 100 problems for each n, m, p1, p2 class. We looked at
the relative merits of the two candidate ZDC formulations, R1 and R2. We also used the
minimum width variable ordering for the larger problems. For these cases, as we described
above, we pass through the variables in the search ordering used when solving R1 when we
decide which pairs of variable are to be merged for ZDC formulation R2. This ensures that we
effectively visit the variables in the same order for both formulations. The important point is that
we have two ZDC formulations which we can expect to have differing search costs.

The results of our experiments are shown in table A.2. For each instance in a given problem class
we compare the expected complexity values of R1 and R2 which we call ec1 and ec2

respectively. If we find these expected costs to be within a specified percentage of each other,
called margin, then we regard the two formulations as having the same expected cost in solving
and we make no prediction as to which is likely to be the best ZDC formulation of the two. Such
instances contribute to the “% no prediction” column in table A.2. For cases where the difference
is predicted to be greater than the specified percentage, we make a prediction of the actual
instance search costs based on the estimates ec1 and ec2. If the actual measured values show the
same qualitative relationship as the predictions, we regard it as being a correct prediction.
Otherwise, it is regarded as being incorrect.

Cab-c

ab

 c {1, 2, 3}

{(1,2), (1,3), (2,1),
  (2,3), (3,1), (3,2)} a

 b c

Ca-b Ca-c

{1, 2, 3}

{1, 2, 3} {1, 2, 3}Cb-c
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Heuristic Accuracy  -
 margin=5%

Heuristic Accuracy  -
margin=15%

Algorithm +
Heuristic

Problem Class %correct %incorrect % no
prediction

%correct %incorrect % no
prediction

bt+nat <10,10,0.2,0.88> 73 10 17 60 6 34

bt+nat <10,10,0.5,0.63> 77 7 16 62 2 36

bt+nat <10,10,1.0,0.40> 100 0 0 100 0 99

bt+mwo <20,10,0.1,0.88> 64 29 5 60 27 13

bt+mwo <10,10,0.2,0.63> 62 23 15 58 19 23

bt+mwo <10,10,0.5,0.38> 100 0 0 100 0 0

bt+mwo <30,10,0.07,0.85> 98 2 0 95 2 3

bt+mwo <30,10,0.2,0.52> 72 22 6 66 19 15

Table A.2- summary of formulation comparison for randomly generated binary CSPs. 100
problem instances generated per problem class.

As we can see from the data in table A.2, equations (A-7) were seen to be effective in selecting
between ZDC formulations R1 and R2. We can say this since the number of times the selections
were correct or did not make a prediction was greater than 50% for all problem sets. In other
words selections based on our theoretical complexity estimates give better results than simply
picking one of the two formulations at random. In fact our heuristics performed considerably
better than this.

A further, important observation that we can make from table A.2 is that our heuristics are also
effective on problems with low-density constraint graphs. This is important because we have
previously noted that our complexity equations are less accurate in estimating the actual search
cost of algorithms for lower density problems. Our results suggest that when we use different
formulations of a problem, the qualitative nature of the relative complexity values is reflected
more reliably.

A.5 DISCUSSION

In this appendix, we have summarised some of the work presented in (Borrett 1998). We have
introduced Nadel’s complexity analysis framework and provided evidence to demonstrate its
usefulness as an evaluation heuristic (He) for the standard backtracking algorithm. Similar results

have been obtained for the forward checking and backjumping algorithms, see (Borrett 1998).
More work needs to be done to further assess the properties of theoretical estimates for different
types of CSP.

It is important to note that the aim of any evaluation heuristic is to give us some heuristic
indication of the relative merits of different ZDC formulations. We should not lose sight of the
fact that it is heuristics that we seek. Using theoretical complexity estimates provides us with just
one approach which has shown promise with certain classes of CSP. Other approaches are
possible and much more work remains to be done in this area.


